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Math isn't the art of answering mathematical questions, it is the art of 
asking the right questions, the questions that give you insight, the ones 
that lead you in interesting directions, the ones that connect with lots 
of other interesting questions — the ones with beautiful answers. 

— G. Chaitin 
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Preface 

What can a new book of problems in elementary mathematics possibly con-
tribute to the vast existing collection of journals, articles, and books? This 
was our main concern when we decided to write this book. The inevitability 
of this question does not facilitate the answer, because after five years of writ-
ing and rewriting we still had something to add. It could be a new problem, 
a comment we considered pertinent, or a solution that escaped our rationale 
until this predictive moment, when we were supposed to bring it under the 
scrutiny of a specialist in the field. 

A mere perusal of this book should be sufficient to identify its target audi-
ence: students and coaches preparing for mathematical Olympiads, national 
or international. It takes more effort to realize that these are not the only 
potential beneficiaries of this work. While the book is rife with problems 
collected from various mathematical competitions and journals, one cannot 
neglect the classical results of mathematics, which naturally exceed the level 
of time-constrained competitions. And no, classical does not mean easy! These 
mathematical beauties are more than just proof that elementary mathematics 
can produce jewels. They serve as an invitation to mathematics beyond com-
petitions, regarded by many to be the "true mathematics". In this context, 
the audience is more diverse than one might think. 

Even so, as it will be easily discovered, many of the problems in this book are 
very difficult. Thus, the theoretical portions are short, while the emphasis is 
squarely placed on the problems. Certainly, more subtle results like quadratic 
reciprocity and existence of primitive roots are related to the basic results 
in linear algebra or mathematical analysis. Whenever their proofs are par-
ticularly useful, they are provided. We will assume of the reader a certain 
familiarity with classical theorems of elementary mathematics, which we will 
use freely. The selection of problems was made by weighing the need for rou- 
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tine exercises that engender familiarity with the joy of the difficult problems 
in which we find the truly beautiful ideas. We strove to select only those 
problems, easy and hard, that best illustrate the ideas we wanted to exhibit. 

Allow us to discuss in brief the structure of the book. What will most likely 
surprise the reader when browsing just the table of contents is the absence of 
any chapters on geometry. This book was not intended to be an exhaustive 
treatment of elementary mathematics; if ever such a book appears, it will 
be a sad day for mathematics. Rather, we tried to assemble problems that 
enchanted us in order to give a sense of techniques and ideas that become 
leitmotifs not just in problem solving but in all of mathematics. 

Furthermore, there are excellent books on geometry, and it was not hard to 
realize that it would be beyond our ability to create something new to add to 
this area of study. Thus, we preferred to elaborate more on three important 
fields of elementary mathematics: algebra, number theory, and combinatorics. 
Even after this narrowing of focus there are many topics that are simply left 
out, either in consideration of the available space or else because of the fine 
existing literature on the subject. This is, for example, the fate of functional 
equations, a field which can spawn extremely difficult, intriguing problems, 
but one which does not have obvious recurring themes that tie everything 
together. 

Hoping that you have not abandoned the book because of these omissions, 
which might be considered major by many who do not keep in mind the 
stated objectives, we continue by elaborating on the contents of the chapters. 
To start out, we ordered the chapters in ascending order of difficulty of the 
mathematical tools used. Thus, the exposition starts out lightly with some 
classical substitution techniques in algebra, emphasizing a large number of 
examples and applications. These are followed by a topic dear to us: the 
Cauchy-Schwarz inequality and its variations. A sizable chapter presents ap-
plications of the Lagrange interpolation formula, which is known by most only 
through rote, straightforward applications. The interested reader will find 
some genuine pearls in this chapter, which should be enough to change his or 
her opinion about this useful mathematical tool. Two rather difficult chapters, 
in which mathematical analysis mixes with algebra, are given at the end of 
the book. One of them is quite original, showing how simple consideration of 



ix 

integral calculus can solve very difficult inequalities. The other discusses prop-
erties of equidistribution and dense numerical series. Too many books consider 
the Weyl equidistribution theorem to be "much too difficult" to include, and 
we cannot resist contradicting them by presenting an elementary proof. Fur-
thermore, the reader will quickly realize that for elementary problems we have 
not shied away from presenting the so-called non-elementary solutions which 
use mathematical analysis or advanced algebra. It would be a crime to con-
sider these two types of mathematics as two different entities, and it would 
be even worse to present laborious elementary solutions without admitting 
the possibility of generalization for problems that have conceptual and easy 
non-elementary solutions. In the end we devote a whole chapter to discussing 
criteria for polynomial irreducibility. We observe that some extremely efficient 
criteria (like those of Peron and Capelli) are virtually unknown, even though 
they are more efficient than the well-known Eisenstein criterion. 

The section dedicated to number theory is the largest. Some introductory 
chapters related to prime numbers of the form 4k + 3 and to the order of an 
element are included to provide a better understanding of fundamental results 
which are used later in the book. A large chapter develops a tool which is as 
simple as it is useful: the exponent of a prime in the factorization of an inte-
ger. Some mathematical diamonds belonging to Paul Eras and others appear 
within. And even though quadratic reciprocity is brought up in many books, 
we included an entire chapter on this topic because the problems available to 
us were too ingenious to exclude. Next come some difficult chapters concern-
ing arithmetic properties of polynomials, the geometry of numbers (in which 
we present some arithmetic applications of the famous Minkowski's theorem), 
and the properties of algebraic numbers. A special chapter studies some ap-
plications of the extremely simple idea that a convergent series of integers 
is eventually stationary! The reader will have the chance to realize that in 
mathematics even simple ideas have great impact: consider, for example, the 
fundamental idea that in the interval (-1, 1) the only integer is 0. But how 
many fantastic results concerning irrational numbers follow simply from that! 
Another chapter dear to us concerns the sum of digits, a subject that always 
yields unexpected and fascinating problems, but for which we could not find 
a unique approach. 
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Finally, some words about the combinatorics section. The reader will imme-
diately observe that our presentation of this topic takes an algebraic slant, 
which was, in fact, our intention. In this way we tried to present some unex-
pected applications of complex numbers in combinatorics, and a whole chapter 
is dedicated to useful formal series. Another chapter shows how useful linear 
algebra can be when solving problems on set combinatorics. Of course, we are 
traditional in presenting applications of Turan's theorem and of graph theory 
in general, and the pigeonhole principle could not be omitted. We faced diffi-
culties here, because this topic is covered extensively in other books, though 
rarely in a satisfying way. For this reason, we tried to present lesser-known 
problems, because this topic is so dear to elementary mathematics lovers. At 
the end, we included a chapter on special applications of polynomials in num-
ber theory and combinatorics, emphasizing the Combinatorial Nullstellensatz, 
a recent and extremely useful theorem by Noga Alon. 

We end our description with some remarks on the structure of the chapters. 
In general, the main theoretical results are stated, and if they are sufficiently 
profound or obscure, a proof is given. Following the theoretical part, we 
present between ten and fifteen examples, most from mathematical contests 
or from journals such as Kvant, Komal, and American Mathematical Monthly. 
Others are new problems or classical results. Each chapter ends with a series 
of problems, the majority of which stem from the theoretical results. 

Finally, a change that will please some and scare others: the end-of-chapter 
problems do not have solutions! We had several reasons for this. The first 
and most practical consideration was minimizing the mass of the book. But 
the second and more important factor was this: we consider solving problems 
to necessarily include the inevitably lengthy process of trial and research to 
which the inclusion of solutions provides perhaps too tempting of a shortcut. 
Keeping this in mind, the selection of the problems was made with the goal 
that the diligent reader could solve about a third of them, make some progress 
in the second third and have at least the satisfaction of looking for a solution 
in the remainder. 

We come now to the most delicate moment, the one of saying thank you. 
First and foremost, we thank Marin Tetiva and Paul Stanford, whose close 
reading of the manuscript uncovered many errors that we would not have 
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liked in this final version. We thank them for the great effort they put into 
reviewing the book. All of the remaining mistakes are the responsibility of 
the authors, who would be grateful for reports of errors so that in a future 
edition they will disappear. Many thanks to Radu Sorici for giving the book 
the look it has now and for the numerous suggestions for improvement. We 
thank Adrian Zahariuc for his help in writing the sections on the sums of 
digits and graph theory. Several solutions are either his own or the fruit 
of his experience. Special thanks are due to Valentin Vornicu for creating 
Mathlinks, which has generated many of the problems we have included. His 
website, mathlinks ro, hosts a treasure trove of problems, and we invite every 
passionate mathematician to avail themselves of this fact. We would also 
like to thank Ravi Boppana, Vesselin Dimitrov, and Richard Stong for the 
excellent problems, solutions, and comments they provided. Lastly, we have 
surely forgotten many others who helped throughout the writing process; our 
thanks and apologies go out to them. 

Titu Andreescu 	 Gabriel Dospinescu 
titu.andreescuAutdallas.edu 	 gdospi2002©yahoo.com  
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THEORY AND EXAMPLES 3 

1.1 Theory and examples 

We know that in most inequalities with a constraint such as abc = 1 the 
substitution a = —

x
, b = 

z 
c = — simplifies the solution (don't kid yourself,

z x y
not all problems of this type become easier!). The use of substitutions is far 
from being specific to inequalities; there are many other similar substitutions 
that usually make life easier. For instance, have you ever thought of other 
conditions such as 

xyz = x + y + z+ 2; xy + yz + zx + 2xyz =1; x2  +y2  + z2  + 2xyz = 1 

or x2  + y2  + z2  = xyz + 4? The purpose of this chapter is to present some of 
the most classical substitutions of this kind and their applications. 

You will be probably surprised (unless you already know it...) when finding 
out that the condition xyz = x + y + z + 2 together with x, y, z > 0 implies 
the existence of positive real numbers a, b, c such that 

b+c 	c+ a 	a + b 

	

x= 	 y= 	z= a 	b 

Let us explain why. The condition xyz=x+y+z+ 2 can be written in the 
following equivalent way: 

1 	1 	1 
1+x 1+y

+
1+z 

1. 

Proving this is just a matter of simple computations. Now take 

1 	1 	1 

	

a = 	 b= 
1+y

, c= 	 
1+ x' 	 1+z 

Then a + b + c = 1 and x = 1— 
a

= 
 b+ c

. Of course, in the same way 
a 	a 

+ a + c c + a a + b 
we find y = 

c 
	 z = a+   b

. The converse (that is, 	 
b 

b ' 	 a ' 	b ' 	c 
satisfy xyz = x + y + z + 2) is much easier and is settled again by basic 
computations. Now, what about the second set of conditions, that is x, y, z > 0 
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and xy+yz+zx+2xyz = 1? If you look carefully, you will see that it is closely 
related to the first one. Indeed, x, y, z > 0 satisfy xy + yz + zx + 2xyz = 1 if 

1 	1 	1 	1 
and only if 

111  
—, 	— verify 	 = + + + 2, so the substitution here is 
x y z 	xyz x y z 

a b 	 c 
x = 	 , z = 	 

b-Fc' Y  c+a 	a+b •  

Now, let us take a closer look at the other substitutions mentioned at the 
beginning of the chapter, namely x2  + y2 + z2 + 2xyz = 1 and x2  + y2  + z2 = 
xyz +4. Let us begin with the following question, which can be considered an 
exercise, too: consider three real numbers a, b, c such that abc = 1 and let 

1 	1 	1 
x = a + 

	

	y =- b + —
b
, z = c + — 

a 

The question is to find an algebraic relation between x, y, z, independent of 
a, b, c. An efficient way to answer this question (that is, without horrible 
computations that result from solving the quadratic equations) is to observe 
that 

xyz  (a+ 1) (b+ 1 (c+ 1 

(a2 +
a2 
 + (b2 +

b2 
 + (c2 +

c2 
 + 2 

(x2 2)  + (y2 2) + (z2 2) + 2.  

Thus 

X2 ± y2 ± Z2 - xyz = 4. 
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Because 'a + a > 2 for all real numbers a, it is clear that not every triple 
(x, y, z) satisfying (1.2) is of the form (1.1). However, with the extra-assumption 
minflx1,1Y1,1z11 > 2 things get better and we do have the converse, that is if 
x, y, z are real numbers with min{ Ix', lyl, lz1} > 2 and satisfying (1.2), then 
there exist real numbers a, b, c with abc = 1 satisfying (1.1). Actually, it suf-
fices to assume only that max(14 I I , Izi) > 2. Indeed, we may assume that 

I x 1 > 2. Thus there exists a nonzero real number u such that x = u + 1. 

Now, let us regard (1.2) as a quadratic equation with respect to z. Because 
the discriminant is nonnegative, it follows that (x2  – 4) (y2  – 4) > 0. But since 
Ix I > 2, we find that y2  > 4 and so there exist a non-zero real number v for 

which y = v + 
1  
–
v

. How do we find the corresponding z? Simply by solving the 

second degree equation. We find two solutions: 

1 	U V 
Zi = UV + , Z2 = -+-

uv 	V U 

and now we are almost done. If z = uv + 
1 
— 

V 	 U

we take (a, b, c) = Cu,v v, ) 
uv 	 uv 

	

u v 	 1 u 
and if z = – + –, then we take (a, b, c) = (–, v, – . 

	

U 	V 

Inspired by the previous equation, let us consider another one, 

X2 + y2 + Z2 + xyz = 4 

where x, y, z > 0. We will prove that the set of solutions of this equation is 
the set of triples (2 cos A, 2 cos B, 2 cos C), where A, B, C are the angles of an 
acute triangle. First, let us prove that all these triples are solutions. This 
reduces to the identity 

cos2  A + cos2  B + cos2  C + 2 cos A cos B cos C = 1. 
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This identity can be proved readily by using the sum-to-product formulas. 
For the converse, we see first that 0 < x, y, z < 2, hence there are num- 

bers A, B E (0, -
2 

) such that x = 2 cos A, y = 2 cos B. Solving the equa- 

tion with respect to z and taking into account that z E (0, 2) we obtain 
z = —2 cos(A + B). Thus we can take C = 7r — A — B and we will have 
(x, y, z) = (2 cos A, 2 cos B, 2 cos C). 

Let us summarize: we have seen some nice substitutions, with even nicer 
proofs, but we still have not seen any applications. We will see them in a 
moment... and there are quite a few problems that can be solved by using 
these "tricks". First, an easy and classical problem, due to Nesbitt . It has so 
many extensions and generalizations that we must discuss it first. 

[Example 1. Prove that 
a 	b 	c 	3 

b+c
+

c+a 
	> 
a+b 2 

for all a, b,c> 0. 

Solution. With the "magical" substitution, it suffices to prove that if x, y, z > 

0 satisfy xy + yz + zx + 2xyz = 1, then x+ y + z 

3 

 Let us suppose that 

5_ 
(x + y + z)2  

3 
3 

, we also have 

4 	 4 4 	
, a contradiction, 

so we are done. 

Let us now increase the level of difficulty and make an experiment: imagine 
that you did not know about these substitutions and try to solve the following 
problem. Then look at the solution provided and you will see that sometimes 
a good substitution can solve a problem almost alone. 

3 
this is not the case, i.e. x+ y + z < —

2
. Because xy + yz + zx 

we must have xy + yz + zx < 

1 	

—
4 	 3 

and since xyz 
<(x+y+z  

) 

3 

2xyz < —. It follows that 1 = xy+yz+zx+2xyz < —
3 
+1  = 1 
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Example 2. Let x, y, z > 0 be such that xy + yz + zx + 2xyz = 1. Prove 
that 

1 
-1+- + -

1  1 	
> 4(x +y+z). 

x y z 

[Mircea Lascu] 

Solution. With our substitution the inequality becomes 

	

b+c c+a a+b 	a 
	> 4 	 

a 	 b+c
+ 

c+a
+ 
 a+b 

But this follows from 

4a 	a a 	4b 	b b 	4c 	c c 

	

, 	, 	- . 
b+c -  b c c+a c a a+b - a b 

Simple and efficient, these are the words that characterize this substitution. 
Here is a geometric application of the previous problem. 

Example 3. Prove that in any acute-angled triangle ABC the following 
inequality holds 

cos2  A cos2  B + cos2  B cos2  C + cos2  C cos2  A 
1 

< -
4 

(cos2  A + cos2  B cos2  C). 

[Titu Andreescu] 

Solution. We observe that the desired inequality is equivalent to 

cos A cos B cos B cos C cos A cos C 
cos C 	cos A 	cos B 

1 ( cos A 	cos B 	cos C 
- 4 cos B cos C cos C cos A cos A cos B 
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Setting 

x= 
cos B cos C 

y = 
cos A cos C 	cos A cos B 
	 z= 	 

cos B 	 cos C cos A 

the inequality reduces to 

1 	1 	1 
4(x + y + z) < —+—+ —.  

x y z 

But this is precisely the inequality in the previous example. All that remains 
is to show that xy + yz + zx + 2xyz = 1. This is equivalent to 

cos2  A + cos2  B + cos2  C + 2 cos A cos B cos C = 1, 

which we have already discussed. 

The following problem is a nice characterization of the equation (1.2) by poly-
nomials and also teaches us some things about polynomials, in two or three 
variables. 

Example 4.] Find all polynomials f (x, y, z) with real coefficients such that 

f(
a+-

1
,b+— 1,c+ 1) =0 

a 	 c 

whenever abc = 1. 

[Gabriel Dospinescu] 

Solution.  From the introduction, it is now clear that the polynomials divisible 
by x2  + y2  + z2  — xyz — 4 are solutions to the problem. But it is not obvious 
why any desired polynomial should be of this form. To show this, we use the 
classical polynomial long division. There are polynomials g(x, y, z), h(y, z), 
k(y, z) with real coefficients such that 

f (x, y, z) (x2  + y2  + z2  — xyz — 4)g (x , y, z) + xh(y, z) + k(y , z) 
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Using the hypothesis, we deduce that 

0= (a+-1)h(b+-1  c+-1) +k(b+-1  c+-1) 
a 	b' 	c 	b' 	c 

whenever abc = 1. Well, it seems that this is a dead end. Not exactly. Now 
1 

we take two numbers x, y such that min{ 	> 2 and we write x = b + 
b
— 

y 	y2 4 
y = c + 

1  
—
c 

with b = 
x+x2- 4 

, c = 	 
2 	 2 

Then it is easy to compute a + 1. Itis exactly 
a 

xy + -V(x2  — 4)(y2  — 4). 

So, we have found that 

(xy + V(x2  — 4)(y2  — 4))h(x, y) + k(x, y) = 0 

whenever min{ 	} > 2. And now? The last relation suggests that we 
should prove that for each y with 	> 2, the function x 	\/x2  — 4 is not 

() 
rational, that is, there are not polynomials p, q such that N/x2  4 = 

p x 
 

q(x) 
But this is easy because if such polynomials existed, than each zero of x2  — 4 
should have even multiplicity, which is not the case. Consequently, for each 
y with > 2 we have h(x,y) = k(x,y) = 0 for all x. But this means 
that h(x, y) = k(x, y) = 0 for all x, y, that is our polynomial is divisible by 
x2 + y2 ± z2 — xyz — 4. 

The level of difficulty continues to increase. When we say this, we refer again 
to the proposed experiment. The reader who will try first to solve the prob-
lems discussed without using the above substitutions will certainly understand 
why we consider these problems hard. 

Example 5. Prove that if x, y, z > 0 and xyz = x + y + z + 2, then 

2(Vxy + Vyz + -‘51-) x + y + z + 6. 
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Solution.  This is tricky, even with the substitution. There are two main 
ideas: using some identities that transform the inequality into an easier one 
and then using the substitution. Let us see. What does 2(./Ty-  + \/yz + ./zx) 
suggest? Clearly, it is related to 

(N/Y + -N5 + 15)2  - (X ± + z). 

Consequently, our inequality can be written as 

+ N/V + A/iz < N/2(x + y + z + 3). 

The first idea that comes to mind  (that is using the Cauchy-Schwarz inequality 
in the form Vi + .‘5 + 	< V3(x + y + z) < V2(x + y + z + 3)) does not 
lead to a solution. Indeed, the last inequality is not true: setting x + y + z = 
we have 3s < 2(s + 3). This is because the AM-GM inequality implies that 

3 
xy z < —

83 
, so 

8 
 > + 2, which is equivalent to (s — 6)(8 + 3)2  > 0, implying 

27 	27 — 
s > 6. 
Let us see how the substitution helps. The inequality becomes 

lb+c  
a  

c+a lab 
c 

2 
(b+c c+a a+b 

 + 3
) 

a  

The last step is probably the most important. We have to change the expres-

sion 	
c c+a a+b 

sion 	+ 	+ 	+ 3 a little bit. 
a 	b 	c 

We see that if we add 1 to each fraction, then a+ b+c will appear as a common 
factor, so in fact 

b+c c+a a+b , 1 1 1 
a 	+3 =(a+b+c)G+ 

And now we have finally solved the problem, amusingly, by employing again 
the Cauchy-Schwarz inequality: 

\lb+c  
a 

c+a lab 
c 

(b+c+c+a+a+b)(-1 	+-1). 
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We continue with a difficult 2003 USAMO problem. There are numerous 
proofs for this inequality, none of them easy. The following solution is again 
not simple, but seems natural for someone familiar with such a substitution. 

Example 6.1 Prove that for any positive real numbers a, b, c the following 
inequality holds 

(2a + b + c)2 	(2b + c  a)2 	(2c  +  a + b)2   
2a2  + + c)2  2b2  + (c + a)2  2c2  + (a + b)2 < 

8  

[Titu Andreescu, Zuming Feng] USAMO 2003 

Solution.  The desired inequality is equivalent to 

(2+ 
b + cV  ( b 2+  c+ ay  (2  + a+bV 
a ) 	 c )  

2 + 
(b+c  + 

2 + 
(c+ a) 2 + 

2 	+ (a +b)2 al"
b  

2  a I 
	 c) 

Taking our substitution into account, it suffices to prove that if xyz = x + y+ 
z + 2, then 

(2 + x)2  

+ 

(2 + y)2  (2 + z)2  
< 8. 

2 + x2  

This is in fact the same as 

2x + 1 

2 + y2  

2y + 1 

2 + z2  — 

2z + 1 
<

5 
x2 + 2 y2 + 2 + z2  + 2 — 2' 

Now, we transform this inequality into 

(x — 1)2  (y — 1)2  (z — 1)2  1 
x2  + 2 y2  + 2 z2  + 2 — 2 

This last form suggests using the Cauchy-Schwarz inequality to prove that 

(x — 1)2 	(y  — 1)2  (z — 1)2  > (x + y + z — 3)2  
X2  ± 2 	y2  +2 	z2 2 	x2 ± y2 ± z2 6 
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So, we are left with proving that 2(x + y + z — 3)2  > x2  + y2  + z2  + 6. But 
this is not difficult. Indeed, this inequality is equivalent to 

2(x + y + z — 3)2  > (x + y + z)2  — 2(xy + yz + zx) + 6. 

Now, from xyz > 8 (recall who x, y, z are and use the AM-GM inequality three 
times), we find that xy+yz +zx > 12 and x +y+z > 6 (by the same AM-GM 
inequality). This shows that it suffices to prove that 2(s — 3)2  > s2  — 18 for all 
s > 6, which is equivalent to (s — 3) (s — 6) > 0, clearly true. And this difficult 
problem is solved! 

The following problem is also hard. Yet there is an easy solution using the 
substitutions described in this chapter. 

[Example 7.1 Prove that if x, y, z > 0 satisfy xy + yz + zx + xyz = 4 then 
x + y + z xy + yz + zx. 

India 1998 

Solution. Let us write the given condition as 

xy ± yz zx 	xyz 
2 2

+
2 • 2

+
2 • 2

+2 2 
 • 2 • 2 

1. 

Hence there are positive real numbers a, b, c such that 

2a 	2b 	2c 

b+c' Y  c+a' 
x =     z= 

a+b
. 

But now the solution is almost over, since the inequality 

x+y+z>xy+yz+zx 

is equivalent to 

a 	b 	c 	2ab 	 2bc 	 2ca 
b+c

+ 
c+a

+ 
a+b (c+a)(c+b)

+ 
(a+b)(a+c)

+ 
(b+a)(b+c)• 
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After clearing denominators, the inequality becomes 

a(a + b) (a + c) + b(b + a)(b + c) + c(c + a)(c + b) > 

> 2ab(a + b) + 2bc(b + c) + 2ca(c + a). 

After basic computations, it reduces to 

a(a — b) (a — c) + b(b — a) (b — c) + c(c — a)(c — b) > 0. 

But this is Schur's inequality! 

Here is a difficult problem, in which the substitution described plays a key 
role, but cannot solve the problem alone. 

Elkample S. Prove that if x, y, z > 0 satisfy xyz = x + y + z + 2, then 

xyz(x — 1)(y — 1)(z — 1) < 8. 

[Gabriel Dospinescu] 

Solution.  Using the substitution 

b  + c 	c + a 	a + b 
x = -= 	 z = 	 

a 	b 

the inequality becomes 

(a + b)(b + c)(c + a)(a + b — c)(b + c — a)(c + a — < 8a2b2c2  (1.4) 

for any positive real numbers a, b, c. It is readily seen that this form is stronger 
than Schur's inequality 

(a + b — c)(b + c — a)(c + a — < abc. 
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First, we may assume that a, b, c are the sides of a triangle ABC, since other-
wise the left-hand side in (1.4) is negative. This is true because no more than 
one of the numbers a + b — c, b + c — a, c+ a — b can be negative. Let R be 
the center of the circumcircle of triangle ABC. It is not difficult to deduce 
the following identity 

(a+b—c)(b+c—a)(c+a b)= 
(a+b+c)R2.  

Consequently, the desired inequality can be written as 

(a + b + c)R2  > 
(a + b)(b + c)(c + a) 

8 

But we know that in each triangle ABC, 9R2 > a2 + b2 + c2. Hence it suffices 
to prove that 

8(a + b + c) (a2  + b2  + c2) > 9(a + b)(b + c)(c + a). 

This inequality is implied by the following ones: 

8(a + b + c)(a2  +b2  + c2) > 8(a + b + c)3  

and 

9(a+b)(b+c)(c+a)< 
8

(a+b+c)3. 

The first inequality reduces to 

a2 b2c2  

a2 ± b2 ± e2 > 1 _ (a + b + c)2  , 
3 

while the second is a consequence of the AM-GM inequality. By combining 
these two results, the desired inequality follows. 

Of a different kind, the following problem and the featured solution prove that 
sometimes an efficient substitution can help more than ten complicated ideas. 
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Example 9. J Let a, b, c > 0. Find all triples (x, y, z) of positive real numbers 
such that 

{

x+y+z=a+b+c 
a2x + b2y + c2z + abc = 4xyz 

[Titu Andreescu] IMO Shortlist 1995 

Solution.  We try to use the information given by the second equation. This 
equation can be written as 

a2 	b2 	c2 	abc 
—+++ 	 = 4 
yz zx xy xyz 

and we already recognize the relation 

U2 ± V2 ± W2 + UVW = 4 

where u = 
V 

a  
yz

, v = 
V 

b  
zx

, w = 
V 

c  
xy

. According to example 3, we can find 

an acute-angled triangle ABC such that 

u = 2 cos A, v = 2 cos B, w = 2 cos C. 

We have made use of the second condition, so we use the first one to deduce 
that 

x + y + z = 2.Vxy cos C + 2Vyz cos A + 2.\/zx cos B. 

Trying to solve this as a second degree equation in VY, we find the discriminant 

—4(5 sin C — AFzsinB)2. 

Because this discriminant is nonnegative, we infer that 

N5 sin C = -Vi sin B and -VY = N5 cos C + Nii cos B. 

Combining the last two relations, we find that 

sin A sin B sin C 
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Now we square these relations and we use the fact that 

cos A =- 

The conclusion is: 

2. V 
a
yz 	 2 A/zx 
	 cos B =   cosC = 

2.\/xy
. 

b+ c 	c+ a 	a + b 
x =- 	 z = 	 

2 	
y= 	

2 	2 

and it is immediate to see that this triple satisfies both conditions. Hence 
there is a unique triple that is solution to the given system. 

And now, we come back to an earlier problem, this time with a solution based 
on geometric arguments. 

[Example 10. Prove that if the positive real numbers x, y, z satisfy xy + 
yz + zx + xyz = 4, then 

x+y+z>xy+yz+zx. 

India 1998 

Solution. The relation given in the hypothesis of the problem is not an im-
mediate analogue of the equation (1.3) Let us write the condition xy + yz + 
zx + xyz = 4 in the form 

vxy2 	z  V y 2 V ZX 2  Vxy • Vyz • -fzx = 4. 

Now, we can use the result from example 3 and we deduce the existence of an 
acute-angled triangle ABC such that 

{ ✓yz = 2 cos A 
A/zx = 2 cos B 

.\/xy = 2 cos C. 



x = 
\/  2 cos 	B cos C 	

= 
\I 2 cos A cos C 

cos A 	 cos B z = 

\/2 cos A cos B 
cos C 
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We solve the system and we find the triplet 

2 cos B cos C 2 cos A cos C 2 cos A cos B 
(x, y, z) = 	 

cos A 	cos B 	cos C 

Hence we need to prove that 

cos B cos C cos A cos C cos A cos B 
cos A 	cos B 	cos C 

	 > 2(cos2  A + cos2  B + cos2  C). 

This one is a hard inequality and it follows from a more general result. 

Lemma 1.1. If ABC is a triangle and x, y, z are arbitrary real numbers, then 

x2  + y2  + z2  > 2yz cos A + 2zx cos B + 2xy cos C. 

Proof. Let us consider points P, Q, R on the lines AB, BC, CA, respectively, 
such that AP = BQ = CR = 1 and P, Q, R do not lie on the sides of the 
triangle. Then we see that the inequality is equivalent to 

(x•AP + y BQ + z • CR)2  > 0, 

which is obviously true. 

Note that the condition 

x + y + z = 2Vxy cos C + 2 \/yz cos A + 2Vzx cos B 

is the equality case in the lemma. It offers another approach to Example 9. 

The lemma being proved, we just have to take 

in the above lemma and the problem will be solved. 

And finally, an apparently intricate recursive relation. 



18 	1. SOME USEFUL SUBSTITUTIONS 

Example 11. Let (an)n>o be a non-decreasing sequence of positive integers 

such that ao = al = 47 and 4_1 ±an2 ±a2nr+i _ an_i an  and- 
4 for n > 1. Prove that 2 + an  and 2 + -V2 + an  are perfect 
squares for all n > 0. 

 

[Titu Andreescu] 

Solution. Let us write an  = xn  + —
1

, with xn-> 1. Then the given condition 
xn 

becomes xn+i = xnxn-i (we have used here explicitly that xn  > 1), which 
shows that (ln xn)n>0 is a Fibonacci-type sequence. Since xo = xi, we deduce 
that xn  = xrn, where F0  = F1 = 1, Fn+i = Fn  Fn_1. Now, we have to do 

47 + V472  - 1 
more: what is xo? And the answer xo =

2 	
won't suffice. Let us 

remark that 

(\i5+ 

from where we find that 

1r_)2 
 
=49 

v  X0 

1 
= 7. 

21 

Similarly, we obtain that 
1 

= 3. + 
`'XI 

Solving the equation, we obtain 

2 

	 = A ■ix7i = (1+2v5) 	2 ) 

that is So = A8. And so we have found the general formula an = A8Fm + A-8F,L .  

And now the problem becomes easy, since 

(A4F, A-4F,N2 	 (A2Fn A-2F, )2 .  an  + 2 = 	 ) and 2 + -V2 + ari  = 
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1 
All we are left to prove is that A2k  + —A2k E N for all k E N. But this is not 

difficult, since 

A2 ± A -
1 N, A4 +  E N z 	 A4 

and 

1 A2 k+1   (A2 + 1  ) (A2k 	1  ) 	A2 k-1 1  
A2(k+1) 	-` A2 	A2k 	 A2(k-1) 
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1.2 Problems for training 

1. Find all triples x, y, z of positive real numbers, solutions to the system: 

{ x2 + y2 + Z2 = xyz + 4 

xy + yz + zx = 2(x + y + z) 

2. Prove that if x, y, z > 0 satisfy xy + yz + zx + 2xyz = 1, then 

1 	 3 
xyz < —

8 
and xy + yz + zx > —

4
. 

3. Prove that for any positive real numbers a, b, c the following inequality 
holds 

b+c c+a a+b 	a 	b 	c 	9 
	+ 	+ 	> 	 

a 	b 	c — b+c
± 
 c+a

+ 
a+b

+ 
2

. 

J. Nesbitt 

4. Let a, b,c> 0 such that a2  + b2  + c2  + abc = 4. Prove that 

\/
(2 — a)(2 —  b)  + 
(2 + a)(2 + b)  

(2 — b)(2  —  c) ± 
(2 + b)(2 + c) 

(2 — c)(2 — a) 	1  
• (2+c)(2+a)  

Cristinel Mortici, Romanian Inter-county Contest 

5. Prove that if a, b,c> 0 satisfy the condition la2  + b2  + c2 _41 = abc, then 

(a — 2)(b — 2) + (b — 2)(c — 2) + (c— 2)(a — 2) > 0. 

Titu Andreescu, Gazeta Matematica 

6. Prove that if x, y,z > 0 and xyz = x + y + z + 2, then 

xy + yz + zx > 2(x + y + z) and N5 + N/Y+ V7z 5_ .\/xyz. 
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7. Let x, y, z > 0 such that xy + yz + zx = 2(x + y + z). Prove that 
xyz<x+y+z+ 2. 

Gabriel Dospinescu, Mircea Lascu 

8. Prove that in any triangle ABC the following inequality holds 

1 
cos A + cos B + cos C > 

4 
— (3 + cos(A — B) + cos(B — C) + cos(C — A)). 

—  

Titu Andreescu 

9. Prove that in every acute-angled triangle ABC, 

(cos A + cos B)2  + (cos B + cos C)2  + (cos C + cos A)2  < 3. 

10. Find all triples (a, b, c) of positive real numbers, solutions to the system 

f a2  + b2  + c2  + abc = 4 
a + b + c = 3 

Cristinel Mortici, Romanian Inter-county Contest 

11. Find all triplets of positive integers (k,l, m) with sum 2002 and for which 
the system 

x 
- + — = k 
y x 

z 
— + — = / 
z y 

z x 
— + — = m 
x z 

has real solutions. 

Titu Andreescu, proposed for IMO 2002 
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12. Prove that in any triangle the following inequality holds 

A 	B 	C 
< cost 

2 

(
sin —

2 
+ sin —

2 
+ sin — 	

—A 
+ cos .13  + cos2 —C. 

2 	2 	2 

13. Find all functions f : (0, oo) —+ (0, oo) with the following properties: 

a) 1(x) + f (y) + f (z) + f (xyz) = f (/) f (Vyz)f ( N/zx) for all x, y, z; 

b) if 1 < x < y then f (x) < f (y). 

Hojoo Lee, IMO Shortlist 2004 

14. Prove that if a, b, c > 2 satisfy the condition a2 + b2 + c2 = abc + 4, then 

a + b + c + ab + ac + bc > 2,\/(a + b + c + 3)(a2 ± 	b2 + c2 3). 

Marian Tetiva 

15. Let x, y, z > 0 such that xy + yz + zx + xyz = 4. Prove that 

1 	1 	1 2 
3( 	+—+ ) > (X+2)(Y+2)(Z+2). 

Vi  N5 "Vi  

Gabriel Dospinescu 

16. Prove that in any acute-angled triangle the following inequality holds 

( cos  A  12 C COS B  2  + (COS C)  2  
cos B ) 	cos C ) 	cos A 

+8cosAcosBcosC> 4. 

Titu Andreescu, MOSP 2000 
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17. Solve in positive integers the equation 

(x + 2)(y + 2)(z + 2) = (x + y + z + 2)2. 

Titu Andreescu 

18. Let n > 4 be a given positive integer. Find all pairs of positive integers 
(x, y) such that 

(x 	+ y)2  
xy 	= n - 4. 

n 

Titu Andreescu 

19. Let the sequence (an)n>o, where ao = al = 97 and an+1 = an-Ian + 

\./(a,2, — 1)(an2 _1  — 1) for all n > 1. Prove that 2 + -V2 + 2ar, is a perfect 

square for all n > 0. 

Titu Andreescu 

20. Prove that if a, b, c > 0 satisfy a2  + b2  + c2  + abc = 4 then 

0 < ab + bc + ca - abc < 2. 

Titu Andreescu, USAMO 2001 

21. Prove that if a, b, c > 0 and x = a + 
b 
-
1 

' 	 a 
y = b + -

1
, z = c + -

1
, then 

xy+yz+zx > 2(x+y+z). 

Vasile Cartoaje 

22. Prove that for any a, b, c > 0, 

	

(b + c - a)2 	(c + a — b)2 ±  (a  + b - c)2  > 3 
+ 	a2 	(c a)2 	b2 	(a + b)2  + c2  

Japan 1997 
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2.1 Theory and examples 

In recent years the Cauchy-Schwarz inequality has become one of the most used 
results in contest mathematics, an indispensable tool of any serious problem 
solver. There are countless problems that reduce readily to this inequality and 
even more problems in which the Cauchy-Schwarz inequality is the key idea of 
the solution. In this unit we will not focus on the theoretical results, since they 
are too well-known. Yet, examples that show the Cauchy-Schwarz inequality 
at work are not as readily available. This is the reason why we will see this 
inequality in action in several simple examples first, gradually leading to uses 
of the Cauchy-Schwarz inequality in some of the most difficult problems. 
Let us begin with a very simple problem. Though it is a direct application 
of the inequality, it underlines something less emphasized: the analysis of the 
equality case. 

Example 	Prove that the finite sequence ao, al , 	, an  of positive real 
numbers is a geometrical progression if and only if 

(a(2)±4±• • •+an_1)(4. -Fd-F• • .-Fari2  ) = (aoai +• • •+an—lan)2
. 

Solution. We see that the relation given in the problem is in fact the equality 
case in the Cauchy-Schwarz inequality. This is equivalent to the proportion-
ality of the n-tuples (ao, al, . , an_i) and (al, a2, , an), that is 

ao 	al 	an—i 
- = - = • • • = 

al 	a2 	an  

But this is just actually the definition of a geometrical progression. Hence 
the problem is solved. Note that Lagrange's identity allowed us to work with 
equivalences. 

Another easy application of the Cauchy-Schwarz inequality is the following 
problem. This time the inequality is hidden in a closed form, which suggests 
using calculus. There exists a solution that uses derivatives, but it is not as 
elegant as the one featured: 
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Example 2.1 Let p be a polynomial with positive real coefficients. Prove 

that p(x2)p(y2) > p2(xy) for any positive real numbers x, y. 

Russian Mathematical Olympiad 

Solution. If we work only with the closed expression p(x2)p(y2) > 
the chances of seeing a way to proceed are small. So, let us write 
ao + aix + • • • + anxn . The desired inequality becomes 

(ao  + ai x2  + • • • + anx2n)(ao + aiy2  + • • 	any2n)  

> (ao + aixy + • • • + anxnyn)2. 

P2  (xY), 
p(x) = 

And now the Cauchy-Schwarz inequality comes into the picture: 

(ao + aixy + • • • + anxnYn)2  

-= (Vao • Vao Vaix2  • Vaiy2  + • • + ✓anxn • ✓anyn)2  

02 + 	any  2n).  < (ao + aix2  + • • • + anx2n)(ao a+  

And the problem is solved. Moreover, we see that the conditions x, y > 0 
are redundant, since we have of course p2(xy) < p2(1xyl). Additionally, note 
an interesting consequence of the problem: the function f : (0, co) 	(0, co), 
f(x) = lnp(ex) is convex, that is why we said in the introduction to this 
problem that it has a solution based on calculus. The idea of that solution is 
to prove that the second derivative of this function is nonnegative. We will not 
prove this here, but we note a simple consequence: the more general inequality 

p(x /Dp(4) . . . p(4) > Pk  (X1X2 	Xk), 

which follows from Jensen's inequality for the convex function f (x) = lnp(ex). 

Here is another application of the Cauchy-Schwarz inequality, though this time 
you might be surprised why the "trick" fails at a first approach: 
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Prove that if x, y, z>  > 0 satisfy —
1 

+ —
1 

+ —
1 

= 2, then 
x y z 

Example 3. 

 

        

  

— + 	— 1 + — 1 < + y + z. 

Iran 1998 

Solution. The obvious and most natural approach is to apply the Cauchy-
Schwarz inequality in the form 

Vx-1+ 	— 1 + N/z — 1 < V3(x + y + z — 3) 

and then to try to prove the inequality \/3(x + y + z — 3) < .Vx+ y + z, 

which is equivalent to x + y + z < —
9

. Unfortunately, this inequality is not 
2 

true. In fact, the reversed inequality holds, that is x+ y + z > —
9

, since 
— 2 

1 1 	9 
2 = 

x
+

y
+

z 
1 > 

x+y+z
. Thus this approach fails, so we try another, using 

again the Cauchy-Schwarz inequality, but this time in the form 

.Vx — 1 + 	—1+ 	— 1 = -va • •/x  —
a 

1  + .NA 	Y 	
b

l  +•VC• 

(a + b+c)(x—
a 

1  y 1 z
c 
 11 • 

We would like to have the last expression equal to A/x+ y + z. This encourages 
us to take a = x, b = y, c = z, since in this case 

x—
a 
 1 y — 1 z-1b

= 1 and a+b+c-=x+y+z. 

Hence this idea works and the problem is solved. 

We continue with a classical result, the not so well-known inequality of Aczel. 
We will also see during our trip through the world of the Cauchy-Schwarz 
inequality a nice application of Aczel's inequality. 

z-1 
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Example 4 Let al, a2, 	, an, b1, b2, . , bn, be real numbers and let A, B > 
0 such that 

 

A2  > a? + a3 + • • • + an2  or B2  > b? + + • • • + bn2  

Then 

(A2 	? 	2  — a — a 2 	_ an2)( 	? B2  b — — • • • — b2  ) 

< (AB — aibi — a2b2 — • • • — anbn)2. 

[Aczel] 

Solution.  We observe first that we may assume that 

A2  > a? + a3 + • • + an2  and B2  > b? + + • • • + bn2 . 

Otherwise the left-hand side of the desired inequality is less than or equal to 
0 and the inequality becomes trivial. From our assumption and the Cauchy-
Schwarz inequality, we infer that 

aibi + a2b2 + • • • + anbn  < ,Va? + 4 + • • • + an2  ,Vbi +b2 +•••+bn < AB 

Hence we can rewrite the inequality in the more appropriate form 

aibi + a2b2 + • • • + anb, + V(A2  — a)(B2  — b) < AB , 

where a -= a? + a3 + • • • + an and b = b? + b2 + • • • + bn2  Now, we can apply 
the Cauchy-Schwarz inequality, first in the form 

albs + a2b2 + • • • + anbn  + \/(A2  — a)(B2  — b) < fctb + \/(A2  — a)(B2  — b) 

and then in the form 

+ V(A2 	a)(B2 — b) <~/(a +  A2 — a) (b B2 	— b) = AB. 

And by combining the last two inequalities the desired inequality follows. 

As a consequence of this inequality we discuss the following problem, in which 
the condition seems to be redundant. In fact, it is the key that suggests using 
Aczel's inequality. 
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Example 57 Let al , a2, 	, an, b1, b2, 	, bn  be real numbers such that 

(al + • • • + an — 1)(14.  + • • • + bn2  — 1) > (aibi + • • • + anbn  — 1)2. 

Prove that a? + 4 + • + an > 1 and bq + b2 + • • • + bn2 > 1. 

[Titu Andreescu, Dorffi Andrica] USA TST 2004 

 

Solution.  First of all, it is not difficult to observe that an indirect approach 
is more efficient. Moreover, we may even assume that both numbers aT + 4 + 
• • + an — 1 and bi + b2 + • • • + bn2 — 1 are negative, since they have the same 
sign (this follows immediately from the hypothesis of the problem). Now, we 
want to prove that 

(a? + • • • + an2  — 1)(bT + • • • + bm2  — 1) < (aibi + • • • + anbn  — 1)2  (2.1) 

in order to obtain the desired contradiction. And all of a sudden we arrived 
at the result in the previous problem. Indeed, we have now the conditions 
1 > a? + a3 + • • • + an2  and 1 > b7.  + b2 + + bn2 , while the conclusion is (2.1). 
But this is exactly Aczel's inequality, with A = 1 and B = 1.The conclusion 
follows. 

The Cauchy-Schwarz inequality is extremely well hidden in the next problem. 
It is also a refinement of the Cauchy-Schwarz inequality, as we can see from 
the solution. 

Example 6. For given n > k > 1 find in closed form the best constant 
T (n, k) such that for any real numbers xi, x2, , xn  the fol-
lowing inequality holds: 

 



i=1 ) 2  

2 

i) > T (n, k) [k 
i=1 

k 

i=1 

2 ___ 
k 
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1<i<j<n 

2  > T(n, k) (Xi — j ) . 

1<i<j<k 

[Gabriel Dospinescu] 

Solution. In this form, we cannot make any reasonable conjecture about 
T (n, k), so we need an efficient transformation. We observe that 

(Xi — x3)2  
1<i<j<n 

is nothing else than 

and also 

(Xi — Xj)2  = 
1<i<j<k 

according to Lagrange's identity. Consequently, the inequality can be written 
in the equivalent form 

n  n 	— 

2 

T k)[ 
k 

i=1 

And now we see that it is indeed a refinement of the Cauchy-Schwarz inequal-
ity, only if in the end it turns out that T (n, k) > 0. We also observe that in the 
left-hand side there are n — k variables that do not appear in the right-hand 
side and that the left-hand side is minimal when these variables are equal. So, 
let us take them all to be zero. The result is 
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which is equivalent to 

Now, if kT (n, k) — n > 0, we can take a k-tuple (xi, x2, . , xk) such that 

E x, = 0 and Ex? 0 and we contradict the inequality (2.2). Hence we 
i=i 

must have kT (n, k) — n < 0 that is T(n, k) < —
k

. Now, let us proceed with the 

converse, that is showing that 

n 	 n 	2 	k 

nE4 — Exi  > _n 
kE4— 

— k i=-1 	i=i 	 i=i 
Exi  
i=i 21 

 

(2.3) 

 

for all real numbers x1, x2, .. , xn. If we manage to prove this inequality, then 

it will follow that T (n, k) = —k  . But (2.3) is of course equivalent to 

—  

) 2  k 	
xi 

2 

i=k+1 	i=1 

Now, we have to apply the Cauchy-Schwarz inequality, because we need 	xi. 

i=k+1 
We find that 

n 

n 	xi > n — k
L xi 2 	 
n 

i=k+1 	 i=k+1 
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and so it suffices to prove that 

n —
n 
 k 

A2  > (A + B) — 132, 	 (2.4) 

k 

where we have taken A = 	xi  and B = 	xi. But (2.4) is straightforward, 
2=k-1-1 
	

i=1 
since it is equivalent to 

(kA — (n — k)B)2  k(n — k)B2  > 0, 

which is clear. Finally, the conclusion is settled: T (n, k) = —
k 

is the best con-

stant. 

We continue the series of difficult inequalities with a very nice problem of 
Murray Klamkin. This time, one part of the problem is obvious from the 
Cauchy-Schwarz inequality, but the second one is not immediate. Let us see. 

[Example 7.] Let a, b, c be positive real numbers. Find the extreme values 
of the expression 

Va2x2 b2y2 c2z2  Vb2x2 c2y2 a2z2 

\/c2x2 a2y2 b2z2 

where x, y, z are real numbers such that x2 + y2 + z2 = 1.  

[Murray Klamkin] Crux Mathematicorum 

Solution.  Finding the upper bound does not seem to be too difficult, since 
from the Cauchy-Schwarz inequality it follows that 

Va2x2 b2y2 c2z2 Vb2x2 c2y2 a2z2  Vc2x2 a2y2 b2z2 < 
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< V3(a2x2 b2y2 c2z2 c2y2 a2z2 c2x2 a2y2 b2z2) 

= ,V3(a2 b2 c2).  

We have used here the hypothesis x2  + y2 + z2 1. Thus, V3(a2 b2 	c2)  

is the upper bound and this value if attained for x = y = z = 
3 

But for the lower bound things are not so easy. Investigating what happens 
when xyz = 0, we conclude that the minimal value should be a+ b+c, attained 
when two variables are zero and the third one is 1 or —1. Hence, we should 
try to prove the inequality 

Va2x2 b2y2 c2z2  Vb2x2 c2y2 a2z2 

1c2x2 a2y2 b2 z2 > a + b + c. 

Why not square it? After all, we observe that 

a2x2 b2y2 c2z2 b2x2 c2y2 a2z2 c2x2 a2y2 b2z2 a2 b2 c2 

so the new inequality cannot have a very complicated form. It becomes 

Va2x2 b2y2 c2z2 Vb2x2 c2y2 a2z2 

Vb2x2 c2y2 a2z2 	x 2 + a2y2 b2z2 

+ c2x2 + a2y2  + b2z2  • Va2x2  + b2y2  + c2z2  > ab + be + ca 

which has great chances to be true. And indeed, it is true and it follows from 
— what else, the Cauchy-Schwarz inequality: 

1/a2x2 b2y2 c2z2 Vb2x2 c2y2 + a2  z2  Z > abx2  + bcy2  + caz2  

and the other two similar inequalities. This shows that the minimal value is 
indeed a + b + c, attained for example when (x, y, z) = (1, 0, 0). 

It is now time for the champion inequalities. Do not worry if the time you 
spend on them is much longer than the time spent for the other examples: 
these problems are difficult! There are inequalities where you can immediately 
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see that you should apply the Cauchy-Schwarz inequality. Yet, applying it in- 
correctly can be very annoying. This is the case with the following example, 
where there is only one possibility to solve the problem using Cauchy-Schwarz: 

Prove that for any real numbers a, b, c, x, y, z the following in-
equality holds: 

ax + by + cz + /(a2 ± b2 c2 (x2 + y2 ± z2) 

2 , 
> 

3
—(a+b+c)(x+y+z). 

—  

[Vasile Cartoaje] Kvant 

Solution. It is quite clear that a direct application of the Cauchy-Schwarz 
inequality for 

V(a2 b2 c2 ) (x2 + y2  + z2) 

has no chance to work. Instead, if we develop 3(a + b + c) (x + y + z) we may 
group a, b, c and therefore try again the same method. Let us see: 

2 
—3  (a + b + c)(x + y + z)—(ax + by + cz) 

2y + 2

3

z — x
+ b 

 2x + 
3  
2z — y + c 2x + 

3

2y — z 
=a 	 

and the latter can be bounded by ✓a2  + b2  + C2  • VE ( 2x-1-2y—z  ■ 2 .  

3 ) All we have 
2x-I-2y—z  )2 < x2 + y2  + z2 , to do now is to prove the easy inequality E ( 	 which 3 	/ 

is actually an equality! 

Example 9. Prove that for any nonnegative numbers al, a2, . • • , an 

1 
that E, = _2 , the following inequality holds: 

i=1 

such 
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1<i<j<n 

aia3 	< n(n — 1) 
(1 — aj)(1 — a3 ) — 2(2n — 1)2  • 

[Vasile Cartoaje] 

Solution.  This is a very hard problem, in which intuition is better than tech-
nique. We will concoct a solution using a combination of the Cauchy-Schwarz 
inequality and Jensen's inequality, but we warn the reader that such a solution 
cannot be invented easily. Fasten your seat belts! Let us write the inequality 
in the form 

n 2 
ai 	 n(n — 1) 

1 — ai 
i=1 	

) 

	 < 
(1—a2 )2 	(2n — 1)2  

We apply now the Cauchy-Schwarz inequality to find that 

ai 

(1 — 	ai)2) 

Thus, it remains to prove the inequality 

aa2 	 ai2  n(n — 1) 
(1 _ ao 	2=1 2 — 	(1 _ ao2 + (2n — 1)2   

The latter can be written of course in the following form: 

ai(1 — 2a,) < 2n(n — 1) 
z=i  (1 — a02 	(2n — 1)2  • 

This encourages us to study the function 

x( 	2x 
f : [0 —1 —> R, f (x) = 

1 
' 2 	 (1

)2 )  

and 	

)2 

and to see if it is concave. This is not difficult, for a short computation shows 

that f"(x) = 
 —6x 
(1  _  x)4  _< 0. Hence we can apply Jensen's inequality to com-

plete the solution. 



(iES 	1<i<j<n 

)

2 

< 	(a, + • • • + aj) . \ 2 
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We continue this discussion with a remarkable solution, found by Claudiu 
Raicu, a member of the Romanian Mathematical Olympiad Committee, to 
the difficult problem given in 2004 in one of the Romanian Team Selection 
Tests. 

Example 10. Let al, a2, , an  be real numbers and let S be a non-empty 
subset of {1, 2, 	, n}. Prove that 

 

[Gabriel Dospinescu] Romanian TST 2004 

Solution. Let us define si = al  + a2 + • • • + a, for i > 1 and so = O. Now, 
partition S into groups of consecutive numbers. Then E , is of the form 

iES 
Sil  — sil 	Sj2  — 8i2 + • • • + Sik  — Sik , with 0 < it  < i2 < • • • < ik < n, 
jl < j2 < • • < ik and also it  < ji, 	, ik < jk. Now, let us observe that the 
left-hand side is nothing other than 

n 
+ 	(s3 	2 

	
(Sj — Si) 2 . 

i=1 
	

1<i<j<n 	 1<i<j<n 

Hence we need to show that 

\ 2 
— Si l  + 2  - 	+ • • • + Sik 	Sik )2 

	
(Si - Si) . 

0<i<j<n±1 

Let us take al = sil, a2  = sji , 	, a2k_1  = 54, a2k = sjk  and observe the 
obvious (but important) inequality 

E (si — Si)
2 	

— 

0<i<j<n 	 1<i<j<2k 
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And this is how we arrived at the inequality 

(al — a2 + a3 — • • • + a2k-1 a2k)2  < 
	

ai — a:3) . 	(2.5) 
1<i<j<2k 

The latter inequality can be proved by using the Cauchy-Schwarz inequality 
k-times: 

(al — a2 + a3 — " • + a2k-1 a2k)2  

< k((ai — a2)2  + (a3 — a4)2  + • • • + 	— a2ic)2 ) 
(al — a2 + a3 — " • + a2k-1 a2k)2  

< k((ai  — a4)2  + (a3 — a6)2  + • • • + (a2k-1 — a2)2) 

(al — a2 + a3 — • • • + a2k-1 a2k)2  
< k((ai — a2k)2  + (a3 — a2)2  + • • • + (a2k-1 — a2k-2)2) 

and by summing up all these inequalities. In the right-hand side we obtain 

an even smaller quantity than 	(ai — a3)2
, which proves that (2.5) is 

1<i<j<2k 
correct. The solution ends here. 

The following is a remarkable inequality in which the Cauchy-Schwarz inequal-
ity is extremely well hidden. We must confess that the following solution was 
found after several weeks of trial and error: 

Example  1171  Prove that for any positive real numbers a, b, c, x, y, z such 
that xy + yz zx = 3, 

a , 	, 	b 
b-Pc

W+z)+ 
 c±a

(x+z)+ 
 a+b

(x+y)> 3. 

[Titu Andreescu, Gabriel Dospinescu] 



•\/
3 , 
-
4

(xy + yz + zx)+ 
3 
4(xy + yz + zx) < 

2 	(b+a 	 2  
c) V(x+y+z)2 

3 
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Solution. This is probably the best example of how finding the good homo-
geneous inequality simplifies the solution. In our case, it suffices to prove the 
homogeneous inequality 

b + c
(y + + 

c + a
(x + + 

a + b
(x + y) -V3(xy + yz + zx). 

And now we can assume that x + y + z = 1! Let us apply then the Cauchy-
Schwarz inequality: 

a 
	x + 

c+a 
 y + 

a+b 
 z + V3(xy+ yz + zx) < 	(  a

b + c 
)

2 	 

b+c 	
• V x2+ 

Therefore, the problem will be solved if we manage to prove that 

(  a  )2 	a 

which is the same as 
ab  

E (a + c)(b + c) 43 ' 

This reduces to (a + b + c) (ab + be + ca) > 9abc which is clearly true. 

Finally, two classical inequalities show the power of a clever application of the 
Cauchy-Schwarz inequality combined with some analytic tools: 

Example 12. Prove that for any real numbers al, a2, an  the following 
inequality holds: 

 

n 

i=1 

3 
2 b + c 	b + 

[Hilbert] 
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Solution. Here is a unusual way to apply the Cauchy-Schwarz inequality: 

	) 2  

i=1 j=1 	 i 	°j=1 6.6 +3  6Vi  
v  Jai 	-rjaj  4/7 aiaj   

x--n 	0,4   Ni5ct.1  

k= 	+ 	L'az,.9-1+ ) • i,j1 	 i,=1 

By rearranging terms in both sums, it is enough to prove that for any positive 
integer m 

A/Fri  
< 

E (M n) \n 
7r. 

 n>1 

Fortunately, this is not difficult, because the inequality 

1 	 n+1 	dx 

(n + m +1)Vn 	+1 fri  (X + M)fi 

holds as a consequence of the monotonicity of f (x) =(x+myvi.  By adding up 
these inequalities, we deduce that 

E 	1 	< 	dx 
n>0 (n + m + 1Wn ± 1 Jo  (x + m)-Vi •  

With the change of variable x = mu2, a simple computation shows that the 
last integral is Ir 	 and this finishes the solution. 

We end this chapter with a remarkable inequality due to Fritz Carlson . There 
are many analytic methods of proving this result, but undoubtedly the follow-
ing one, due to Hardy, will make you say: always Cauchy-Schwarz! 
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Example 13. For any real numbers al, a2, ..., an  we have 

  

+. • •±n2a2 )  > (al  +• • •±0,70 72 • (a? 	2 	2)( 2 4  2 

	

ma2 +- • •+an  al + a2 	n — 	
4 

[Fritz Carlson] 

Solution. Choose some arbitrary positive numbers x, y and use the Cauchy-
Schwarz inequality in the form 

(al a2 	an)2  < E (x + yk2)4 • 
k=1 

 

1 

 

x yk2  • 
k>1 

Because the function f(z) = x±lyz2  is decreasing, we have 

1dz 

k>1 
x + yk2  f x + yz2  • 

It is immediate to check that the last integral equals 2/T 	. Therefore, if we 

let S = 4 + 4 + + an and T = 4+ 224 + + n2an2 , then we have for all 
positive numbers x, y the inequality 

7r 
(al + a2  + + an)2  < 

2\/xy 
(Sx + Ty). 

And now, we can make a choice for x, y, so as to minimize the last quantity. It 

is not difficult to see that a smart choice is x = s and y = All it remains 
is to insert these values in the previous inequality and to take the square of 
this relation. 
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2.2 Problems for training 

1. Let a, b, c be nonnegative real numbers. Prove that 

(ax2  + bx + c)(cx2  + bx + a) > (a + b + c)2  x2  

for all nonnegative real numbers x. 

Titu Andreescu, Gazeta MatematicA 

2. Let p be a polynomial with positive real coefficients. Prove that if 

p 
 (

1 	1 
 i —

x
) > 

p(x)  i
s true for x = 1, then it is true for all x > 0. 

Titu Andreescu, Revista Matematica Timi§oara 

3. Prove that for any real numbers a, b, c > 1 the following inequality holds: 

-Va —1+Vb—l+Vc—l< V a(bc + 1) . 

4. For any positive integer n find the number of ordered n-tuples of integers 
(ai , a2, ... , an) such that 

ai. + a2 + • • • + an > n2  and aT.  + d + • • • + an2  < n3  + 1. 

China 2002 

5. Prove that for any positive real numbers a, b, c, 

1 	1 	1 	1 	(a + b+  c+  -Nbc)2  
   > 

a+b
+ 

b+c
+ 

c+a
+ 

2.■/abc —  (a+b)(b+c)(c+a)•  

Titu Andreescu, MOSP 1999 
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6. Let al , a2, 	, an, bi , b2, 	, bn  be real numbers such that 

E a jai > 0. 
1<i<j<n 

Prove the inequality 

(

E aibj) > 

	

	aiaj 	 bib j  
ij<n 	 1<i0j<n 	1<i0j<n 1< 	

) 

Alexandru Lupas, AMM 

7. Let n > 2 be an even integer. We consider all polynomials of the form 
xn + an_ixn-1  + • • • + aix + 1, with real coefficients and having at least 
one real zero. Determine the least possible value of a7+ a2 + • • • +an2_1. 

Czech-Polish-Slovak Competition 2002 

8. The triangle ABC satisfies the relation 

2 A 2 	 ci) 2  (12  
(Cot —

2
) + (2 cot 

B) 
 + (3 cot —2  = 7r  

Show that ABC is similar to a triangle whose sides are integers, and 
find the smallest set of such integers. 

Titu Andreescu, USAMO 2002 

9. Let x1, x2, ... , xn  be positive real numbers such that 

1 	1 	 1 
	 + 	+ • + 	 = 1. 
1 + x1 1 + x2 	1 + xn 
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Prove the inequality 

1 	1 	1 

	

V--.+-\/+•••+-Vxn?(7/-1) 	
xi 	x2 

( 	+ 	
A/xi, 

+ 	). 

Vojtech Jarnik Competition 2002 

7r 
10. Given real numbers xi, x2, 	, xi° E [0, --] 

2 
 such that 

sin2  xi + sin2  x2 + • • • + sin2  x10 = 1. 

Prove that 

3(sin xi + sin x2 + • • • + sin xio) < cos xi + cos x2 + • • + cos xio• 

Saint Petersburg, 2001 

11. Prove that for any real numbers xi , x2, 	, xn  the following inequality 
holds 

n n 2  xii) < 2(n2  _ 1) vn n  v  

i=1 i=1 	 — 	3 	(z—, 	— xi 1 2) . 
i=1 j=1 

IMO 2003 

12. Let al , a2, ..., an  be positive real numbers which add up to 1. Let ni  be 
the number of integers k such that 21' > ak > 2'. Prove that 

< 4 + -Vlog2 (n). 
2' 

i>1 

L. Leindler, Miklos Schweitzer Competition 
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13. Let n > 2 and xi, x2,... , xn  be positive real numbers such that 

	

( 1 	1 	1 
(xi ± xz ± • • • ± xn ) (— + — +...+ 

—) = n2  + 1. 
Xi X2 	xn  

Prove that 

	

(x + 4 + • • - ± X2  ) 	1 	1  _i_ 	.4_ 1 	-, ,2 _L  A _,_ 	2 

	

n 	2 	2 	, • • • , 	--- , . 	1 -. 1 ( 

X 	X2 	Xǹ 	 n(n 1) .  

Gabriel Dospinescu 

14. Prove that for any positive real numbers al, az, .. • , an, x1,  x2, • , xn 
such that 

i<i<j<n 

the following inequality holds 

xixi = (2) 7  

al 

az + • • • + an 
(xz 	+ xn) + • 	

an 
+ 	 (xi --1-• • • +xn_i) > n. 

al + • • ± an-i 

Vasile Cartoaje, Gabriel Dospinescu 
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3.1 Theory and examples 

Most of the time, proving divisibility reduces to congruences or to the famous 
theorems such as those of Fermat, Euler, or Wilson. But what do we do when 
we have to prove, for example, that lcm(a, b, c)2  I lcm(a, b) • lcm(b, c) • lcm(c, a) 
for any positive integers a, b, c? One thing is sure: the above methods fail. 
Yet, another smart idea appears: if we have to prove that alb, then it suffices 
to show that the exponent of any prime number in the prime factorization of 
a is at most the exponent of that prime in the prime factorization of b. For 
simplicity, let us denote by vp(a) the exponent of the prime number p in the 
prime factorization of a. Of course, if p does not divide a, then vp(a) = 0. 
Also, it is easy to prove the following properties of vp(a): 

• vp(a + b) > minfvp(a), vp(b)} 

• vp(ab) = vp(a) vp(b) 
for any positive integers a and b. Now, let us rephrase the above idea in 
terms of vp(a): alb if and only if for any prime p we have vp(a) < vp(b), 
and a =- b if and only if for any prime p, vp(a) = vp(b). 

• vp(gcd(ai,a2, 

• vp(lcm(ai, a2, 

n 
• vp(n!) -= [—pi 

, an)) = 

, an)) = 

n [pd 

max{vp  

n 3 
LP _I 

minfvp(ai), 

	

vp(a2), 	, vp(an)}, 

	

(al), vp(a2), 	, vp(an)} 

n — sp(n). 
13  — 1  

Here, sp(n) is the sum of the digits of n when written in base p. Observe that 
the third and fourth properties are simple consequences of the definitions. Less 
straightforward is the fifth property; it follows from the fact that among the 

numbers 1, , n there are [—
n

i multiples of p, multiples of p2  and so on. 
p 	 p2 

The other equality is not difficult. Indeed, let us write n = ao±aip±• • • +akpk , 
where ao, 	, ak E 	 — 11 and ak # O. Then 

Hn 1:4 +...  = ±a2p+ • 	akpk-1  + a2 -1-a3p± • • • + akpk-2  ± • 	ak, 
P

i 	

P 
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and now, using the formula 

P  1 + p + 	p = 
p —1 

we find exactly the fifth property. 

[Example 1. 1 , 	7  Let a and b be positive integers such that alb2 b3 a4 as  b6  , 

b71a8, .... Prove that a = b. 

Solution.  We will prove that vp(a) = vp(b) for any prime p. The hypothesis 
027 b3 a4, a51 b6 7 b71a8,... and  on+3 a4n+4 for  is the same as azin+1 1 b4n-F2  

all positive integers n. But the relation a4n+11b4n+2  can be written as (4n + 
1)vp(a) < (4n + 2)vp(b) for all n, so that 

vp(a) < lim 
4n + 2

vp(b) = vp(b). 
n--,c>o 4n + 1 

Similarly, the condition b4n+3 a4n+4 implies vp(a) > vp(b) and so vp(a) = vp(b). 
The conclusion now follows. 

We have mentioned at the beginning of the discussion a nice and easy problem, 
so probably it is time to solve it, although you might have already done this. 

Example 2. Prove that lcm(a,b,c)211cm(a,b) • lcm(b, c) • lcm(c, a) for any 
positive integers a, b, c. 

 

Solution.  Let p be an arbitrary prime number. We have vp(lcm(a, b, c)2) =- 
2 max{x, y, z} and 

vp(lcm(a, b) • lcm(b, c) • lcm(c, a)) = max{x, y} + max{y, z} + max{z, x}, 

where x = vp(a), y = vp(b), z = vp(c). So we need to prove that 

max{x, y} + max{y, z} + max{z, x} > 2 max{x, y, z} 
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for any nonnegative integers x, y, z. But this follows by symmetry: we may 
assume that x > y > z and the inequality reduces to 2x + y > 2x. 

It is time for some difficult problems. The ones we chose to present are all 
based on the observations from the beginning of the chapter. 

Example 3. Prove that there exists a constant c such that for any positive 
integers a, b,n that satisfy a! • b! In! we have a+b<n+cln n. 

   

[Paul Erdos] 

Solution. Of course, there is no reasonable estimation of this constant, so 
we should better see what happens if a! • b! In!. Then v2(a!) + v2(b!) < v2 (n!), 
which can be also written as a — 32(a) + b — s2(b) < n — 32(n) < n. So we 
have found almost exactly what we needed: a + b < n + 32(a) + s2(b). Now, 
we need another observation: the sum of digits of a number A when written 
in binary is at most the number of digits of A in base 2, which is 1 + [log2  A] 
(this follows from the fact that 2k-1  < A < 2k, where k is the number of digits 
of A in base 2). Hence we have the estimations 

a + b < n + 32(a) + 82 (b) < n + 2 + log2  ab < n + 2 + 2 log2  n 

(since we have of course a, b < n). And now the conclusion is immediate. 

The following problem appeared in Kvant. It took quite a long time before 
an Olympian, S. Konyagin, found a simple solution. We will not present his 
solution here, but another one, even simpler. 

Example 4. Is there an infinite set of positive integers such that no matter 
how we choose some elements of this set, their sum is not a 
perfect power? 

 

Kvant 
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Solution. Let us take A = {2n 3n+1 in  > 1} If we consider some differ-
ent numbers from this set, their sum will be of the form 2' • 3x+1  y, where 
(y, 6) = 1. This is certainly not a perfect power, since otherwise the exponent 
should divide both x and x 1. Thus this set is actually a good choice. 

The following problem shows the beauty of elementary Number Theory. It 
combines diverse ideas and techniques, and the result we are about to present 
is truly beautiful. You might also want to try a combinatorial approach by 
counting the invertible matrices with entries in the field Z/2Z. 

Example 57 Prove that for any positive integer n, n! is a divisor of 

n-1 

H (2n  — 2k). 

k=0 

Solution. Let us take a prime number p. We may assume that p < n. First, 
let us see what happens if p = 2. We have 

v2(n!) = n — s2(n) < n — 1 

and also 

V2 

 (

n-1 

( 2 n  — 2k)) 

k=0 

n-1 

k=0 

v2(2n — 2k) > n — 1 

(since 2n — 2k  is even for k > 1). Now, let us assume that p > 2. From 
Fermat's theorem we have pl2P-1  — 1, so p1214P-1) — 1 for all k > 1. Now, 

n-1 

H (2n  — 2k) = 2 n(n2 	1)  fl (2k  - 1) 
k=0 	 k=1 

and from the above remarks we infer that 

n-1 

2k - 1) 

k=1 
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> 	>2, 	vp(2k(P-1) - 1) > card{ 	< k(p - 1) < n}. 

1<k(p-1)<n 

Because 

we find that 

But 

card{k11 < k(p 1) 	n [p - 

n-1 
V p  H (2n  — 2k)) 

k=0 

n - s (n) n - 1 	n 
vp(n!) = 	 

p - 1 -
< 

p - 1 p -1' 

[p _n  

and since vp(n!) E Z, we must have vp(n!) < [p d . 

From these two inequalities, we conclude that 

(n-1 

VP  H (2n  — 2k) > vp(n!) 
k=0 

and the problem is solved. 
Diophantine equations can also be solved using the method described in this 
chapter. Here is a difficult one, given at a Russian Olympiad. 

Prove that the equation 

	

11 	1 	1 
= +—+  + 

lon 	ni! 	n2! nk• 

does not have integer solutions such that 1 < n1 < • • • < nk• 

Tuymaada Olympiad 

Solution. We have 

10n((ni + 1) ... (nk - 1)nk + • • • + (nk_i + 1) • • • (nk - 1)nk + 1) = nk! 
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which shows that nk divides 10n. Let us write nk = 2' • 5v. Let 

S = (ni + 1) ... (nk - 1)nk + • + (nk-i + 1) ... (nk - 1)nk + 1. 

First of all, suppose that x, y are positive. Thus, S is relatively prime to 10. 

It follows that v2(nk!) = v5(nk!). This implies [—nk  = [—nk 
53 
 for all j (because 

nk 
we clearly have [—] > [1-'±1 ) and so nk  < 3. A simple verification shows 

2j 	53 
that there is no solution in this case. Next, suppose that y = 0. Then S is 
odd and thus v2(nk!) = n < v5(nk!). Again, this implies v2(nk!) = v5(nk!) 
and we have seen that this yields no solution. Thus x = 0. A crucial obser-
vation is that if nk > nk_1 + 1, then S is odd and thus we find again that 
v2(nk!) = n < v5(nk!), impossible. Hence nk  = nk _i  +1. But then, taking into 
account that nk is a power of 5, we deduce that S is congruent to 2 modulo 4 

and thus v2(nk!) = n + 1 < v5(nk!) + 1. It follows that [—nil < 1 + [—nil and 
2 	5 

thus nk  < 6. Because nk is a power of 5, we find that nk = 5, nk-1  < 4 and 
exhausting all of the possibilities shows that there are no solutions. 

A tricky APMO 1997 problem asked to prove that there is a number 100 < 
n < 1997 such that ni2n + 2. We will invite you to verify that 2 • 11 • 43 is 
a solution, and especially to find out how we arrived at this number. Yet... 
small verifications show that all such numbers are even. Proving this turns 
out to be a difficult problem and this was proved for the first time by Schinzel. 

Example 7.1 Prove that for any n > 1 we cannot have n1271-1  + 1. 

[Schinzel] 

Solution. Although very short, the proof is tricky. Suppose n is a solution. 

Let n = Hpik' where p1 < 7,2 < • < Rs  are prime numbers. The idea 
i=1 

is to look at v2(pi - 1). Choose that pi  which minimizes this quantity and 
write pi  = 1 + 2rtrni, with mi odd. Then n 1 (mod 2ri) and we can write 
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n — 1 = 2rit. We have 22rit  —1 (mod pi), thus 

—1 = 22ritmi = 2(pi-1)t = 1 (mod pi) 

(the last congruence being derived from Fermat's little theorem). Thus pi  = 2, 
which is clearly impossible. 

We continue with a very nice and difficult problem, in which the idea of look-
ing at the exponents is really helpful. It seems to have appeared for the first 
time in AMM, but over the last few years, it has been proposed in various 
national and international contests. 

Example 8. Prove that for any integers al, a2, 	, an  the number 

  

H ai  
i— j  

1<i<j<n 

is an integer. 

[Armond E. Spencer] AMM E 2637 

Solution. We consider a prime number p and prove that for each k > 1, there 
are more numbers divisible by pk  in the sequence of differences (a,, — a3 )1<z<3<n 
than in the sequence (i — j)i<z<i <n. Because 

(

vp 	fl (ai — aj) I = 	Npk 	H (ai — ai) I 

	

where Npk ({ 0;1 	‹.1 n}) is the number of terms in the sequence A 
that are multiples of x and 

	

vp 	H (i- j) 

1<i<j<n 	 k>1 N

pk 	H 	j) ) , 
1<i<j<n 

1<i<j<n 	 k>1 	1<i<j<n, 



NPk 	H (i—j)) =131-1  (1+ [2nPi
]
) ([7]) 1<i<j<n 	 i=1 

(3.1) 
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the problem will be solved if we prove our claim. Fix k > 1 and suppose that 
there are exactly bi  indices j E {1, 2, ... , n} such that a3  i (mod pk ), for 
each i E {0,1, ... ,pk  — 1}. Then 

k - P —1  bi  
Npk 	 (ai ai)) = E (

2
). 

1<i<j<n 	 i=0 

Let us see what happens for ai  = i. If i = 0, then the number of 1 < j < n 

for which j = 0 (mod pk ) is [4]. If i > 0 then any 1 < j < n for which 

j = i (mod pk ) has the form rpk  i for some 0 < r < [np7,1. Thus we find 

1 + [V] indices in this case. Hence 

By changing j = pk  — 1 in (3.1), we infer that 

H  Npk  

i<i<j<n 	j=0 

so it suffices to prove that 

Pk-1 	pk 	n±i  E  (;) E 

 P
k 

2 i=o 	=o 
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pk  —1 	 pk_i 

Now, observe that we need to find the minimum of >2,  x2i) , when E xi  =_ n 
i=o 	 i=o 

(it is clear from the definition of bi  that 

pk  —1 P k  1 - 

E  
bi= n=E [

n j  

Pk ] i=0 

from the definition of bi). For this, let us suppose that xo < x1 < x2 < 
• • • < xpk_i  is the pk-tuple for which the minimum is reached (such a pk-tuple 

pk 

exists since the equation E xi  = n has a finite number of solutions). If 
i=o 

xpk_i  > xo + 1, then we consider the n-tuple (x0 + 1, xi, . • • , xpk_2, xpk_i — 1), 
where the sum of components is n, but for which 

(xo + 1) + (xi) ± 	(xpk_2) (xpk_i  — 1) 
2 	2 	 2 	 2 

< (X0) + (x 1) 	(x pk_2) (xpk_i  
2 	2 	 2 	2 ). 

The last inequality is true, since it is equivalent to xpk_i  > xo + 1. But this 
contradicts the minimality of (xo, xi , , x2, , xpk_ i ). So, xpk_i  < xo + 1, 
and from here it follows that xi  E {xo, xo + 1} for all i E {0, 1, 2, ... ,pk  — 1}. 
Hence there is a j E {0, 1, 2, . ,pk  — 1} such that xo = xi = • • • = x3  and 
x3+1 = x3+2 = • • • = xpk_ i  = xo + 1. Because the variables xr  add up to n, 
we must have 

(j 1)XO (Pk  j 1)(X0 + 1) = n, 

thus pk (xo + 1) = n + j + 1. Therefore Er-0 1  (b ) > (j + 1) (2) + (pk — 

j — 1) (x021). Finally, observe that for all 0 < i < pk  — 1 we have [nptii 

xo + 1 + P — jT1] and this is equal to xo + 1 if i > j + 1 and to xo otherwise. 
P 

Therefore 

k —1  Ln+i E 	pk 	 1) (X

2

0) ± (pk 	1) (xo + 1) 

) 	 2 i=o 
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The next exercise is particularly difficult, but the ideas used in its solution are 
extremely useful when solving some other problems. 

Example 9. Let a and b be two distinct positive rational numbers such that 
for infinitely many integers n, an — bn is an integer. Prove that 
a and b are also integers. 

  

[Gabriel Dospinescu] Mathlinks Contest 

Solution.  Let us start by writing a = -
x
, b = -

z
, where x, y, z are distinct 

positive integers with no common factor, and x 	y. We are given that 
znIx" - y" for all positive integers n in an infinite set M. Assume that z > 1 
and take p a prime divisor of z. If p does not divide x, it follows that it cannot 
divide y. Now, we have two cases: 
i) If p = 2, then let n be such that 2'Ixn - y". Write n = 2unjn, where jn  is 
odd. From the identity 

x2un - y2"in = (xin - yin)(xin + yin) ... (x2"-lin y2un-l jn) 

it follows that 

u„-i 
kin 	2kin).  v2(xn - y") = v2(x - yin) + 	2  

k=0 

But xin-1  + xin-2y + • • • + xyin-2  +yin-1  is clearly odd (since jn, x, y are odd), 
hence 

v2 (xin - yin) = v2 (x - y). 

Similarly, we can prove that 

v2(x3- + yjn) = v2(x + y). 

Because 
x2kin + y2kin = 2 (mod 4), 
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for k > 0, we finally deduce that 

2un jn  < v2 (xn  — yTh  ) < v2 (x + y) + v2 (x — + un  — 1 	(3.2) 

Consequently, (2un)nEm is bounded, a simple reason being the inequality 2un < 
v2(x + v2 (x — y) + un  — 1. Hence (un)nEm  takes only a finite number of 
values, and from (3.2) it follows that (jn)nEm also takes a finite number of 
values, that is M is finite, a contradiction. 
ii) Suppose that p is odd and let d be the least positive integer k such that 
pixk — yk  . Then for any n in M we have pixn — yn. Let x = tu, y = tv, where 
(u, v) = 1. Clearly, tuv is not a multiple of p. It follows that 

p (u — vd,u d 	n vn ) = u(n,d) 	v(n,d) I x(n,d) 	y(n , d ) 

and by the choice of d, we must have din. Therefore any element of M is a 
multiple of d. Take now n in M and write it in the form n = md, for some 
positive integer m. Let A = and B =- yd. Then 

Pm  I Pn 	
yn Am Bm 

and this happens for infinitely many m. Moreover, /AA — B. Let R be the 
infinite set of those m. We will prove now a very useful result in this type of 
problems: 

Theorem 3.1. Let p be an odd prime and let A, B be positive integers, not 
divisible by p and such that plA. — B. Then for all positive integers n we have 

vp(An — Bn) = Vp(72) vp(A — B). 

Proof. The proof of this theorem is natural, even though it is quite long and 
technical. Indeed, let us write n = pk  • I with gcd(/,p) = 1. We will prove the 
result by induction on k. First, suppose that k = 0. Observe that vp(An — 
Bn) = vp(A — B) if and only if p does not divide An-1  + An-2B 
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ABn-2 Bn-1 If the latter does not hold, because A = B (mod p), we infer 
that pInAn-1  and this cannot hold because k = 0 and gcd(A,p) = 1. Suppose 
now that the result holds for k and take n = pk+1/ with gcd(/,p) = 1. Then, 
if m = pk / we can apply the inductive hypothesis and write: 

vp(An — Bn) = Vp(AmP  — BmP) = vp(Am  — Bm)+ 

vp(Am(P-1)  + Am(P-2)  Bm + • • • + Am Bm(P-2)  + Bm(P -1)  ) 

= v p(A — B) + k + vp(Am(P -1)  + Am(P -2)  Bm + • • • + Am Bm(P-2)  + Bm(P -1)  ) 

So, we need to prove that 

vp(Am(P-1)  + Am(P-2)Bm + • + AmBm(P-2)  + Bm(P-1)) = 1. 

But this is not difficult. First, note that if we put Am = a, Bm = b, it is 
enough to prove that if vp(a) = vp(b) = vp(a — b) — 1 = 0, then 

vp  (ap-1 ap-2 b 	abp-2 + bp-1) 1.  

Now, write b = a + pc for some integer c and observe that using the binomial 
formula we can write 

aP-1+ aP-2b + • • • + abP -2  + bP-1 = aP-1+ aP-2  (a + pc) + aP - 3  (a2  + 2apc)+ 

• • + a2  (aP-3  + (p — 3)aP-4pc) + a (aP-2  + (p — 2)aP-3pc) + aP-1  + (p 1)aP-2  pc 

= paP-1  + caP-2p2 P —
2 

1  = paP-1  (mod p2), 

which proves the inductive step and finishes the proof of the theorem. 

Let us come back to our problem. Using the theorem, we deduce that for 
infinitely many m we have 

m < vp(Am — Br') = v p(A — B) + vp(m) < vp(A — B) + Llogp  mJ , 
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which is clearly impossible. Hence plx and ply, in contradiction with the fact 
that x, y, z are relatively prime. This shows that z = 1 and a, b are integers. 

If you thought this is the last challenge on this chapter, you are wrong! The 
following problems can be called The Eras Corner. They were especially kept 
for the end of the chapter, because of their beauty and difficulty. 

Example 10.1 a) Prove that for any positive integer n there exist positive 
integers al < a2 < • • < an  such that ai — alai for all i < j. 

b) Prove that there exists a positive constant c such that for 
any n and any sequence al < a2 < < an  which satisfies 
the conditions of a), al  > n'. 

[Paul Eras ] Miklos Schweitzer Competition 

Solution.  If a) is not so difficult, b) needs culture and ingenuity. The proof 
of a) is of course by induction on n. For n = 1 it is enough to take al = 
1. Suppose that al < a2 < < an  is a good sequence and let us take 
b = aia2 • • • an. The sequence b, b + al , b + a2, b + an  is also good and 
shows how the inductive step works. Now, let us discuss b). Take any prime 
number p < n and observe that if ai  a3  (mod p) then ai  = a3  = 0 (mod p). 
Therefore at most p — 1 among the numbers al , a2, an  are not multiples of 
p. Consider the multiples of p among al, a2, an  and divide them by p. We 
obtain another good sequence, and the previous argument shows that this new 
sequence has at most p — 1 terms not divisible by p. Repeating this argument 
yields 

yp(aia2  • • an) > (n — (p — 1)) + (n — 2(p — 1)) + 	+ (n 
[p n 	

(7) — 1)). 

A small computation shows that if p < 	then the last quantity exceeds 3p ' 
2 

Therefore aia2...an > fl p 3P . But it is clear that al > an  — al, so 
p< V7n, 

> 

	

a
a > 	ia2 • • an  

	

2 — 	2 
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which shows that 
1 	3 	

-Frz P  al > —
2 

• e P  < 

So, all we need now is to prove that there exists a constant c > 0 such that 
inpp > c • Inn. Actually, we will prove more, that 

p<n 

lnp 
	 = lnn + 0(1). 

P 

The tool will be again the factorization of n!. Indeed, this gives the identity 

ln(n!) = >vp(n!) • lnp. 

On the one hand, using Stirling's formula n! 	( 71e  )n-V27rn, we deduce that 
ln(n!) = n(ln n — 1) + 0(ln n). On the other hand, 7123  — 1 < Vp(77,!) < 
Therefore 

p<n 

Because the series 

0 (n) . 

lnp 	 lnp  
P(P1) 

is clearly convergent, it follows that n- E 29091)  — 
P 	 p<n 

And now, we will prove the following result also due to Erd6s: f p < 4n-1 if 

p<n 
n > 1. The proof of this theorem is magnificent. We use induction. For small 
values of n it is clear. Now, assume the inequality true for all values smaller 
than n and let us prove that fl p < 4m-1. If n is even, we have nothing to 

p<n H 	 . prove, since H p = 	p < 4n-2 < 4n-1  

p<n 	p<n-1 



THEORY AND EXAMPLES 63 

Now, assume that n = 2k + 1 and consider the binomial coefficient 

2k+1 	(k + 2) ... (2k + 1)  
k ) 	k! 

217\ An application of the identity 22k+1  = Ei>0  (2k2 ) shows that (2k+1) < 4k 

Thus, using the inductive hypothesis, we find 

P 
	

P 	
H 	p < 4k 4k 4n-1.  

p<n 	p<k+1 k+2<p<2k+1 

This result shows that In fl  p = 0(n), so using the previous estimations we 
p<rt 

can write >2,  ln  p 
= In n 0(1). 

p<n 

Here is a refinement and proof of the famous Bertrand's postulate, asserting 
that between n and 2n there is always a prime number if n > 1. Actually, 
the result proved in the next example shows that much more is true for suf-
ficiently large n and also gives an effectively computable constant c < 10000 
for the proof of Bertrand's postulate. Simple computations allow after that a 
complete proof of this result. However, we prefer the more quantitative result 
below: 

Example 11.1 For any e > 0 there exists an no  such that for all n > no there 

are at least (2 6) iogn2(n) primes between n and 2n. 3 

[Paul Erd6s] 

Solution.  A very good way of obtaining interesting bounds for the counting 
functions of prime numbers is to study the powers that divide the binomial 
coefficient (2n). Why is this number so special? First of all, because it is 
quite easy to evaluate it asymptotically. One can easily prove, for instance 

(2: using Stirling's formula that 	4n  There are, however, much more -/rn • 
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elementary estimations. For example, using the fact that (2nn) is the largest 
binomial coefficient and that the sum of these binomial coefficients is 471, we 
easily infer the inequality (2nn) 2n4+1, which is more than enough for our 
modest purposes. Now, another important fact about this binomial coefficient 
is that the prime powers dividing it do not have large exponents. Indeed, 

VP  [p ] < [loge 27d , 
k>1 ( [Pk

n 	0   n 

which shows that the largest power of p dividing (2nn) does not exceed 2n. 
This implies that the exponent of any prime p> N/2n is at most 1. But the 
remarkable observation that Erdos had is that actually this special binomial 
coefficient is not a multiple of any prime between 3  and n, as you can im- 

mediately establish using the fact that vp( (2nn)) 	> [27: 
_ 2 74]). 	So, 

k>1 P  
using all these observations, we infer that 

2n + 1 — n 
471 	

2n < H 2n • H  p- H P. 
p< 2n 	■/n<p<V n<p<2n 

Using the result proved in the solution of the previous example, we deduce 
(2 1-2+1, so if that 	

2n 

p < 4 	Also, it is clear that 	2n <472 
n,<p<V 	 p< 2n 

f(n) is the number of primes between 7/ and 2n, then 

4n  1+ \/2n 	—1 < (2n) 	 (2n)f (n) . 

By taking logarithms, we finally deduce that 

f(n)  > 3 —  0(\rn • In n) 

log2  n 

from which the conclusion follows immediately. 

2n + 1 

But the most subtle and difficult problem of this chapter (and probably of 
the whole book) is the following fascinating result, conjectured by Palfy and 
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proved by Eras using Sylvester's theorem on prime divisors of consecutive 
numbers. The following marvelous solution by M. Szegedi was taken from the 
note "a (mod p) < b (mod p) for all primes p implies a = b", published in 
the second issue of the American Mathematical Monthly, 1987: 

Example 12. Let a, b be positive integers such that for all prime numbers 
p, a (mod p) < b (mod p). Then a = b. 

 

[Erdos, Palfy] Miklos Schweitzer Competition 1984 

Solution. This solution will not be short, but it has the merit of being com-
pletely elementary. It follows from a very subtle analysis of the prime powers 
dividing (ab) (for it is clear that by taking a prime p > a + b we obtain a < b). 
Hence suppose that a < b. Observe that if a < a then by letting c = b — a 
we have 0 < c < a and also c (mod p) = b (mod p) — a (mod p) < b (mod p) 
(because 0 < b (mod p) — a (mod p) < p). Therefore it is enough to prove 
that the case 0 < a < 2 is impossible. Let (ab) = 	where A = a! and 
B = b(b — 1) 	(b — a +1). Also, let A(pk ) and B(pk ) be the number of factors 

of A and B respectively, that are multiples of pk. It is clear that A(pk) = [ p4] 

and 

B(pk ) =114, 	
L P

1 	—k  a  . 
LP  

Then, by using the fact that 0 < [x + y] — [x] — [y] < 1 for all real numbers 
x, y, we infer that B(pk ) — A(pk ) is 0 or 1. Now, the crucial observation 
is that A(p) > B(p). Indeed, the first multiple of p that appears in the 
product a • (a — 1) • • • 2 • 1 is a — a (mod p), while the first multiple of p in 
b • (b — 1) (b — a + 2) • (b — a + 1) is b — b (mod p). Using this remark and 
the fact that the sequences 1,2, ... , a and b — a + 1, b — a + 2, ... , b have the 
same length, we infer that A(p) > B(p). But, as we have already seen, this 
implies A(p) = B(p). Therefore if p > a then surely A(p) = 0, so B(p) = 0 
and so A(pk) = B(pk) = 0 for all positive integers k and all p > a. Therefore 

A = H pA(P)+A(P2)±...  and B = H pB(P)+B(P2)±— , 
p<a 	 p<a 



(b\ B 
= 	= HP

B(p)—A(p)+B(732)—A(732)+•-• 
SO 

a A 
p<a 
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There is another crucial observation to be made: if m(p) is the largest k such 
that B(pk ) is not zero, then using the fact that A(p) = B(p) we obtain 

 

B(p) — A(p) + B(p2) — A(p2) + • • • 
m(p) 

(B(p)) - A(p')), 

SO 

 

j=2 

B(p) — A(p) + B(p2) A(p2) + • • • < m(p) — 1 

(recall that we have established the inequality B(pk) — A(pk ) < 1). Therefore 
(ab) is a divisor of 11 pm(P) —1  and so 

p<a 

(b a +1) • (b — a + 2) • • b 
prn(P) 

p<a 

is a divisor of FT!  p . However, the last divisibility cannot hold for b > 2a. 
p<a 

Indeed, it is clear that 

a! < aa_ir (a) < (b — a +1) (b — a + 2) • • • b 

P 	 fj pm(p) 
p<a 	 p<a 

because after cancellations are made in 

(b a + 1) • (b — a + 2) • • b 

pm(P) 
p<a 

we obtain a — 7r(a) factors all equal to at least b — a +1 > a, a contradiction. 
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3.2 Problems for training 

1. Prove the identity 

lcm(a, b, c)2  

 

gcd(a, b, c)2  

    

lcm(a, b) • lcm(b, c) • lcm(c, a) 	gcd(a, b) • gcd(b, c) • gcd(c, a) 

for all positive integers a, b, c. 

USAMO 1972 

2. Let a, b, c, d be positive integers such that ab = cd. Prove that 

gcd(a, c) • gcd(a, d) = a • gcd(a, b, c, d). 

Polish Olympiad 

3. Let al, a2, 	, ak, b1, b2, 	, bk be positive integers such that gcd(ai , bi) = 
1 for all i E {1, 2, 	, k}. Let m = lcm(bi, b2, 	, bk). Prove that 

(aim a2m 	a km) 
gcd gcd(ai , a2, • • • , ak)- b1 	b2 • 	bk 

IMO 1974 Shortlist 

4. Let n be a positive integer such that 2n-20051n!. Prove that n has at 
most 2005 non-zero digits when written in base 2. 

5. Let 0 < al < • • • < an  be integers. Find the greatest m for which we can 
find the integers 0 < b1 < 	< bm  such that 

2ak  = E bk  and H(2ak )! = 	bk!• 
k=i 	k-1 	k=1 	 k=1 

Gabriel Dospinescu 
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6. Show that if it is a positive integer and a and b are integers, then n! 
divides a(a + b)(a + 2b) • • • (a + (n — 1)b)bn-1. 

IMO 1985 Shortlist 

7. Prove that the product of the numbers between 21917  + 1 and 21991  — 1 
is not a perfect square. 

Tournament of the Towns 1991 

8. Let a, b, c be positive integers such that clay — V. Prove that cl aacibbc . 

I.Niven, AMM E 564 

9. Prove the identity 

n 
(n+ 1) lcm ((no), (1),..., (In)) = lcm(1,2,...,n + 1) 

for any positive integer n. 

Peter L. Montgomery, AMM E 2686 

10. Prove that the least common multiple of the numbers 1, 2, ... ,n equals 
1),  n,  ... , n 

the least common multiple of the numbers (n (
2) 	

(n) if and 

only if n + 1 is a prime. 

Laurentiu Panaitopol, Romanian TST 1990 

11. Find v2(A), where A is the numerator of 1 +A-kt + ' • • • + 2k1-1 ' 

J.L.Selfridge, AMM E 1408 
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12. Let al, a2, 	ak be positive integers not exceeding n such that ai  does 
not divide fl a3  for all i. Denote by 7r(n) is the number of primes not 

exceeding n. Prove that k < 7r(n). 

Erdos 

13. Let al, , an > 0 be such that whenever k is a prime number or a power 
of a prime number, we have 

an  
{Tal}+...±  {T} <1* 

Prove that there is a unique i E {1,2,..., n} such that al  + • • + an < 
1 + [ad. 

Tache Alexandru 

14. Let m be an integer greater than 1. Suppose that a positive integer n 
satisfies nlam - 1 for all integers a relatively prime to n. Prove that 
n < 4m(2m - 1). Find all cases of equality. 

Gabriel Dospinescu, Marian Andronache, Romanian TST 2004 

15. Prove that the sequence (xn)n>i, xn  being the exponent of 2 in the 
2 22 	2' 

decomposition of the numerator of -
1 

+ + • + , goes to infinity as
2  

n -p oo. Even more, prove that 	> 2n  — n + 1. 

Adapted from a Kvant problem 

16. Let x, y be relatively prime different natural numbers. Prove that for 
infinitely many primes p, the exponent of p in xP-1  - yP-1  is odd. 

AMM 
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17. Find the exponent of 2 in the prime factorization of the number 

(22n1/ 

	( 2n 

2n1) • 

J. Desmong, W.R.Hastings, AMM E 2640 

18. Let n be an integer greater than 1 and let a, b be positive integers smaller 
than n. Prove that there exists a prime number p such that min(sp(a) + 
sp(n — a), sp(b) + sp(n — b)) _>. p— 1 ± sp(n). 

Gabriel Dospinescu 

19. Prove that there exists an absolute constant c such that for any positive 
integers a, b, n for which a!b! = n! and 1 < a < b < n we have n < 
b + cln inn. 

Paul Era's, AMM 6669 

20. Prove that the product of at most 25 consecutive integers is not a square. 

Narumi's Theorem 

21. Prove that for all positive integers n different from 3 and 5, n! is divisible 
by the number of its positive divisors. 

Paul Eras, Miklos Schweitzer Competition 

22. Let (an)n>i be a sequence of positive integers such that gcd(am, an) = 
agcd(m,n) for all positive integers m, n. Prove that there exists a unique 
sequence of positive integers (bn)n>1 such that an  = fl bd. 

dln 

Marcel Tena 
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23. Let f (n) be the maximum size of a subset A of {1,2, ..., n} which does not 
contain two elements i, j such that it2j. Prove that f (n) = s+ 0(ln n). 

Paul ErdOs, AMM E 3403 
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4.1 Theory and examples 

The study of the properties of prime numbers is very well-developed, yet many 
old conjectures and open questions are still waiting to be solved. In this 
chapter, we present properties of some classes of primes and also of some 
classical results related to representations as sum of two squares. At the 
end of the unit, we will discuss, as usual, some nonstandard and surprising 
problems. Because we will use some facts several times, we prefer to fix some 
notations before discussing the problems. So, we will consider the sets Pi and 
P3 of all prime numbers of the form 4k + 1 and 4k + 3, respectively. Also, Q2 
will be the set of all numbers that can be written as the sum of two perfect 
squares. Our purpose is to present some classical results related to Pi , P3, Q2. 
The most spectacular property of the set Pi  is the fact that any of its elements 
is the sum of the squares of two positive integers. This is not a trivial property 
and we will present a beautiful proof of it next. 

Example 1.1 Prove that Pi  is a subset of Q2. 

[Fermat] 

Solution.  We need to prove that any prime number of the form 4k + 1 is the 
sum of two squares. We will use a very nice result: 

Theorem 4.1 (Thue). If n is a positive integer and a is relatively prime to 
n, then there exist integers 0 < x, y < VT" such that xa ±y (mod n) for a 
suitable choice of the signs + or —. 

Proof. The proof is simple, but the theorem itself is a diamond. Indeed, let 
us consider all the values xa — y, with 0 < x, y < INFri J. So, we have a list of 

+ 1)2  > n numbers and it follows that two numbers among them give 
the same remainder when divided by n, let them be axi — yi  and axe — y2. It 
is not difficult to see that we may assume that x1 > x2 (we certainly cannot 
have xi = x2 or yi = y2). If we take x = x1 — x2 and Y = 1Y1 — Y21, all the 
conditions will be satisfied, so the theorem is proved. ❑ 
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We will use now Wilson's theorem to find an integer n such that pin2  + 1. 
Indeed, let us write p = 4k +1 and observe that we can take n = (2k)!. Why? 
Because from Wilson's theorem we have 

—1 ==._ (p — 1)! .=-=- 1 • 2 • ... (
p

2 
1 	

P 
p
2 ) 

(p — 1) 
• • • 

2 
(-1)Y ((P  2  1)  !) = ((2k)!)2  (mod p) 

and the claim is proved. Now, since pin2  + 1, it is clear that p and n 
are relatively prime. Hence we can apply in order to find positive integers 
0 < x, y < \Fp (since Fp 0 Q) such that pin2x2  — y2. Because pin2  + 1, we 
find that /342  + y2  and because 0 < x, y < \i-p, we conclude that we have in 
fact p = x2  + y2. The theorem is proved. 

It is time now to study some properties of the set P3. Because they are easier, 
we will discuss them in a single example. 

[Example 2.1 Let p E P3 and suppose that x and y are integers such that 

pjx2  + y2. Show that plgcd(x, y). Consequently, any number 
of the form n2  + 1 has only prime factors that belong to Pi or 
are equal to 2. Conclude that P1  is infinite and then that P3 
is infinite. 

Solution. Let us focus on the first question. Suppose that plgcd(x, y) is not 
true. Then, it is obvious that xy is not a multiple of p. Because plx2  + y2, 
we can write x2  —y2  (mod p). Combining this with the observation that 
gcd(x,p) = gcd(y,p) = 1 and with Fermat's little theorem, we find that 1 
xp—i _ (_1)Yyp-1 = 1)2k+1 = —1 (mod p) (for p = 4k + 3), which is 
impossible. This settles the first question. The second one follows clearly 
from the first one. Now, it remains to prove the third assertion. Proving that 
P3 is infinite is almost identical with the proof that there are infinitely many 
primes. Indeed, suppose that Doi7A  2,9u9 l• • • )1371 are all the elements of P3 greater 
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than 3 and consider the odd number N = 4p1p2 	+ 3. Because N 3 
(mod 4), N must have a prime factor that belongs to P3. But since pi is not 
a divisor of N for any i = 1, 2, ..., n, the contradiction is reached and thus P3 
is infinite. In the same manner we can prove that P1  is infinite, but this time 
we must use the second question. Indeed, we consider this time the number 
M = (q1q2. qm)2  + 1, where qi , q2, , qm, are the elements of P1  and then 
simply apply the result from the second question. The conclusion is clear. 
It is not difficult now to characterize the elements of the set Q2. A number is a 
sum of two squares if and only if any of its prime factors that also belongs to P3 
appears at an even exponent in the decomposition of that number. The proof 
is just a consequence of the first example and we will not insist on anything 
more. 

Having presented some basic results that we will further use in this unit, it 
is time to see some applications that these two examples have. As a simple 
consequence of the first example, we consider the following problem, which 
is certainly easy for someone who knows Fermat's theorem regarding the ele-
ments of P1 and difficult enough otherwise. 

Example 3. Find the number of integers x E { —1997, ... , 1997} for which 

19971x2  + (x + 1)2 . 

 

India 1998 

Solution.  We know that any quadratic congruence reduces to the congruence 
x2  a (mod p). So, let us proceed and reduce the given congruence to this 
special form. This is not difficult, since x2  + (x + 1)2  .= 0 (mod 1997) is equiv-
alent to 2x2  + 2x +1 a-  0 (mod 1997), which in turn becomes (2x +1)2  +1 0 

(mod 1997). Because 1997 E P1, the congruence n2  —1 (mod 1997) has 
at least one solution. More precisely, there are exactly two solutions that 
belong to {1, 2, ... ,1996}, because if no is a solution, then so is 1997 — no 
and it is clear that this equation has at most two noncongruent solutions 
mod 1997. Because gcd(2, 1997) = 1, the function x 2x + 1 is a permu-
tation of Z/1997Z, and so the initial congruence has exactly two solutions 
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with x E {1, 2, 	, 1996}. In a similar way, we find that there are exactly two 
solutions with x E { —1997, —1996, ... , —1}. Therefore there are exactly four 
numbers x E { —1997, ... , 1997} such that 19971x2  + (x + 1 ) 2  . 

We continue with a much trickier problem, proposed by Romania for the 1996 
IMO. Even though it uses only the elementary facts about P3 proved before, 
this problem is fairly difficult: 

Let No denote the set of nonnegative integers. Is there a bijec-
tive function f : No  —> No  such that for all nonnegative integers 
m, n we have f (3mn + m + n) = 4f (m) f (n) + f (m) + f (n)? 

IMO 1996 Shortlist 

Solution. The first step is to notice that one can change the given relation 
into 

(  (3m + 1)(3n + 1) — 1) 	(4f (m) + 1)(4f (n) + 1) — 1  
3 	 4 

This has the advantage that after introducing the function g : 3 • No + 1 —> 
4 • No  + 1, g(n) = 4f ( n -3  1  ) + 1, it becomes g(mn) = g (m)g(n), which is much 
easier than the initial relation. Because one can easily reconstruct f from g 
by f (n) -=- g(3n+41) 1  , the question becomes: is there a bijective multiplicative 
function g between 3•No +1 and 4•No +1, that is are the monoids 3.No +1 and 
4 • No  + 1 isomorphic? Let us introduce the analogous sets T1, T2 of positive 
primes of the form 3k + 1 and 3k + 2. In the same way as we proved that 
P1, P3 are infinite, you can prove that T1, T2 are infinite. Because they are 
clearly countable, there exists a bijection between P1  and T1  and a bijection 
between P3 and T2. This gives us a bijection '0 between P1 U 8 and T1 U T2 
which maps P1 onto T1 and P3 onto T2 bijectively. Now, it is not difficult to 
construct an isomorphism g: define g(1) = 1 and if n > 1 is in 3 • No + 1 write 
n = p1p2 • • pk for some prime numbers pi  E T1  U T2 , not necessarily distinct 
and define g(n) = b(pi) 0(p2) • • • 0 (pk). We need to verify that g is well-
defined, multiplicative and bijective. First of all, note that there is an even 
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number of elements of T2 among pl, P2, -.1 pk. Then there is an even number of 
.elements of P3 among 111(pi ) and thus g(n) E 4 • No + 1. Thus g is well-defined. 
Clearly g is multiplicative (by the definition itself) and, using the properties 
of zb it is immediate to verify that g is also bijective. This proves the existence 
of a function f with the desired properties. 

From a previous observation, we know that the condition that a number is a 
sum of two squares is quite restrictive. This suggests that the set Q2 is rather 
sparse. This conclusion can be translated into the following nice problem. 

Example 5. Prove that Q2 does not have bounded gaps, that is there are ar-
bitrarily long sequences of consecutive integers, none of which 
can be written as the sum of two perfect squares. 

 

AMM 

Solution. The statement of the problem suggests using the Chinese Remain-
der Theorem, but here the main idea is to use the complete characteriza-
tion of the set Q2 we have just discussed: Q2 = E if pin and p E 
P3, then vp(n) E 2Z}. We know what we have to do. We will take long 
sequences of consecutive integers, each of them having a prime factor that 
belongs to P3 and has exponent 1. More precisely, we take different elements 
of P3, let them be pl,P2, , pn  (we can take as many as we need, since P3 is 
infinite) and then we look for a solution to the system of congruences 

x 	— 1 (mod p?) 
x p2 — 2 (mod /A) 

x pn  — n (mod pn2 ) 

The existence of such a solution follows from the Chinese Remainder Theorem. 
Thus, the numbers x +1,x + 2, ... , x n cannot be written as the sum of two 
perfect squares, since + i, but g does not divide x i. Because n is as 
large as we want, the conclusion follows. 
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The Diophantine equation x(x +1)(x + 2) • • • (x + n) = yk  has been extensively 
studied by many mathematicians and great results have been obtained by 
Erdos and Selfridge. But these results are very difficult to prove and we prefer 
to present a related problem, with a nice flavor of elementary mathematics. 

Example 6.] For any p in P3, prove that no set of p — 1 consecutive positive 
integers can be partitioned into two subsets, each having the 
same product of the elements. 

Solution.  Let us suppose that the positive integers x + 1, x + 2, ... , x + p — 1 
have been partitioned into two classes X, Y, each of them having the same 
product of the elements. If at least one of the p — 1 numbers is a multiple of p, 
then there must be another one divisible by p (since in this case both products 
of elements from X and Y must be multiples of p), which is clearly impossible. 
Thus, none of these numbers is a multiple of p, which means that the set of 
the remainders of these numbers when divided by p is exactly 1, 2, ... ,p — 1. 
Also, from the hypothesis it follows that there exists a positive integer n such 
that 

(x + 1)(x + 2) • • • (x + p — 1) = n2. 

Hence n2  1 • 2 • • • (p — 1) —1 (mod p), the last congruence following from 
Wilson's theorem. But from the second example we know that the congruence 
n2  —1 (mod p) is impossible for p E P3 and this is the needed contradiction. 

The results in the second example are useful tools in solving nonstandard Dio-
phantine equations. You can see this in the following two examples. 

Prove that the equation x4  = y2  + z2  + 4 does not have integer 
solutions. 

[Reid Barton] Rookie Contest 1999 

Solution.  Practically, we have to show that x4  — 4 does not belong to Q2. 

Hence we need to find an element of P3 that has an odd exponent in the prime 
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factorization of x4  — 4. The first case is when x is odd. Using the factorization 
x4  — 4 = (x2  — 2)(x2  + 2) and the observation that x2  + 2 = 3 (mod 4), we 
deduce that there exists p E P3 such that vp(x2  +2) is odd. But since p cannot 
divide x2  — 2 (otherwise pl x2  +2 — (x2  — 2), which is not the case), we conclude 
that vp(x4  — 4) is odd, and so x4  — 4 does not belong to Q2. We have thus 
shown that in any solution of the equation, x is even, let us say x = 2k. Then, 
we must also have 4k4  — 1 E Q2, which is clearly impossible since 4k4  — 1 3 
(mod 4) and thus 4k4  — 1 has a prime factor that belongs to P3 and has odd 
exponent. Moreover, it is worth noting that the equation x2  + y2  = 4k + 3 can 
be solved directly, by working modulo 4. 

The following problem is much more difficult, but the basic idea is the same. 
Yet the details are not so obvious and, most importantly, it is not clear how 
to begin. 

[Example 8.1 Let p E P3 and suppose that x, y, z, t are integers such that 
x2P y2P Z2P = t2P. Prove that at least one of the numbers 
x, y, z,t is a multiple of p. 

[Barry Powel] AMM 

Solution.  Without loss of generality, we may assume that x, y, z, t are rela-
tively prime. Next, we prove that t is odd. Supposing the contrary, we obtain 
X2P + y2P Z2P = 0 (mod 4). Because a2  (mod 4) E {0, 1}, the latter implies 
that x, y, z are even, contradicting the assumption that gcd(x, y, z, t) = 1. 
Hence t is odd. This implies that at least one of the numbers x, y, z is odd. 
Suppose that z is odd. We write the equation in the form 

X2P  
t2P - Z2P 

(t2  - z2) y2P  = t
2  -z2  

and look for a prime q E P3 with an odd exponent in the decomposition of a 
factor that appears in the right-hand side. The best candidate for this factor 
seems to be 

, 
t2P - Z2P  
t2 z2 

(t2)p-1 	(t2)p-2z2 	(z2)p-1 
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which is congruent to 3 (mod 4). This follows from the hypothesis p E P3 

and the fact that a2 	1 (mod 4) for any odd number a. Hence there is a 
t2p _ z2p 

q E P3 such that v 	 q ( t2 — z2 

) 
is odd. Because x2P + y2P E Q2, it follows 

that vq(x2P + y2P) is even and so vq (t2  — z2) is odd. In particular, qlt2  — z2  
and, because 

ql(t2)p-1 + (e)p-2z2 + ... + (z2)p-1 , 

we deduce that qlpt2(P-1). If q p, then qlt, hence qlz and also q1x2P + y2P. 

Because q E P3, we infer that qlgcd(x, y, z, t) = 1, which is clearly impossible. 
Therefore q = p and so plx2P + y2P. Because p E P3, we find that plx and ply. 
The conclusion follows. 

The previous results are used in the solution of the following problem. Even 
if the problem is formulated as a functional equation, we will immediately see 
that it is pure number theory mixed with some simple algebraic manipulations. 

I Example 9.1 Find the least nonnegative integer n for which there exists a 
nonconstant function f : Z —> [0, oo) with the following prop-
erties: 

a) PxY) = f(x).f(Y); 

b) 2 f (x2  + y2 ) — f (x) — f (y) E {0,1, ... , n} for all x, y E Z. 

For this n, find all functions with the above properties. 

[Gabriel Dospinescu] Crux Mathematicorum 

Solution.  First of all, we will prove that for n = 1 there are functions which 
satisfy a) and b). For any p E P3 define: 

_{0 if plx 
otherwise 

Using the properties of P1  and P3, you can easily verify that fp satisfies the 
conditions of the problem. Hence fp  is a solution for all p E P3. 
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We will prove now that if f is nonconstant and satisfies the conditions in the 
problem, then n > 0. Suppose not. Then 2f (x2  + y2) = f (x) + f (y) and hence 

2f(x2 + 02) 2f (x)2 	 = f (x) + f (0).. It is clear that we have f (0)2  = f(0). 
Because f is nonconstant, we must have f(0) = 0. Consequently, 2f(x)2  = 

1 
, f(x) for every integer x. But if there exists x such that f(x) 

= 2 
— then 

2f(x2)2  f(x2), contradiction. Thus, f(x) = 0 for any integer x and f is 
constant, contradiction. So, n = 1 is the least number for which there are 
nonconstant functions which satisfy a) and b). 
We will now prove that any nonconstant function f which satisfies a) and b) 
must be of the form fp: or the function sending all nonzero integers to 1 and 
0 to 0. We have already seen that f(0) = 0. Since 1(1)2  = f(1) and f is 
nonconstant, we must have f (1) = 1. Also, 

2f (x)2  — f (x) = 2 f (x2  + 02) — f (x) — f (0) E {0,1} 

for every integer x. Thus f (x) E {0,1}. Because f (-1)2  = f (1) = 1 and 
f(-1) E [0, oo), we must have f (-1) = 1 and f (—x) = f (-1)f (x) = f (x) 
for any integer x. Then, since f (xy) = f (x) f (y), it suffices to find f (p) for 
any prime p. We prove that there is exactly one prime p for which f (p) = 
0. Because f is nonconstant and f is not the function sending all nonzero 
integers to 1, there is a prime number p for which f (p) = 0. Suppose there is 
another prime q for which f (q) = 0. Then 2 f (p2  + q2) E {0, 1}, which means 
f( p2 q2) = 0. Then for any integers a and b we must have: 

0  _ 2f(a2 b2)f(p2 q2) 2f ((ap + bq)2  + (aq — bp)2). 

Observe that 0 < f (x) + f (y) < 2f (x2  + y2) for any x and y, so we must have 
f (ap + bq) = f (aq — bp) = 0. But p and q are relatively prime, so there are 
integers a and b such that aq — by = 1. Then 1 = f(1) = f (aq — bp) = 0, 
a contradiction. So, there is exactly one prime p for which f (p) = 0. Let us 
suppose that p = 2. Then f (x) = 0 for any even x and 2f (x2  + y2) = 0 for 
any odd numbers x and y. This implies that f (x) = f (y) = 0 for any odd 
numbers x and y and thus f is constant, contradiction. Therefore p E Pl U P3. 

Suppose p E P1. According example 1, there are positive integers a and b such 
that p = a2  + b2. Then we must have f (a) = f (b) = 0. But max{a, b} > 1 and 
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there is a prime number q such that ql max{a, b} and f (q) = 0 (otherwise, we 
would have f(max{a, b}) = 1). But it is clear that q < p and thus we have 
found two distinct primes p and q such that f (p) = f (q) = 0, which, as we 
have already seen, is impossible. Consequently, p E P3 and we have f (x) = 0 
for any x divisible by p and f(x) = 1 for any x which is not divisible by p. 
Hence, f must be fp  and the conclusion follows. 

We end this chapter with two beautiful problems concerning properties of 
prime numbers of the form 4k + 1 or 4k + 3. We saw that Q2 does not have 
bounded gaps. In fact, much more is true. We will show that Q2 has den-
sity zero. Define the density of a set of positive integers Pi  as the limit (if it 

exists) of the sequence P1  x(x)  where P1  (x) is the counting function of the set 
P1, that is Pi(x) = E 1. Before proving that Q2 has density zero, we 

want to prove a jewel of mathematics, the first step in analytic number theory: 

Example 1071  The sets P1  and P3 have Dirichlet density 1, that is 

lim 
s—>1 In 5-11 

and similarly for P3.  

1 
ps 	2 

pEPi 

1 

[Dirichlet] 

(71)  Solution.  Let us consider s > 1 and L(s) = E Ans  , where A(n) = 0 if n 
n>1 

is even and A(n) = (-1) X21  otherwise. It is clear that A(n) • A(m) = A(mn). 
Using this, it is not difficult to see that 

p2
s

)  
L(s) H (1+ A

p  +Ap2  + 	_f 1— la(p)'  1 

 1 
A(p).  s

p) 

P 	ps 



L(s) = H (1+ A
p
(P)  + 

 P  
A(':s)  

s  1 	A(P)  • 
p 	

Ps 

1 	1 	1 
L(s) =1— 	+ 	— 	+ • • • > 0,

75 
(4.1) 
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Indeed, let us define P(x) = 	+ 	+ ,A(P2)  + • .•). It is a finite product 

where P1(x) is the set of positive integers having all prime divisors not ex- 
ceeding x. Thus the difference between the sum of the absolutely convergent 

A(n) A( )  series E —
ns 

and P(x) is just the sum of A(n)  taken over the set of all positive 
8  

n> 1 
integers that have at least one prime divisor greater than x, thus it is certainly 
bounded in absolute value by E b. Because this converges to 0 for x oo, 

n>x 
it follows that P(x) converges to L(s) for x —> oo, so we have 

p<x 
of absolutely convergent series, so we can write 

P(x) = E  A(n)  
ns 

nEP1(x) 

Now, observe that 

so we can take logarithms in both sides of (4.1) in order to obtain 

In L(s) = 
p 

In (1 	A(P)  I. 
Ps  

Finally, observe that there exists a constant w such that I —1n(1— x)—x I < Cx2  
(1  for all 0 < x < . Indeed, the function —ln x)— x is continuous on [0, 2  1] , so x  

it is bounded. Therefore 

In L(s) — E A(p) 
 

P P 
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Now, let us prove that ln L(s) is bounded for s —> 1. Indeed, from 

1 
L(s) = (1 — 18 ) + 	— 	+ " = 1 

( 1 
795 — • 

it follows that for s > 1 we have ln L(s) E (ln 0). With exactly the same 
arguments (applied this time for the function 0(n) = 1 for odd n and 0(n) = 0 

I,b  for even n and Li(s) = 2 	(n)  ), we can prove that 
n>1 

ln 

is bounded for s 	1. However, it is clear that 

E _
ns 

=( 1_ 
s
) • ((s), 

where c(s) = E s  is the famous Riemann's function. Because ln L(s) is 
n>1 

bounded, it follows from a previous inequality that > A(P)  is also bounded 
p>2 

near 1. Finally, we deduce from these observations that 

_ 	1 = 0(1)  
ps 	ps pEP1 	pEP3 

and 

- + 	- = ln(1 — 2') + In ((s) + 0(1) 
PEPi pEP3 

for s —f 1. A simple integral estimation shows that ln(1-2-8)+1n ((s) ln s l i  
for s —> 1, which finishes the proof of this beautiful theorem. 

Now, let us see why the set Q2 has zero density. The proof of this result will 
surely look very complicated. Actually, it is a motivation to give some other 
very useful results connected to this problem. First of all, let us start with 

nE2N+1 
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Theorem 4.2. Let P be a set of prime numbers. The set of positive integers 

n divisible by some prime p E P has density 1 if n (1 — 	= O. 
qEP 

Proof. The proof of this result is quite simple, even though in order to make it 
rigorous we need some technical details. It is clear that P is infinite, so let p1  < 
P2 < ••• be its elements. Let E be the set of the numbers n divisible by some 
prime p E P and let X be the set of positive integers n that are not divisible 
by any element of P. Also, let f(x,y) be the cardinal of the set of those 
numbers not exceeding x and which are relatively prime to fl q. Using 

qEP,q<y 

the Inclusion-Exclusion Principle and the fact that the number of multiples 
of pi1pi2 ...pis  not exceeding x differs by at most 1 from 	 we deduce 

13 1. 1j 2 •• • .Ps 
that 

f (x, y) = x • H (1_1+0(2Y) 
4E P,q<y 

(because in the sum appearing in the Inclusion-Exclusion Principle there are 
2Y terms of the form 	+ 0(1)). Now, by choosing y = ln x we deduce 

Ps Ps2 ' • • • 'Ps, 

f (x, ln x) = x • 	(1 - ) 0 (xln 2).  

qEP,q<ln x 

Because the counting function of X satisfies R(x) < f(x,y) for all x, y and 

because limx_,,„, 	 - 1) = 0, it follows that R(x) = o(x), that is X 
qEP,q<ln x 

has zero density. It is clear then that E has density 1. 
0 

Now, using the previous theorem due to Dirichlet, we can easily establish 
that E 1  = 00. Because In (1 — ) 	_ 0  (y ) it easily follows that 

pEP3 

H (1_1) = 0. By the previous theorem, it follows that the set of integers 

that 

pEP3 

divisible by at least an element of P3 has density 1. Now, let P3(x) be the 
counting function of the set of positive integers that are not divisible by 4 or 
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by any element of P3. They are the only integers that are sums of two coprime 
squares. Also, we have proved that P3(x) = o(x). It is also clear that if Sq(x) 
is the counting function of the set of positive integers that are sums of two 

squares, then Sq(x) < E P3 UT) . Now, for N an arbitrary positive integer, 

observe that 

E P3 (;) < P3(N) 
3 z  <N 

because P3 UT) < P3(N) for these j and the sum has at most •VX nonzero 

terms. On the other hand, 

E 8 (-.-2-) < supp3(t) 	x 
< 3x • sup 

P4(t)  

>N 

	

3 	t>N t 	3>1 	— 	t>N t f,2  

Everything should be clear now: for c > 0 choose N such that supt›N P3
t
(t)  < 

6* 	
4B(N)2  Then for x > 	we have Sq(x) < cx, which means that Sq(x) = x. 
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4.2 Problems for training 

1. Prove that a positive integer can be written as the sum of two perfect 
squares if and only if it can be written as the sum of the squares of two 
rational numbers. 

Euler 

2. a) Prove that for any real number x and any nonnegative integer N one 

can find integers p and q such that I qx — PI < N + 1  

b) Suppose that a is a divisor of a number of the form n2  + 1. Prove 
that a E Q2. 

3. Prove that the equation 3k  = m2  + n2  + 1 has infinitely many solutions 
in positive integers. 

Saint-Petersburg Olympiad 

4. Prove that each p E P1  can be represented in exactly one way as the sum 
of the squares of two integers, up to the order of the terms and signs of 
the terms. 

5. Find all positive integers n for which the equation n = x2  + y2, with 
0 < x < y and gcd(x, y) = 1 has exactly one solution. 

6. Prove that the number 4mn — m — n cannot be a perfect square if m 
and n are positive integers. 

IMO 1984 Shortlist 

7. The positive integers a, b have the property that the numbers 15a + 16b 
and 16a — 15b are both perfect squares. What is the least possible value 
that can be taken by the smallest of the two squares? 

IMO 1996 
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8. Find all pairs (m, n) of positive integers such that 

m2  — 13m + (n! — 1)m • 

Gabriel Dospinescu 

x2+2 is 
9. Find all pairs (x, y) of positive integers such that the number 	 

x — y 
a divisor of 1995. 

Bulgaria 1995 

10. Find all n-tuples (al, a2, 	, an) of positive integers such that 

(al! — 1)(a2! — 1) ... (an! — 1) — 16 

is a perfect square. 

Gabriel Dospinescu 

11. Prove that there are infinitely many pairs of consecutive numbers, no 
two of which have any prime factor that belongs to P3. 

12. Ivan and Peter alternately write down 0 or 1 until each of them has 
written 2001 digits. Peter is a winner if the number, whose binary rep-
resentation has been obtained, cannot be expressed as the sum of two 
perfect squares. Prove that Peter has a winning strategy whenever Ivan 
starts. 

Bulgaria 2001 

13. Prove that the equation y2  = x5  — 4 has no integer solutions. 

Balkan Olympiad 1998 
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14. It is a long standing conjecture of Erdos that the equation '1 = lx-  + ly  + 1 
has solutions in positive integers for all positive integers M. Prove that 
the set of those n for which this statement is true has density 1. 

15. Let T the set of the positive integers n for which the equation n2 = a2+b2 

has solutions in positive integers. Prove that T has density 1. 

Moshe Laub, AMM 6583 

16. Find all positive integers n such that the number 2' — 1 has a multiple 
of the form m2  + 9. 

IMO 1999 Shortlist 

17. Prove that the set of odd perfect numbers (that is for which a(n) = 2n, 
where a(n) is the sum of the positive divisors of n) has zero density. 

18. Prove that the equation x8  + 1 = n! has only finitely many solutions in 
nonnegative integers. 

19. Find all functions f : Z± —> Z with the properties: 

1. f(a) > f(b) whenever a divides b. 

2. for all positive integers a and b, 

f (ab) + f (a2  + b2) = f(a) + f (b) . 

Gabriel Dospinescu, Mathlinks Contest 

20. Let Lo = 2, L1 = 1 and Ln+2 = Ln±i + Lr, be the famous Lucas's 
sequence. Then the only n > 1 for which L7-, is a perfect square is n = 3. 

Cohn's theorem 
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5.1 Theory and examples 

T2 's lemma is clearly a direct application of the Cauchy-Schwarz inequality. 
Some will say that it is actually the Cauchy-Schwarz inequality and they are 
not wrong. Anyway, this particular lemma has become very popular among the 
American students who attended the training of the USA IMO team. This 
happened after a lecture delivered by the first author at the Mathematical 
Olympiad Summer Program (MOSP) held at Georgetown University in June, 
2001. 
But what exactly does this lemma say? It says that for any real numbers 
al, a2, 	, an  and any positive real numbers xl, xz, 	, xn, the inequality 

,2 	,2 	 a2 	(al  + az +  • • • + an)2 
— + + • • • + n  > 
X1 X2 	 Xn 	X1 ± X2 ' • • ± Xn 

holds. And now we see why calling it also the Cauchy-Schwarz inequality is 
natural, since it is practically an equivalent form of this inequality: 

(a? + 4 + 	a2 
+ 	(X1 + X2 + + Xn) 

X1 X2 	 Xn 

X1 
• 	+ 

2 
22 a2   

+ • • • + 
a, 

 fxTi, 
X2 	 Xn  

But there is another nice proof of (5.1), by induction. The inductive step is 
reduced practically to the case n = 2, which is immediate. Indeed, it boils 

al 
down to (alx2 — a2x1)2  > 0 and the equality occurs if and only if — = az  

x1 	x2 
Applying this result twice it follows that 

2 	2 	 ai 	(al + a2 + a3)2  a2  a32  > (al  + a2)2 
+ > 

X1 X2 X3 	X1 + X2 	X3 	xl + X2 + X3 
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and we see that a simple inductive argument finishes the proof. With this 
brief introduction, let us discuss some problems. And there are plenty of them 
given in mathematical contests or proposed in mathematical magazines! 
First, an old problem, that became classical. We will see that with T2 's lemma 
it becomes straightforward and even more, we will obtain a refinement of the 
inequality. 

Prove that for any positive real numbers a, b, c 

a3 	 b3 	 c3 	a + b + c 
a2  + ab + b2 + b2  + bc + c2 + c2  + ca + a2 

> 	
3 

Tournament of the Towns, 1998 

Solution. We will change the left-hand side of the inequality so that we could 
apply T2's lemma. This is not difficult: we just have to write it in the form 

a4 	 b4  
a(a2  + ab + b2) b(b2  + be + c2) c(c2  + ca + a2) 

It follows that the left-hand side is greater than or equal to 

(a2 	b2 	c2)2 

a3  + b3  + c3  + ab(a + b) + bc(b + c) + ca(c + a) 

But we can easily observe that 

a3  + b3  + c3  + ab(a + b) + bc(b + c) + ca(c + a) = (a + b + c)(a2  + b2  + c2) , 

so we have proved an even stronger inequality, that is 

a3 	 b3 	 c3 	a2 b2 e2 

a2  + ab + b2  b2  + bc + c2  c2  + ca + a2  — a + b + c • 

The second example also became representative for a whole class of problems. 
There are countless examples of this type in numerous contests and mathe-
matical magazines, so we find it necessary to discuss it at this point. 
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Example 2 1 For arbitrary positive real numbers a, b, c, d prove the inequal-
ity 

2 
b+2c

a 
 +3d c+2d+3a d+2a+3b+ a+2b+3c— > 3 

[Titu Andreescu] IMO 1993 Shortlist 

Solution.  If we write the left-hand side in the form 

a2 	 b2 	 c2 	 d2 

a(b + 2c + 3d) + b(c + 2d + 3a) + c(d + 2a + 3b) d(a + 2b + 3c)' 

then the way to continue is clear, since from the lemma we obtain 

a 
b+2c+3d

+ 
c+2d+3a

+ 
d+2a+3b

+ 
a+2b+3c 

(a+b+c+d)2  
4(ab+bc+cd+da+ac+bd) .  

Hence it suffices to prove the inequality 

3(a+b+c+d)2 >8(ab+bc+cd+da+ac+bd). 

But it is not difficult to see that 

(a+b+c+ a)2 a2 b2 e2 + a +2(ab+bc+cd+da+ac+bd), 

implies 

8(ab+bc+cd+da+ac+bd)=4(a+b+c+d)2 4(a2 b2 c2 a2). 

Consequently, we are left with the inequality 

4(a2 b2 e2 a2) > (a+b+c+d)2, 

which is just the Cauchy-Schwarz inequality for four variables. 
The problem below, given at the IMO 1995, was discussed extensively in many 
publications. It could be also solved by using the above lemma. 
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Let a, b, c be positive real numbers such that abc = 1. Prove 
that 

1 	1 	1 	3 

a3(b + c) 
+ 

b3(c + a) 
+ 

c3(a + b) > 2. 

Solution.  We have: 

1 	1 	1 
1 	 1 	 1 	_ 	a2 4_ 	b2 	

+ 	
e2 

a3  (b + c) 
+ 

b3  (c + a) + c3  (a + b) 	a(b + c) b(c + a) c(c + a) 

( + + 1 1 1) = 

	  

2  

> 
a b c ) 	(ab + bc + ca)2  ab + bc + ca 

> 
3 

	

 -- 	 
— 2(ab + be + ca) 2(ab + be + ca) 	2 	— 2' 

the last inequality following from the AM-GM inequality. 

The following problem is also not difficult, but it uses a nice combination of 
this lemma and the Power-Mean inequality. It is another example in which 
proving the intermediate inequality (that is, the inequality that remains to be 
proved after using the lemma) is not difficult. 

Let n > 2. Find the minimal value of the expression 

xi 
x2 + x3 + • • • + xn xl + x3 + • • • + 	xn 

x5 

	

+...+ 	  
Xi ± X2 + • • ' Xn-1

7 
 

where xl, x2, 	, x7, are positive real numbers satisfying 

± 4 ± • • • + Xn2  = 1. 

Turkey, 1997 
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Solution. Usually, in such problems the minimal value is attained when the 

variables are equal. So, we conjecture that the minimal value is 
	1 

attained when x1 = x2 = • • • = xn  = 	 . Indeed, by using the lemma, it 
n 

follows that the left-hand side is greater than or equal to 

2  
Ex? 

Exi(xl +•••+xi_i+xi+,.+•••+ Xn) 

i=1 

But it is not difficult to observe that 

n 	 (n 

2  Exi(x,+•••+xi_i+xi+,.+•••+ xn) = E xi) -1. 

So, proving that 

5 X5 
1 	 X5 

2  
+ • + 	

Xn 

X2 + X3 + • • • + Xn 	+ X3 + • • • + Xn 	Xi + X2 + " • + Xn-1 

1 

n(n — 1) 

reduces to proving the inequality 

2 

TE Xi > 

i=1 

2 

n  Xi) — 1 

i=1  

n(n — 1) 

But this is a simple consequence of the Power-Mean inequality. Indeed, we 
have 

n(n — 1) 
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implying 

E 3  xi  > ,Fri  and E x2 < 
i=i 	 i=1 

The conclusion follows. 

In 1954, H.S.Shapiro asked whether the following inequality is true for any 
positive real numbers at, a2, 	, an: 

at 	a2 	 > 
a2 + a3 a3 + 
	++ a

l  + a2 — 2 

The question turned out to be extremely difficult. The answer is really unex-
pected: the inequality holds for all odd integers smaller than or equal to 23 
and all even integers smaller than or equal to 12, but fails for all the others. 
Let us examine the case it = 5, a problem proposed for MOSP 2001. 

Prove that for any positive real numbers al, a2, a3, a4, a5, 

al 	a2 	a3 	a4 	a5 	5 
	 > 

a2 + a3 a3 + a4 a4 + a5 a5 + al al + a2 2 

Solution.  Again, we apply the lemma and we conclude that it suffices to prove 
the inequality 

(al + a2 + a3 + a4 + a5)2  

2  [ai(a2 + a3) + a2(a3 + a4) + a3(a4 + a5) + a4(a5 + at) + a5(ai + a2)] 

Let us denote al + a2 + a3 + a4 + a5 = S. Then we observe that 

al (a2 + a3) + a2(a3 + a4) + a3(a4 + a5) + (a5 + al) + a5(ai + a2) 

(S — ) + a2(S — a2) + a3(S — a3) + azi(S — a4) + a5(S a5)  
2 

S2  — -  — a3 	a5  
2 
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With this identity, we infer that the intermediate inequality is in fact 

_5  (s2 _ a2i  _ a22 _ a32 _ a42 _ a52 ) , (al + a2 + a3 + a4 + a5)2  4 

equivalent to 5(4 + 4 + 4 + ce, + 4) > 82, which is nothing else then the 
Cauchy-Schwarz inequality. 
Another question arises: is there a positive real number such that for any 
positive real numbers al, a2, ... , a, and any n > 3 the following inequality 
holds: 

al 	a2 	 a, 
	+ 	+ • • • + 	 > cn. 

	

a2 + a3 a3 + a4 	al + a2 

This time, the answer is positive, but finding the best such constant is an 
extremely difficult task. It was first solved by Drinfield (who, by the way, is 
a Fields' medalist). The answer is quite complicated and we will not discuss 
it here (for a detailed presentation of Drinfield's method the interested reader 
can consult the written examination given at ENS in 1997). The following 
problem, given at the Moldavian TST in 2005, shows that c = -\/ — 1 is such 
a constant (not optimal). The optimal constant is quite complicated, but an 
approximation is 0.49456682. 
For any al, a2, ... , an, and any n > 3 the following inequality holds: 

	

al 	a2 	 a, 
	+ 	+ + 	> (N/2 — 1)n. 
a2 + a3 a3 + al 	al + a2  

The proof is completely elementary, yet very difficult to find. An ingenious 
argument using, the arithmetic-geometric means inequality does the job: let 
us write the inequality in the form 

	

al + a2 + a3 a2 + a3 + a4 	an  + al + a2 
	 + 	 + • • + 	 > .N,/ • n. 

	

a2 + a3 	a3 + al 	 al + a2 

Now, using the AM-GM inequality, we see that it suffices to prove the stronger 
inequality: 

al + a2 + a3 a2 + a3 + azi an + al + a2 
 ? (An. 

a2  + a3 	a3  + a4 	al  + a2 
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Observe that 

, 	ad-H.  _r_, ai+2)2  \ 2 
(Cti ad±i + ai+2) = (ai --r 	 

2 
+ 	

2 

_> 4 (ai + a21) 
(a2121 

 + ai+2) 

(the last inequality being another consequence of the AM-GM inequality). 
Thus, 

Thai + ai+1 + ai+2)2  > 11(2ai + ai+i) 11(2ai+2 + adH- 
d=1 	 d=i 	d=1 

Now, the real trick is to rewrite the last products appropriately. Let us observe 
that 

11(2ai+2 ad+i) = H(2ad-ki + ad), 
d=1. 	 d=i 

SO 

H(2ai  + ai+i) fl(2ai+2 + ai+1) = II[(2ai aid-1)(ai + 2ad-14)] 
d=i 	 d=i 

> H(2(ai  + ai+1)2) = 2n  Bad + 
d=i 	 d=i ) 2  

The conclusion now follows. 

This lemma came handy even at the IMO 2005 (problem 3). In order to prove 
that for any positive real numbers x, y, z such that xyz > 1 the following 
inequality holds 

+ y2 + z2 
	  <3 

L-s x5  + y2  + z2  

a few students successfully used the above mentioned lemma. For example, a 
student from Ireland applied this result and called it "SQ Lemma". During the 
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coordination, the Irish deputy leader explained what "SQ" stood for: "...escu". 
A typical solution using this lemma is as follows: 

x4 	y4 z4 	(x2 + y2 ± z2)2 
X5  + y2  + Z2  = 	+ +—> 	  

1/x y2  z2 	1 4. y2 + z2 
X 

hence 

—1 +y  2 +z  2 
x2 + y2 + Z2 
	 < \--"'  X  —2+  

 xy + yz + zx 
5 + y2 + z2 — 	2 + y2 + z2 	 + y2 + z2) < 3. 

x 	 xyz(x2  

It is now time for the champions. We begin with a difficult geometric inequal-
ity for which we have found a direct solution using T2's lemma. Here it is. 

Example 6. Let ma, mb, mc, ra, rb, r, be the lengths of the medians and the 
radii of the circumscribed circles in a triangle ABC. Prove that 
the following inequality holds 

 

rarb 	rbr, 	rcra 	 > 3. 
mamb MbMc McMa 

[Ji Chen] Crux Mathematicorum 

Solution. Of course, we start by translating the inequality into an algebraic 
one. Fortunately, this is not difficult, since using Heron's relation and the 
formulas 

K 	 -V2b2  + 2c2  — a2  
ra = s—a, ma= 2 

and the like, the desired inequality takes the equivalent form 

(a+b+c)(b+c—a) 	 (a+b+c)(c+a—b) 

\/2a2  + 2b2  — c2  • -V2a2  + 2c2  — b2  V2b2  + 2a2  — c2  • \/2b2  + 2c2  — a2  

(a+b+c)(a+b—c)  
+ 

V2c2  + 2b2  — a2  • V2c2  + 2a2  — b2 > 3. 
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In this form, the inequality is more than monstrous, so we try to see if a 
simpler form holds, by applying the AM-GM inequality to each denominator. 
So, let us try to prove the stronger inequality 

2(a + b + c)(c + b — a) 2(a +  b + c) (c + a — b) 
4a2 ± b2 + c2 	+ 	4b2 + c2 ± a2 

2(a  + b + c) (a  + b — c) > 3.  

c+b—a 	c+a—b 	a+b—c
> 	3 

4a2  + b2  + c2 
+ 

4b2  + c2  + a2 + 4c2  + a2  + b2  2(a + b + c) 

we see that by T2's lemma the left-hand side is at least 

(a + b ± c)2  
(b+c—a)(4a2  -I- b2  -I- c2 ) ± (c + a — b)(4b2  ± a2  ± c2 ) + (a ± b — c)(4c2  ± a2  + b2 ) • 

Basic computations show that the denominator of the last expression is equal 
to 

4a2  (b + c) + 4b2  (c + a) + 4c2  (a + b) — 2 (a3  + b3  + c3) 

and consequently the intermediate inequality reduces to the simpler form 

3(a3  + b3  + c3) + (a + b + c)3  > 6[a2  (b + c) + b2  (c + a) + c2(a + b)]. 

Again, we expand (a + b + c)3  and obtain the equivalent inequality 

4(a3  + b3  + c3) + 6abc > 3 [a2  (b + c) + b2  (c + a) + c2(a + b)] , 

which is not difficult at all. Indeed, it follows from the inequalities 

4(a3  + b3  + c3) ? 4[a2(b + c) + b2(c + a) + c2 (a + b)] — 12abc 

and 

+ 
4c2  + a2  + b2 	— 

Written in the more appropriate form 

a2 (b + c) + b2(c + a) + c2(a + b) > 6abc. 
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The first one is just an equivalent form of Schur's inequality, while the second 
follows immediately from the identity 

a2  (b + c) + b2  (c + a) + c2  (a + b) — 6abc = a(b — c)2  + b(c — a)2  + c(a — b)2. 

Finally, we have managed to prove the intermediate inequality, and hence the 
problem is solved. 

The journey continues with a very difficult problem, given at the Japanese 
Mathematical Olympiad in 1997, and which became infamous due to its dif-
ficulty. We will present two solutions for this inequality. The first one uses a 
nice combination between the T2 lemma and the substitution discussed in the 
unit "Two useful substitutions". 

Example 7. Prove that for any positive real numbers a, b, c the following 
inequality holds 

(b + c — a)2 	(c + a — b)2 	(a + b — c)2 	3 
	 + 

c2  + (a + b)2>  5' a2  + (b + 	b2  (C a)2  

 

Japan 1997 

Solution. Of course, from the introduction to this problem, the reader has 
already noticed that it is useless to try a direct application of the lemma, since 
any such approach is doomed. But with the substitution 

b + c 	c + a 	a + b 
x= 	 y= 	 z 	 

	

a 	b 	c 

we have to prove that for any positive real numbers x, y, z satisfying xyz = 
x + y + z + 2, the inequality 

(x —  1)2 	(y —  1)2 	(z  — 1)2 	3 
— 

	

x2  + 1 	y2  + 1 	z2  + 1 > — 5 

holds. It is now time to use T2's lemma in the form 

(x — 1)2 	(y — 1)2 	(z — 1)2 	(x y + z — 3)2  
x2  + 1 	y2  + 1 	z2  + 1 	x2  + y2  + z2  + 3' 
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Hence it is enough to prove the inequality 

(x + y + z — 3)2  3 
x2 ± y2 + z2 	

> 3 — 5 

But this is equivalent to 

(x+y+z)2 — 15(x+y+z)+3(xy+yz+zx)+18 >O. 

This is not an easy inequality. We will use the proposed problem 6 from the 
chapter Two Useful Substitutions to reduce the above inequality to the 
form 

(x + y + z)2  — 9(x + y + z) + 18 > 0, 

which follows from the inequality x + y + z > 6. And the problem is solved. 
But here is another original solution. 

Alternative solution. Let us apply T2 's lemma in the following form: 

(b + c — a)2 	(c + a — b)2 	(a + b — c)2  
a2  + (b + c)2  b2  + (c + a)2  c2  + (a + b)2  

— ((b +c)2 —  a(b c))2 	((c a)2  b(c + a))2  + ((a + b)2  ca + b))2  
a2(b + c)2 + ± 	b2(c c)2 (c a)4 	c2 (a  + 	+ (a  ± b)4 

4(a2  + b2  + c2)2  
a2  (b + c)2  + b2(c + a)2  + c2(a + b)2  + (a + b)4  + (b + c)4  + (c + a)4  

Consequently, it suffices to prove that the last quantity is greater than or equal 

to —
3

. This can be done by expanding everything, but here is an elegant proof 
5 

using the observation that 

a2 (b + c)2  + b2  (c + a)2  

= [(a + b)2  + (b + c)2  + (c + a)2] (a2  + b2  + c2) 

+2ab(a + b)2  + 2bc(b + c)2  + 2ca(c + a)2. 

Because 

c2 (a  ± b)2 ± (a  + 	+ 	(c a)4 

(a+b)2 + (b+c)2 +(c+a)2  < 4(a2  +b2+c2), 
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we observe that the desired inequality reduces to 

2ab(a + b)2  + 2bc(b + c)2  + 2ca(c + a)2  < 3(a2 b2 c2)2.  

But this inequality is not so difficult. Indeed, first we observe that 

2ab(a + b)2  + 2bc(b + c)2  + 2ca(c + a)2  

< 4ab(a2  + b2) + 4bc(b2  + c2) 4ca(c2  a2). 

Then, we also find that 

4ab(a2 b2)  < a4 + b4  + 6a2b2, 

since (a — b)4  > 0. Hence 

4ab(a2  + b2) + 4bc(b2 c2 
	
4ca(c2 + a2) < 2(a2 b2 c2)2 

+2(a2b2 + b2c2+ czaz) < _8 (az + b2 c2)2 
3 

and so the problem is solved. With minor changes, we can readily see that 
this solution even works without the assumption that a, b, c are positive. 

We end this discussion (which remains probably permanently open) with a 
series of more difficult problems, based on less obvious applications of T2 's 
lemma. 

Let al , a2, 	, an  > 0 such that al + a2 + • • • + an  = 1. Prove 
that: 

(aia2 + • • • + anal.) 	
an 

 a22  + a2 	ciT + al) 	n+1• 

[Gabriel Dospinescu] 



+"'+ 	an 
an  + — 

al 

( an  ) 2  

al 

108 	5. T2'S LEMMA 

Solution.  How can we get to aia2 + a2a3 + • • + anal? Probably from 

a 2 	2  1 	a2  
	+ + 

 an 

a2 a2a3 	anal 

after we use the lemma. So, let us try the following estimation: 

al 

- —

a2 	an =  a21 	a22  

a2 a3 	al 	aia2 a2a3 + • • + anal 

The new problem, proving that 

 

1 

aia2 + a2a3 + • • • + anal 

al 	a2 	 an 	n 	al a2 	an  
	+ 	+ + 	

+ al 
> 

n + 1 a2 
+

3 
+ • • • ± — ,-, 2 _i_ ,-, 	a21 

	

a2  + a9 	 al 

	

2 	,., 	,v3 1 w3 

seems even more difficult, but we will see that we have to make one more 
step in order to solve it. Again, we look at the right-hand side and we write 
al a2 an 
— + — + • • • + — as 

	

a2 a3 	al 

	

(—

al az 	an  

a2 a3 
+ — + • • • + —

al 
al az ,+ 
	

an  
— + — • • • + — 
a2 	a3 	al 

After applying T2's lemma, we find that 

al 	a2 
9 	 

a22 
	+ 

+ a2 a5 + 

(al) 2 	a2 2  

an 	a2 	a3 

a3 	al + 2 	 al + 	a2 + al al 	a2  
a2 	a3 

1' 
al 	 an 
— +

-2 C +...+—  
az a3 	al 

al 	a2 	an, • 
1 	 — 

a2 	a3 	al 

2  al 	an, 
We are left with an easy problem: if t = — + • • • + — , then  t 

	nt 
 

a2 	al 	1 + t 	n + 1' 
or t > n. But this follows immediately from the AM-GM inequality. 
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Example 9.] Prove that for any positive real numbers a, b, c the following 
inequality holds 

(a + b)2 	(b +  c)2 	(c + a)2  
c2  + ab 	a2  + be 	b2  + ca 

> 6. 

[Darij Grinberg, Peter Scholze] 

Solution.  We do not hide from you that things become really complicated 
here. However, let us try to use T2's lemma again, but of course not in a 
direct form, since that one is doomed. Trying to make the numerators as 
strong as possible, we may first try the choice (a + b)4. And so, we know that 
the left hand side is at least 

(E (a + b)2)2  
E (a + b)2(c2  + ab) • 

So, we should see whether the inequality 

(E (a + b)2) 2  > 6 E (a + b)2 (c2  + ab) 

holds. However, this is not easy, at least not without computations. With 
some courage, we can develop everything and reach the equivalent inequality 

2(a4 

▪  

b4 + c4) c4\  + ab(a2  + b2) + bc(b2  + c2) + ca(c2  + a2)+ 

2abc(a + b + c) > 6(a2 b2  + by + c2a2).  

Fortunately, this can be broken into pieces: because bc(b2  + c2) > 2b2c2, it is 
enough to prove that 

a4 

▪  

b4 	4 
C 	abc(a + b + c) > 2(a2b2 b2c2 c2a2).  

Now, if you know Heron's formula for the area of a triangle, 

2(a2b2  + b2c2  + c2a2) — (a4  + b4  + c4) 
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should ring a bell! It is actually equal to (a+ b+ c) (a+ b c)(b + c— a)(c+a— b). 
So, we are left with the classical inequality 

(a + b — c)(b + c a)(c + a — b) < abc. 

If one of a + b — c, b + c — a, c + a — b is negative, we are done. Otherwise, 
observe that 

a= (a + b c) + (c + a — b) > 2V(a + b c)(c + a — b). 

Multiplying this and two similar inequalities easily yields the conclusion. 

Do you like inequalities that can be solved with identities? Here is one which 
combines T2's lemma with a very strange identity. Do not worry, things like 
that do not appear too often. Fortunately... 

1111111111V Prove that if a, b, c, d > 0 satisfy 

abc+bcd+cda+dab = a+b+c+d, 

then 

\/a2  + 1 + \/b2  + 1  + Jc2  + 1  + jd2  + 1 
<a+b+c+d. 

2 	2 	V 2 	V 2 — 

[Gabriel Dospinescu] 

Solution.  The following solution is very difficult to find, but it is the only one 
that the authors have. The idea is to apply T2 's lemma to an identity which 
is almost impossible to find. We will prove that 

a2  + 1 b2  + 1 C2  + 1 d2  + 1 
	=a+b+c+d 

a+b b+c c+d d+ a 
and after that T2 's lemma will do the rest. 

To prove the identity, just observe that 

(a+b)(a+c)(a+d) = a2(a+b+c+d)+abc+bcd+cda+dab = (a2+1)(a+b+c+d). 

Use similar identities and add them up. 
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5.2 Problems for training 

1. Let a, b, c, d be positive real numbers with a+ b + c + d = 1. Prove that 

a2 	b2 	c2 	d2 	1 

a+b + b+c + c+d + d+a 
> 
— 2 

Ireland 1999 

2. Let a, b, c, be positive real numbers with a2  b2  c2  3abc. Prove that 

a 	 c 	9 
+ 	

> 

b2c2  c2a2 a2b2 — a+ b+c  

India 

3. Let xi, x2, 	, xn, y1, Y2, • • • , yn, be positive real numbers such that 

Xi + X2 + • • • ± Xn > X1Y1 X2Y2 ± • • • ± XnYn• 

Prove that 

Xi X2 	 Xn 
Xi ± X2 + • ' Xn <—+—+...+— . 

Y1 Y2 	Yn 

Romeo Ilie, Romania 1999 

4. For arbitrary positive real numbers a, b, c prove the inequality 

a 	b 	c 
	± 	+ 	 > 1. 
b + 2c c + 2a a + 2b — 

Czech-Slovak Competition 1999 

5. Prove that for all positive real numbers a, b, c satisfying a + b + c = 1, 
the following inequality holds 

a 	b 	c 	9 
	> 

1 + bc 1 + ca 1 + ab — 10 
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6. Prove that for any positive real numbers a, b, c, d satisfying ab + bc+ cd+ 
da = 1 the following inequality is true 

	

a3 	b3 	 c3 	d3 	1 
	+ 	+ 	+ 	> 
b+c+d c+d+a d+a+b a+b+c —  3.  

IMO 1990 Shortlist 

7. Prove that if the positive real numbers a, b, c satisfy abc = 1, then 

a 
b+c+1 c+a+1 a+b+1— 

>1. 
 

Vasile Cirtoaje, Gazeta Matematica 

8. Prove that for any positive real numbers a, b, c, 

a2  bc 
+ 
	+ 

C2  + ab 
	> a + b+c. 

b+c 	c+a 	a+b 

Cristinel Mortici, Gazeta Matematica 

9. Prove that for any nonnegative real numbers xi, x2, 	xn, 
Xi 	X2 	 xn  	 > 2. 

xn  + X2 Xi + X3 	xn-1 + Xi 

Tournament of the Towns 1982 

10. Prove that for any positive real numbers a, b, c the following inequality 
holds 

( a 2 

	

b 2 	2 c 	3 a2 +b2 ± C2 

	

+c) 	c+a,) 	a+b) 	4 ab+bc+ca.  

Gabriel Dospinescu 
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11. Prove that for any positive real numbers a, b, c, d, e satisfying abcde = 1, 

a+ abc 	b + bcd 	c + cde 
1 + ab + abcd 

+ 
1 + be + bcde 

+ 
1 + cd + cdea 

d + dea 	e + eab 	10 
+

1 + de + deab 
+ 

1 + ea + eabc — 3 • 

Waldemar Pompe, Crux Mathematicorum 

12. Let n > 4 an integer and let al, a2, 	, an  be positive real numbers such 
that aT + a2 + • • • + an2  = 1. Prove that 

al 	a2 	 an  

     e      	

4 

a2 +1
+

c 3 +1
+ 
 +a2+1 >  

 (alfdT + a2V,2 + • • • + anV(T)2. 

Mircea Becheanu, Bogdan Enescu, Romanian TST 2002 

13. Determine the best constant kn  such that for all positive real numbers 
al, a2, 	, an  satisfying aia2... an  = 1 the following inequality holds 

aia2 	a2a3 	 anal 

(a7 + a2)(4 + al) 	+ a3)(a3 + a2) 	+ ai)(a? + a2) 
< kn. 

Gabriel Dospinescu, Mircea Lascu 

14. Prove that for any positive real numbers a, b, c, 

(2a + b + c)2 	(2b + c+ a)2 	(2c+ a  + b)2  
2a2 + + 	2b2 (c 	(02 2e2 + (a + b)2 < 

8. 

Titu Andreescu and Zuming Feng, USAMO 2003 

15. Let n > 13 be a positive integer and suppose that the positive numbers 
al, a2, ..., an  satisfy the relations al ±a2+ • • • +an  = 1 and al +2a2+ • • • + 
nan  = 2. Prove that (a2—ai)V2+ (a3— a2)0+ • • .± (an 	< 0. 

Gabriel Dospinescu 
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6.1 Theory and examples 

You have already seen quite a few strategies and ideas, and you might say: 
"Enough with these tricks! When will we go to serious facts?" We will try to 
convince you that the following results are more than simple tools or tricks. 
They help to create a good base, which is absolutely indispensable for someone 
who enjoys mathematics, and moreover, they are the first steps to some really 
beautiful and difficult theorems or problems. And you must admit that the 
last problems discussed in the previous units are quite serious facts. It is worth 
mentioning that these strategies are not a panacea. This assertion is proved 
by the fact that every year problems that are based on well-known tricks prove 
to be very difficult in contests. 

We will "disappoint" you again in this unit by focusing on a very familiar 
theme: graphs without complete subgraphs. Why do we say familiar? Because 
there are hundreds of problems proposed in different mathematics competi- 
tions around the world and in professional journals that deal with this subject. 
And each such problem seems to add something. Before passing to the first 
problem, we will assume that the basic knowledge about graphs is known and 
we will denote by d(V) and C(V) the number, and the set of vertices adjacent 
to V, respectively. Also, we will say that a graph has a complete k—subgraph 
if there are k vertices any two of which are connected. For simplicity, we 
will say that G is k-free if it does not contain a complete k—subgraph. First 
we will discuss one famous classical result about k-free graphs, namely Tu- 
ran's theorem. Before that, though, we prove a useful lemma, also known as 
Zarankiewicz's lemma, which is the main step in the proof of Turan's theorem. 

If G is a k-free graph, then there exists a vertex having degree 
k — 

at most 	 
L 

k — 1 
2 n l . 

 

[Zarankiewicz] 



Also, 

> (1  +1
k — 1
k — 2  ni 

(j — 1)n. 
L  n c(V) 

i=1 
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Solution. Suppose not and take an arbitrary vertex V1. Then 

> [k 	2  

so there exists V2 E COTO. Moreover, 

IC(V1) n C(V2)II= d(Vi) d(V2) — IC(Vi)U C(V2))I 

> 2 (1 + [
k — 	

1n]/ —n > O. 

Pick a vertex V3 E C(Vi) n C(V2) A similar argument shows that 

ic(vi) n c(v2 ) n c(v3)1 > 3 (1+ 
Lk  
1k—  n

_I
I)  2n. 

— 12 

Repeating this argument, we find 

V4 E C(Vi) n C(V2) n C(V3) 

k-2 

Vk-1 E n c(4). 
i=i 

This can be proved easily by induction. Thus 

k-1 

n c(vi) (k — 1) (1+ [k 2n]) — (k — 2)n > 0, 
k — 1 

  

and, consequently, we can choose 

k-1 

Vk  c n c(vi). 
z=1. 

But it is clear that VI, V2, 	, Vk form a complete k graph, which contradicts 
the assumption that G is k-free. 
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We are now ready to prove Turan's theorem. 

The greatest number of edges of a k-free graph with n vertices 
is 

k — 2 n2  — r2  (
2
),

r 
k — 1 	2 +  

where r is the remainder left by n when divided to k — 1. 

[Turan] 

Solution. We will use induction on n. The first case is trivial, so let us assume 
the result true for all k-free graphs having n — 1 vertices. Let G be a k-free 
graph with n vertices. Using Zarankiewicz's lemma, we can find a vertex V 
such that 

d(V) < k  I i ni 

Because the subgraph determined by the other n — 1 vertices is clearly k-free, 
using the inductive hypothesis we find that G has at most 

	

k — 2 	k — 2 (n — 1)2  — r?  (r1) 
L k — 1 

+ 
k — 1 	2 	2 

edges, where ri = n — 1 (mod k — 1). 
Let n = q(k — 1) + r = qi(k — 1) + + 1. Then ri E {r — 1, r + k — 2} (this is 
because r — r1 1 (mod k — 1)) and it is easy to check that 

k — 2 
L k — 1 

ni + 
k — 2 (n — 1)2  — r? (r1\ k — 2 n2  — r2  (r) 
k — 1 	2 	 (2 ) = k — 1 	2 2 

The inductive step is proved. Now, it remains to construct a k-free graph 
k — 2 n 

— 1 

2  — r 	
2 

2  
with n vertices and  	+ (

r 

	

2 	k 	
) edges. This is not difficult. Just 

consider k — 1 classes of vertices, r of them having q + 1 elements and the rest 
q elements, where q(k — 1) + r = n and join the vertices situated in different 

	

k — 	2  2 	— 2  r 
groups. It is immediate that this graph is k-free, has  	+ 

( 
k — 1 n 

r  
2 	2) 
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edges and also the minimal degree of the vertices is L k k — 1 n] . This graph is 2  
 

called Turan's graph and is denoted by T(n, k). 
These two theorems generate numerous beautiful and difficult problems. For 
example, using these results yields a straightforward solution for the following 
Bulgarian problem. 

rExample 3.1 There are 2001 towns in a country, each of which is connected 
with at least 1600 towns by a direct bus line. Find the largest 
n for which it must be possible to find n towns, any two of 
which are connected by a direct bus line. 

Spring Mathematics Tournament 2001 

Solution.  Practically, the problem asks to find the greatest n such that any 
graph G with 2001 vertices and minimum degree at least 1600 is not n-free. 
But Zarankiewicz's lemma implies that if G is n-free, then at least one ver-

tex has degree at most 
[n — 2 

 2001 . So, we need the greatest n for which 
n — 1 

n — 2 
2001 < 1600. It is immediate to see that n = 5. Thus for n = 5 any 

Ln — 1 
such graph G is not n-free. It suffices to construct a graph with all degrees of 
the vertices at least 1600, 

is 

 which is 6-free. We will take of course T(2001, 6), 
[ 4 

whose minimal degree s —
5

2001 = 1600 and which is (as shown before) 6-

free. Thus, the answer is n = 5. 

Here is a beautiful application of Turan's theorem in combinatorial geometry. 

Example 4.J Consider 21 points on a circle. Show that at least 100 pairs   	
of points subtend an angle less than or equal to 120° at the 
center. 

Tournament of the Towns 1986 
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Solution.  In such problems, it is more important to choose the right graph 
than to apply the theorem, because as soon as the graph is appropriately 
chosen, the solution is more or less straightforward. Here we will consider 
the graph with vertices at the given points and we will connect two points if 
they subtend an angle less than or equal to 120° at the center. Therefore we 
need to prove that this graph has at least 100 edges. It seems that this is a 
reversed form of Turan's theorem, which maximizes the number of edges in a 
k-free graph. Yet, the reversed form of the reversed form is the natural one. 
Applying this principle, let us look at the "reversed" graph, the complementary 

1 ) 
one. We must show that it has at most ( 2 — 100 = 110 edges. But this is 

2 
immediate, since it is clear that this new graph does not have triangles and 

2  21 — 
4 1 

so, by Turan's theorem, it has at most 	 = 110 edges, and the problem 

is solved. 

At first glance, the following problem seems to have no connection with the 
previous examples, but, as we will immediately see, it is a simple consequence 
of Zarankiewicz's lemma. It is an adaptation of an USAMO 1978 problem. 
Anyway, this is trickier than the actual contest problem. 

Example 5. There are n delegates at a conference, each of them knowing 
at most k languages. Among any three delegates, at least 
two speak a common language. Find the least number n such 
that for any distribution of the languages satisfying the above 
properties, it is possible to find a language spoken by at least 
three delegates. 

 

Solution.  We will prove that n = 2k+3. First, we prove that if there are 2k+3 
delegates, then the conclusion of the problem holds. The condition "among 
any three of them there are at least two who can speak the same language" 
suggests taking the 3-free graph with vertices the persons and whose edges join 
persons that do not speak a common language. From Zarankiewicz's lemma, 

there exists a vertex whose degree is at most [-
2
] = k + 1. Thus, it is not 
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connected with at least k + 1 other vertices. Hence there exists a person A 
and k + 1 persons A1, A2, ... , Ak±i that can communicate with A. Because 
A speaks at most k languages, there are two persons among A1, A2, .. • lAk-Ei 

that speak with A in the same language. But that language is spoken by 
at least three delegates and we are done. It remains to prove now that we 
can create a situation in which there are 2k + 2 delegates, but no language is 
spoken by more than two delegates. We use again Turan's graph, by creating 
two groups of k + 1 delegates. Assign to each pair of persons in the first group 
a common language, so that the language associated is different for any two 
pairs in that group. Do the same for the second group, taking care that no 
language associated with a pair in the second group is identical to a language 
associated with a pair in the first group. Persons in different groups do not 
communicate. Then it is clear that among three persons, two will be in the 
same group and therefore will have a common language. Of course, any lan-
guage is spoken by at most two delegates. 

The following problem turned out to be an upset at one of the Romanian Team 
Selection Tests for 2004 IMO, being solved by only four contestants. The idea 
is even easier than in the previous problems, but this time we need a little 
observation that is not so obvious. 

Example 6. Let Ai, A2, ... , Aim  be different subsets of the set {1, 2, ... , n}. 

Suppose that the union of any 50 subsets has more than —
50

n 
51 

elements. Prove that among them there are three any two of 
which having common elements. 

 

[Gabriel Dospinescu] Romanian TST 2004 

Solution.  As the conclusion suggests, we should take a graph with vertices the 
subsets, connecting two subsets if they have common elements. Let us assume 
that this graph is 3-free. The main idea is not to use Zarankiewicz's lemma, 
but to find many vertices with small degrees. In fact, we will prove that there 
are at least 51 vertices all of them having degree at most 50. Suppose this is 
not the case, so there are at least 51 vertices whose degrees are greater than 
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51. Let us pick such a vertex A. It is connected with at least 51 vertices, so 
it must be adjacent to a vertex B whose degree is at least 51. Because A and 
B are each connected with at least 51 vertices, there is a vertex adjacent to 
both, so we have a triangle, contradicting our assumption. Therefore, we can 
find ,21,51 , all of them having degrees at most 50. Consequently, Ai, is 
disjoint from at least 50 subsets. Because the union of these fifty subsets has 

50 
more than —

50
n elements, we infer that IA,' < n — —

51
n = —

n
. In a similar 

51 	 51 
way, we obtain IA,

3 	51 
< —

n 
for all j E {1,2, 	, 51} and so 

50 

 

IA,, U Ai2  U • • • U Azsol < Ail  + • • • + Vii501 < 

which contradicts the hypothesis. 

We continue with an adaptation of a very nice and quite challenging problem 
from the American Mathematical Monthly. 

Example 7. Prove that the complement of any 3-free graph with n vertices 
and m edges has at least 

n(n — 1)(n  — 5)  2( 	n2 - n 2  

24 	+ n 	4 

triangles. 

[A.W Goodman] AMM 

Solution.  Believe it or not, the number of triangles from the complementary 
graph can be expressed in terms of the degrees of the vertices of the graph 
only. More precisely, if G is a 3—free graph, then the number of triangles from 
the complementary graph is 

() 1 
3  — 2  E d(x)(n — 1 — d(x)), 

xEX 
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where X is the set of vertices of G. Indeed, consider all triples (x, y, z) of 
vertices of G. We will count the triples that do not form a triangle in the 
complementary graph G. Indeed, consider the sum E d(x)(n — 1 — d(x)). It 

xEX 
counts twice every triple (x, y, z) in which x and y are connected, while z is 
not adjacent to any of x and y: once for x and once for y. But it also counts 
twice every triple (x, y, z) in which y is connected with both x and z: once for 

x and once for z. Therefore , 

2 
—
1 E d(x)(n —1— d(x)) is exactly the number of 

(n 	 24 	
+ 3) — E d(x)(n 	— 1 — d(x)) > n(n 1)(n — 5) 2 

xEX 
(m n

2 
 - n) 2 

4 

Because 1: d(x) = 2m, after a few computations the inequality reduces to 
xEx 

E d2(x) >  
	

(6.1) 
xEX 

But this is the Cauchy-Schwarz inequality combined with ExEx  d(x) = 2m. 
Finally, two chestnuts. The following problem is not directly related to our 
topic at first glance, but it gives a very beautiful proof of Turan's theorem: 

Example 8. Let G be a simple graph. To every vertex of G one assigns 
a nonnegative real number such that the sum of the numbers 
assigned to all vertices is 1. For any two vertices connected 
by an edge, compute the product of the numbers associated to 
these vertices. What is the maximal value of the sum of these 
products? 

xEX 
triples (x, y, z) that do not form a triangle in the complementary graph. (Here 
we have used the fact that G is 3-free.) Now, it is enough to prove that 
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Solution. The answer is not obvious at all, so let us start by making a few 
remarks. If the graph is complete of order n then the problem reduces to 
finding the maximum of E xix j  knowing that x1 + x2 + • • • + xn  = 1. 

1<i<j<n 
This is easy, since 

xix 
1<i<j<n 

i(i
n 

2 <  

2 \ 	L-di=1 	 ) 

The last inequality is just the Cauchy-Schwarz inequality and we have equality 
when all variables are n. Unfortunately, the problem is much more difficult in 
other cases, but at least we have an idea of a possible answer: indeed, it is easy 
now to find a lower bound for the maximum: if H is the complete subgraph 
with maximal number of vertices k, then by assigning these vertices k, and 
to all other vertices 0, we find that the desired maximum is at least 1(1 — 
We still have to solve the difficult part: showing that the desired maximum 
is at most 1(1 — 1). Let us proceed by induction on the number n of vertices 
of G. If n = 1 everything is clear, so assume the result true for all graphs 
with at most n — 1 vertices and take a graph G with n vertices, numbered 
1, 2, ..., n. Let A be a set of vectors with nonnegative coordinates and whose 
components add up to 1 and E the set of edges of G. Because the function 
f (xi , x2, ...,xn) = E xi x, is continuous on the compact set A, it attains its 

(imEE 
maximum in a point (x1, x2, ..., xn). Denote by f (G) the maximum value of 
this function on A. If at least one of the xi  is zero, then f (G) = f (G1) where 
Gi is the graph obtained by erasing vertex i and all edges that are incident 
to this vertex. It suffices to apply the induction hypothesis to G1 (clearly, 
the maximal complete subgraph of Gi has at most as many vertices as the 
maximal complete subgraph of G ). So, suppose that all xi are positive. We 
may assume that G is not complete, since this case has already been discussed. 
So, let us assume for example that vertices 1 and 2 are not connected. Choose 
any number 0 < a < xi and assign to vertices 1, 2, ..., n of G the numbers 
xi — a, x2  + a, x3, ..., xn. By maximality of f (G), we must have 

E xi < xi, 

i,c2  
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where C1 is the set of vertices that are adjacent to vertex 2 and not adjacent 
to vertex 1 (the definition of C2 being clear). By symmetry, we deduce that 
we must actually have 

EE xi, 
iEci 	iEC2 

which shows that f 	..., xn ) = f (0, x1 + x2, x3, , xii). Hence we can ap- 
ply the previous case and the problem is solved. Observe that the inequality 
in Turan's theorem follows by taking all xi  to be 

The final problem is a very beautiful result on the number of complete sub-
graphs of a graph: 

[Example 9.] What is the maximal number of complete maximal subgraphs 
that a graph on n vertices can have? 

[Leo Moser, J. W. Moon] 

Solution. Let us suppose that n > 5, the other cases being easy to check. 
Let f (n) be the desired number and G a graph for which this maximum is 
attained. Clearly, this graph is not complete, so there are two vertices x and 
y not connected by an edge. In order to simplify the solution, we need several 
notations. Let V(x) be the set of vertices that are adjacent to x, G(x) the 
subgraph obtained by erasing vertex x and G(x, y) the graph obtained by 
erasing all edges incident to x and replacing them with edges from x to any 
vertex in V(y) . Finally, let a(x) be the number of complete subgraphs with 
vertices in V(x), maximal with respect to G(x) and let c(x) be the number of 
complete maximal subgraphs of G that contain x. 

Now, we pass to serious things: by erasing edges incident to x, exactly c(x) —
a(x) complete maximal subgraphs vanish, and by joining x with all vertices 
of V(y), exactly c(y) complete maximal subgraphs appear. So, if c(G) is the 
number of complete maximal subgraphs in the graph G, then we have the 
relation 

c(G(x, y)) =- c(G) + c(y) — c(x) + a(x). 
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By symmetry, we can assume that c(y) > c(x). By maximality of c(G), we 
must have c(G (x , y)) < c(G), which is the same as c(y) = c(x) and a(x) = 0. 
Therefore G(x, y) also has f (n) complete maximal subgraphs. In the same 
way, we deduce that c(G (x , y)) = c(G(y,  , x)) = c(G). Now take a vertex x and 
let xi, x2, xk be the vertices not adjacent to x. By performing the previous 
operations, we change G into Gi = G(xi, x), then into C2 = Gi(X2, X) and 
so on until Gk = Gk_i(Xk, X), by conserving the number f (n) of maximal 
complete subgraphs. Observe now that Gk has the property that x, xi, ..., xk  
are not joined by edges, yet V(x1) = V(x2) = • • = V(xk) = V(x). Now, we 
know what to do: if V(x) is void, we stop the process. Otherwise, consider a 
vertex of V(x) and apply the previous transformation. In the end, we obtain 
a complete multipartite graph G' whose vertices can be partitioned into r 
classes with ni, n2, vertices, two vertices being connected by an edge if 
and only if they do not belong to the same class. Because GI has f (n) maximal 
complete subgraphs, we deduce that 

f (n) = max 	max 	nin2.••Thr• 
r ni +7/2±.••+n,-=n 

(6.2) 

(6.2) can be easily computed. Indeed, let (ni, n2, ...,nr) the r-tuple for which 
the maximum is attained. If one of these numbers is at least equal to 4, let 
us say ni, we consider (2, ni — 2, n3, ...,nr ) for which the product of the com-
ponents is at least the desired maximum. So none of the ni  exceed 3. Even 
more, since 2 • 2 • 2 < 3 • 3, there are at most two numbers equal to 2 among 
ni, n2, ..., nr . This shows that f (n) = 33 if n is a multiple of 3, f (n) = 4 

n-4 
 

if n — 1 is a multiple of 3 and f (n) = 2 3Y otherwise. 
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6.2 Problems for training 

1. In a country there are 1998 cities. At least two out of each three cities 
are not directly connected. What is the greatest possible number of 
direct flights? 

Japan 1998 

2 
2. Let xi, x2, . , xn, be real numbers. Prove that there are at most —

n 
4 

pairs (i, j) E {1, 2, ... , n}2  such that 1 < Ixi — x3 I < 2. 

MOSP 

n2  
3. Prove that if n points lie on a unit circle, then at most —

3 
segments 

connecting them have length greater than .\/. 

Poland 1997 

4. Let A be a subset of the set S = {1, 2, ... , 1000000} having exactly 101 
elements. Prove that there exist t1, t2, 	, till() E S such that the sets 
A3  = {x t3  Ix E A} are pairwise disjoint. 

IMO 2003 

5. Prove that a graph with n vertices and k edges has at least —
k

(4k — n2) 
3n 

triangles. 

APMO 1989 

6. We are given 5n points in a plane and we connect some of them so that 
10n2 +1 segments are drawn. We color these segments in 2 colors. Prove 
that we can find a monochromatic triangle. 
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7. There are 1999 people participating in an exhibition. Out of any 50 
people, at least two do not know each other. Prove that we can find at 
least 41 people who each know at most 1958 other people. 

Taiwan 1999 

8. There are n aborigines on an island. Any two of them are either friends 
or enemies. One day they receive an order saying that all citizens should 
make and wear a necklace with zero or more stones so that i) for any 
pair of friends there exists a color such that each of the two persons has 
a stone of that color; ii) for any pair of enemies there does not exist such 
a color. What is the least number of colors of stones required? 

Belarus 2001 

9. Let G be a graph with no triangles and such that no point is adjacent 
to all other vertices. Also, if A and B are not joined by an edge, then 
there exists a vertex C such that AC and BC are edges. Prove that all 
vertices have the same degree. 

APMO 1990 

10. Let G be a regular graph of degree k (every vertex is adjacent to k other 
vertices) with n vertices. Prove that G and its complementary graph 

n(n-1)(n-2) 	nk(n-k-1) 	• contain together at least     triangles. 
6 	 2 

11. G is a finite graph such that it does not contain a complete subgraph 
with 5 vertices, and any two triangles have at least point in common. 
Show that there is a set of at most two points whose removal leaves no 
triangles. 

IMO 2001 Shortlist 
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12. Prove that for every n one can construct a graph with no triangles and 
whose chromatic number is at least n. 

13. A graph with n2 +1 edges and 2n vertices is given. Prove that it contains 
two triangles sharing a common edge. 

Chinese TST 1987 

14. What is the least number of edges in a connected n-vertex graph such 
that any edge belongs to a triangle? 

Paul Erd6s, AMM E 3255 

15. A graph with n vertices and k edges has no triangles. Prove that we 
can choose a vertex such that the subgraph induced by the remaining 

vertices has at most k (1 – 
4k 
—ri2 ) edges. 

USAMO 1995 

16. Let n 1 (mod 3) be an integer greater than 3 and consider n2  points 
in the plane. Find the least number of segments connecting pairs of 
these points such that no matter how we choose n points there exist four 
among them any two of which are connected by a line segment. 

Emil Kolev, Bulgaria 2002 
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7.1 Theory and examples 

When reading the title, you will perhaps expect a difficult unit, reflecting the 
complexity of combinatorics. But, this was not our intention. We just wanted 
to discuss some combinatorial problems that can be solved elegantly by using 
complex numbers. At this moment, the reader will probably say that we are 
crazy, but we will support our idea and prove that complex numbers can play 
a significant role in solving counting problems, and also in problems related 
to tilings. They also have numerous applications in combinatorial number 
theory, so our purpose is to illustrate a little bit from each of these situations. 
After that, you will surely have the pleasure of solving the proposed problems 
using this technique. To avoid repetition, we will present in the beginning of 
the discussion a useful result 

Lemma 7.1. If p is a prime number and ao, al, ... , ar_i are rational numbers 
satisfying 

ao + aie + a26.2  + • • • + ap_iEP 1  = 0, 

where 
27r 2 w 

E = COS —
p 

+ . sin —
p 

=e P 

then ao = al = • • • = ap-l• 

Proof. We will just sketch the proof, which is not difficult. It is enough to 
observe that the polynomials ao+aiX+a2X2 +• • • +ap_iXP-1  and 1+X +X2+ 
• • • + XP-1  are not relatively prime-because they share a common root-and 
since 1+X + X2  + • • • + XP-1  is irreducible over Q (you can find a proof in the 
chapter concerning the irreducibility of polynomials), 1+ X + X 2  + • • • + XP-1  
must divide ao + a1X + a2X2  + • • • + ap_iXP-1, which can only happen if 
ao = al  = • • • = ap_i. Therefore, the lemma is proved and it is time to solve 
some nice problems. ❑ 

Note, in the following examples, m(A) will denote the sum of the elements of 
the set A. By convention m(0) = 0. 
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The first example is an adaptation from a problem given in the Romanian 
Contest "Traian Lalescu". Of course, there is a solution using recursive se-
quences, but it is by far less elegant than the following one. 

Example lid  How many n-digit numbers, all of whose digits are 1, 3, 4, 6, 
7, or 9 have the digit sum a multiple of 7? 

Solution.  Let C4k)  be the number of n-digit numbers, all of whose digits are 
1, 3, 4, 6, 7, 9 and whose digit sum is congruent to k modulo 7. It is clear that 

6 
X--"` ,(k) ,k 

c E
xl-Fx2±—±xn 

k=0 	 ,x2 ,•• •,x nE{1,3,4,6,7 ,9} 

= (6  + E.3 e4 e6 + 67 + 

where E = cos 
27 
— + i sin 

27r  
—. Observing that 1 + E 62  + • • • + E6  = 0 and 

7 	7 
e9  = E2  helps us bring (E e3 E4 + Es + E7 69 )n to the simpler form (–E5)n. 
Let us assume, for example, that n is divisible by 7 (the other cases can be 
discussed similarly). Then 

6 

Ea(k)Ek _ (_1)n 

k=0 

= • • • = aV. Let q and from the lemma we infer that 

be the common value. Then 7q = 

because exactly 6n  numbers have n 

case we have aV = (-1)n  + 

n 1, 2, 3, 4, 5, 6 (mod 7). 

– ( 
7 

, 3, 4, 6, 7, 9. In this 

1)n  We leave you with the other cases: 

a(0) 	( 1)n 	41) 

6 
a )  – (-1)71  = 611  – (-1)n - this is 

k=0 
digits, all equal to 1 

Following this trick, here is a slightly more difficult problem, which appeared 
on the Balkan Olympiad Shortlist in 2005, and which was used for the selection 
of the Romanian IMO 2005 team: 
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Example 2. Let (an)n>1 be a sequence of distinct positive integers such 
that an  < 4.999n for all n. Prove that there are infinitely 
many n for which the sum of digits of an  is not a multiple of 
5. Does the result remain true if the condition is relaxed to 
an  < 5n for all n? 

 

[Gabriel Dospinescu] 

Solution. Let s(x) be the sum of digits of x, and suppose that for all n > M 
we have 5Is(an). Let n be such that [1r99-91] > M + 3 and let A be the set of 
the first 10n nonnegative integers. The numbers ak with 1 < k < [ are 1279 9-91.  
in A because 1 < ak < 4.999k < 10n — 1 for these numbers k. It follows that 
A contains at least [14r99-91] M numbers with digit sum divisible by 5. Now 
fix a number 2 < i < n and observe that if x j  is the number of elements of A 
with i digits and having digit sum congruent to j mod 5, then 

6aid-a2+•••+a, = Xo XiE X2E
2 
 X36

3  + X4E4 = 
0<a2,...,ai <9 

1<ai <9 

(6  + 62 + 	+ 69)(1 + + 	+ 69)i-1 = 0. 

Using the lemma, and taking into account that x0 + x1 + • • • + x4 = 9 • 102-1, 

E  10;  we deduce that there are at most 1 + 	9 	= 2 • 10n-1  — 1 elements of A 
i=2 

with the digit sum a multiple of 5. Thus [1,r99-91] M < 2 • 10n-1  — 1 for all 
sufficiently large n, which is certainly impossible. 

For the second part of the problem, the answer is negative. Indeed, consider 
the sequence starting with 1 and containing the positive integers (in increasing 
order) whose digit sum is divisible by 5. Let us prove that an  < 5n for all n. 
Indeed, this is clear for n = 1, 2, 3 because al = 1, a2 = 5, a3 = 14. The crucial 
observation is that clearly among any 10 consecutive positive integers, exactly 
two are terms of the sequence. Thus a2n  < 10n and a2n_1 = a2n  —5 < 5(2n-1). 
This proves that for an  < 5n the statement is no longer true. 



136 	7. COMPLEX COMBINATORICS 

The same simple, but tricky, idea can offer probably the most beautiful solu-
tion for the difficult IMO 1995 problem 6. It is worth mentioning that Nikolai 
Nikolov won a special prize for the following magnificent solution. 

Let p > 2 be a prime number and let A = {1, 2, ... , 2p}. Find 
the number of subsets of A each having p elements and whose 
sum is divisible by p. 

IMO 1995 

Solution.  Consider E = cos —27r + i sin —27r and let x j  be the number of subsets 
p 	p 

X of A such that IXI = p and m(X) j (mod p). Then it is not difficult to 
see that 

p-1 

E xi  Em(B) 

 i=0 1<c,<c2<•••<cp<2p 
Eci±c2±...-1-cp 

But 
	

EC1±C2+•••+CP is precisely the coefficient of XP in the poly- 
1<ci<c2<•••<cp<2p 

nomial (X + e)(X + E2) 	(x- 6.213\ ) Because 

XP - 1 = (x -1)(x - 	(x - EP-1), 

we easily find that 

(X + E)(X + E2)... (X + E2P) = (XP  + 1)2. 

Thus E xi  = 2, and the lemma implies xo - 2 = xi = • • • = xp-i. 
p-1 

Since 
J=0 

there are 
(2P" 

 subsetswith p elements, it follows that 

2p 
xo ± xi ± • • • + xp—i = ( p ) 
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Therefore 
xo 2  + 

P  

1 (O

P  )

) 2) , 

and we are done. 

The following problem deals with a little more general case, even though the 
restriction imposed on the cardinality is no longer maintained. 

Let f (n) be the number of subsets of 1, 2, 3, ..., n whose ele-
ments sum to 0 (mod n). The empty set is included, having 
the element sum equal to zero. Prove that 

f(n) = -
n 

• E co(d)2. 
din 

d odd 

Solution. Let 

g(X) =n(1 + X') = E ak Xk  
i=1 	 k>o 

t7r 

and let E 	e2  . It is clear that f(n) = E din. On the other hand, the 
i>o 

last sum can easily be computed in terms of g(E3). Indeed, one can verify the 
identity 

n 
—• 

4–s 
• 	g(E3)= Ea 

Now, let us compute g(E3 ). If d = gcd(j n) (that is, E is a primitive d-th root  
of unity), then 

xd — 1 = (x — E3)(x — E23)... (x — Ed3) 

and so 

j>0 

(1+ 6-3 )(1+623)— (1+6'13 ) =2 
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if d is odd and 0 otherwise. This shows that g (E3  ) = 2i if d is odd and 0 
otherwise. But there are exactly co(d) values of j for which E3  is a primitive 
d—th root of unity, so 

1 	 1 

n
— • E g (E3 ) = —

n 
• E yo (d)2  . 

 . 
3=1 	 din 

d odd 

With a somewhat different but closely related idea we can solve the following 
nice problem. 

Example 5.1 Let n > 1 be an integer and let al, a2, 	, am  be positive inte- 
gers. Denote by f (k) the number of m-tuples (ci , c2, . , cm) 
such that 1 < ci  < ai for all i and c1 + c2 + • • + cm  k 
(mod n). Prove that f (0) = f (1) = • • • = f (n — 1) if and only 
if there exists an index i E {1, 2, ... , m} such that nlai. 

[Reid Barton] Rookie Contest 1999 

Solution. Observe that 

n-1 

E f(k)Ek = E scl±c2±.„±cm = 	 E2 	Ecti) 

k=-0 	1<ci<a, 	 i=1 

for any complex number e such that en—l +en-2+ • • • +6+1 = 0. Hence one im-
plication of the problem is already verified, since if f (0) = f (1) = • • • = f (n-1) 
then we can find i E {1, 2, ... , m} such that 6+0+. • • ±Ea2  = 0 (we have chosen 
here a primitive root e of unity). We infer that Ea' = 1 and so niai. Now, sup-
pose there exists an index i E {1, 2, ... , m} such that nlai. Then for any zero E 

n-1 	 n-1 	 n-1 

of the polynomial E Xk we have E f (k)ek  = 0 and so the polynomial E Xk 

k=0 	 k=0 	 k=0 
n-1 	 n-1 

divides 	f (k)X k  . This is because E Xk has only simple roots. By a simple 
k=0 	 k=0 
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degree consideration, this is possible only if f (0) = f (1) = • • = f (n — 1). 

The enthusiasm generated by the above solutions might be inhibited by the 
following problem, where we additionally need several tricky manipulations. 

Example 6. Let p > 2 be a prime number and let m and n be multiples of p, 
with n odd. For any function f : {1, 2, 	, m} —> {1, 2, 	, n} 

satisfying E f (k) 0 (mod p), consider the product 11 f (k). 

	

k=1 	 k=1 

Prove that the sum of these products is divisible by ( 
P 
—
n 

ni  

[Gabriel Dospinescu] 

	

27r 
	i 
	27r 

Solution.  Let E = cos — + ?, sin — and let xk be the sum of fl f (k) over all 

	

p 	p 	 k=1 
T17, 

	

functions f : {1,2, . , m} 	{1,2, . . , n} such that E f (i) 	k (mod p). It 
i=1 

is clear that 

13_ 1  

Exk Ek = 
k-=0 	 ,C2 7 • • • ,Cra 

c]. ±c2 +•••+cai C C2 . . CrnE 

= (E ± 2E2  ± • • • ± nEn)m  

Recall the identity 

, 
1 + 2x + 3x2  + • • • + nxn  — 	  

nxn+1  — (n + 1)xn + 1 

(X — 1)2  

Plugging e in the previous identity, we find that 

nEn+2 (n  i)En+1 E 
E 2E2  • ••• TtEn  =  	

ne 

(e — 1)2 	 E — 1 



WTI 

(E — 1)7n 
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Consequently, 
p-1 

E xkEk = 
k=0 

On the other hand, it is not difficult to justify that 

Ep—i Ep-2±•••±E±1=0<=> 

— 

	(E13-2 
± 2E13-3  + • • • ± (p — 2)E p — 1). 

Considering 

(XP-2 +2XP-3 + • • • + (p — 2)X +p — 1)m = b0  + b1 X + • • • + bm(p_2).X17-(p-2), 

we have 
nm  n)

m 
(co + ciE + • • • + cp_iEp-1), 

— 

where 
ck = E 

(mod p) 

Setting r = ( --
n)m

, we deduce that 
p 

xo — rc0 + (xi — rCi)E ± • • • + (Xp-1 rCp-1)EP 1  = 0. 

From the lemma, it follows that x0 — rc0 = xi — rci = • • • = xp—i — rcp—i = 
k. Because clearly co, ,cp_i  are integers, it remains to prove that rik. 
Because 

pk = xo + xi + • • + xp—i — r(co + + • • • + cp-1.) 

= (1 + 2 + • • • + n)m — r(bo + bi + • • • + bm(p-2)) 

(

n(n+l)r  

) 	

r  p(p 

 2 

—  1))771  
2 

it is clear that rlk. Here we have used the condition

)

s in the hypothesis. The 
problem is solved. 

1 

E —1 
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It is now time to leave these kinds of problems and to talk a little bit about 
some nice applications of complex numbers in tilings. Before presenting some 
examples, let us make some conventions: consider a rectangular table with 
edges parallel to two fixed (orthogonal) lines Ox and Oy. An a x b rectangle 
is a figure consisting of ab unit squares, with edges parallel to Ox and Oy and 
such that the edge parallel to Ox has length a and the one parallel to Oy has 
length b. For instance, the rectangle with vertices (0,0), (2,0), (2, 1), (0,1) is a 
2 x 1 rectangle, while the rectangle with vertices (0,0), (1,0), (1, 2), (0,2) is a 
1 x 2 rectangle. Now, the idea is to put a complex number in each square of a 
table and then to reformulate the hypothesis and the conclusion of a particular 
tiling problem in terms of complex numbers. We will see how this technique 
works better by solving a few actual problems. First, some easy examples. 

Example 7. Consider a rectangle that can be tiled by a finite combination 
of 1 x m and n x 1 rectangles, where m, n are positive integers. 
Prove that it is possible to tile this rectangle using only 1 x in 

rectangles or only n x 1 rectangles. 

 

[Gabriel Carroll BMC Contest 2000 

Solution.  Let the dimensions of the initial rectangle be a x b, for the positive 
integers a and b. Now let us partition the rectangle into 1 x 1 squares and 
denote these squares by 

(1,1), (1,2),..., (1, b),... , (a, 1), (a, 2), ... , (a, b). 

Next, put the number Em in the square labeled (x, y), where 

27r27r 	27r 	27r 
el  = cos — + sin — , E2 = cos — . sin —. 

71 

The main observation is that the sum of the numbers in any 1 x m or n x 1 
rectangle is 0. This is immediate, but the consequence of this simple observa- 
tion is really surprising. Indeed, it follows that the sum of the numbers in all 
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the squares is 0, and so 

0 = ,x ,y 
'1'2 

1<x<a 
1<y<6 

i=1 j=1 

a 

Hence at least one of the numbers 
i=1 

El and 	e2 is 0. But this means that 
i-1 

70 or ml b. In either case, the conclusion of the problem follows. 

The idea in the previous problem is quite useful, helping many tiling problems 
become straightforward. Here is one more example: 

1
r Example f.1 Can we tile a 13 x 13 table from which we remove the central 
`--- unit square using only 1 x 4 or 4 x 1 rectangles? 

Baltic Contest 1998 

Solution. Suppose such a tiling is possible, and label the squares of the table 
as in the previous problem. Next, associate to square (k, j) the number ik+23 . 
Clearly, the sum of the numbers from each 1 x 4 or 4 x 1 rectangle is 0. 
Therefore the sum of all labels is equal to the number corresponding to the 
central unit square. Hence 

2
21 	(i 	

413 
i2 	il3)(i2 	i4 	i26)   i2 

i26
•3 

	 = , 
i -1 	i2 

which clearly cannot hold. Thus the assumption we made is wrong, and such 
a tiling is not possible. 

The example we are going to discuss now is based on the same idea, and here 
complex numbers are even more involved. 
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[-Example 9.1 On an 8 x 9 table we place 3 x 1 rectangles and "broken" 
1 x 3 rectangles, obtained by removing their central unit square. 
The rectangles and the "broken" rectangles do not overlap and 
cannot be rotated. Prove that there exists a set S consisting 
of 18 squares of the table such that if 70 unit squares of the 
table are covered, then the remaining two belong to S. 

[Gabriel Dospinescu] 

Solution.  Again, we label the squares of the table (1,1), (1, 2), 	, (8, 9) by 
starting from the upper left corner. In the square labeled (k, j) we will place 
the number i3  • Ek , where i2  = -1 and E2  + E +1 = 0. The sum of the numbers 
from any rectangle or "broken" rectangle is 0. The sum of all numbers is 

	

8 	\ 	9 

( Ek) ( ij) = k=1. 	j=1 

Let us suppose that (al, b1) and (a2, b2) are the only uncovered squares. Then 
ibi ±ibzea2 = 	Let z1 = 	and z2 = ib2-102 . We have Iz1 = 1z21 = 

1 and z1  + z2  = -1. It follows that —
1 

+ 1  = -1 and so 4 = 4 = 1. This 

	

Z1 	Z2 
in turn implies the equalities i3(b1-1) = i3(b2-1) = 1, from which we conclude 
that b1 b2 1 (mod 4). Therefore the relation z1 + z2 = -1 becomes 
Ea' Ea2  = -1, which is possible if and only if the remainders of al, a2 when 
divided by 3 are 1 and 2. Thus we can choose S to be the set of squares that 
lie at the intersection of the lines 1, 2, 4, 5, 7, 8 with the columns 1, 5, 9. 
From the above argument, if two squares remain uncovered, then they belong 
to S. The conclusion is immediate. 

LExample 10.] Let m and n be integers greater than 1 and let ai, a2, , a, 

be integers, none of which is divisible by ma-1. Prove that we 
can find integers el , e2, , en, not all zero, such that led < m 
for all i and mnleiai + e2a2 + • • • + enan• 

IMO 2002 Shortlist 



f (x) = H E x3,4) — 11  
n (n-1 

1 — xma/  

1 — xai 
i=1 j=0 	 i=1 
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Solution.  Look at the numbers j ezaz , where 0 5_ 	< m — 1 for all i. 

Observe that we have a collection of mn numbers (denote this collection by 
A). We can assume that this is a complete system of residues modulo mn 

(otherwise, the conclusion is immediate). Now, consider f (x) = E xa. Then 
aEA 

Now take e = 	. Since the mn numbers we previously considered form a 
complete system of residues modulo mn, we must have f (e) = 0. Therefore 

(the hypothesis ensures that Ea/ 1) H(1 — Erna') = 0. But this clearly con- 
i=i 

tradicts the fact that none of the numbers a1, a2, 	, an  is a multiple of mn-1. 

Let p be a prime number and let fk(xl, x2, •••, xn) = ak1X1 

ak2x2 + • • • + aknxn  be linear forms with integer coefficients 
for k = 1,2, ...,pn. Suppose that for all systems of integers 
(xi, x2, •••7 xn), not all divisible by p, 

fl(Xl, X2, ..., Xn), f2(X1, X2, .••, Xa), •••, fpn (Xl, X2, •••, Xn) 

represent every remainder mod p exactly pn-1  times. Prove 
that {(aki  , ak2, 	akn) I k = 1, 2, ..., pn} is equal to 

i2) •••, I 21,•••, in  = 0,1,...,p 	1}. 

Miklos Schweitzer Competition 

Solution.  Let e = e P and observe that the hypothesis implies the identities 

pn 
= 0  

k=, 
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for all xi, 	x„, not all multiples of p. Now fix ii, i2, 	in. By multiplying 
both sides of the equality by E—"x1—i2x2 	insn we deduce that 

EE.(aki_ii).,+•..±(akm_in)xn = 0. 
k=i 

By making the sum of all these equalities corresponding to all (xi, x2, •••, xn) E 
{0, 1, ...,p-1}71  and by taking into account that for (xi, x2, ••., xn) = (0, 0, ..., 0) 
the left-hand side equals pn, we deduce that 

pn n p-1 
pn = 	II ( >; Ex 

	
(7.1) 

k=1 j=1 xj=0 

Because the sum in the right-hand side of (7.1) is not zero, at least one term 
is not zero. Observe however that every term of the sum equals 0 or pn. 

Therefore there exists an unique k such that ak3  = i3  (mod p) for all j. This 
is just another way of saying that 

{(aki, • • ,akm)lk = 1, 	= 

	

\-1, • • • 	• in  = 0,... 	— 1}. 

The following problem, communicated by Vesselin Dimitrov, is a very special 
one. It concerns a concept introduced by Erdos in a paper dating back to 
1952: the covering systems of congruences. More precisely, the family of 

ordered pairs (ai, di), (a2, d2), • • • , (ak, dk), where 1 < d1 < d2 < • • • < dk 
is called a covering set of congruences if x a, (mod c12) is solvable for any 
integer x. Erdos immediately realized that this new concept can be a source 
of difficult questions, and that became source of intensive research. Ethos 
conjectured that there exists no covering set of congruences in which all the 
moduli are odd. This remains open. On the other hand, Erdos used covering 
sets (more precisely, the set (0, 2), (0, 3), (1, 4), (3, 8), (7, 12), (23, 24)) to prove 
the existence of an infinite arithmetic progression of odd positive integers, 
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none of which is of the form 2n p. Schinzel also studied these systems in his 
researches concerning the irreducibility of polynomials. Conjectured by Erd6s, 
the example that comes next was proved by Sun, and what is really strange 
is that the solution is absolutely elementary. We thank Vesselin Dimitrov for 
pointing out this jewel of number theory. 

[Example 12.] Let F be a family of k infinite arithmetic progressions ch 

diZ, where 1 < d1 < • < dk. Assume that F covers 2k  
consecutive integers (that is, there exists an integer x such 
that every number in the sequence x, x 1,...,x + 2k — 1 
belongs to at least one member of the family F). Then F is 
a covering system of congruences. 

[Erdos-Sun] 

Solution. The magical idea is to rewrite the condition that a number belongs 
to a union of arithmetic progressions in a more algebraic way. For instance, 
the fact that x + t belongs to the union of members of F can be written in the 
form 

H  (1  _ e  24' x t — ai 	0.  

1<j<k 

Now, all we have to do is to develop this product and observe that the same 
relation can be expressed in the form 

Ea/ • e(x+t),(3/ = 0, 	 (7.2) 
/cS 

where S = {1, 2, 	, k} (including the void set, in case of which the term is 
0), cer and Oi depending only on the cover itself. Indeed, this is clear, because 

ri[ (1 	e  (x+t—ai) )  
— 	 (_1)11] e-27:1•Eier 

	

d
3 • e

2i7r•E 	(x-1-t) 

	

3 	dj 

1<j<k 
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If we manage to prove that the same relation (7.2) holds for any integer y 
instead of x, we are done, since it would follow that any integer belongs 
to at least one member of F. If we consider zi = e01 , then we know that 

t+x El  aizi  = — 0 for all 0 < t < 2k  — 1. Define ur, = E./  ceiz7 and observe that 
un  satisfies a linearly recurrent relation of order 2k, the coefficient of un  being 
nonzero. Indeed, consider the polynomial rt, (X — zI), which has degree 2k 
and nonzero free term (because all zi are nonzero), and write it in the form 
X2k  + A2k_1X2k-1  + • • • + AiX + Ao. Then we know that 

2k A 	2k -1 + 	 + • • + Ao = O. 

By multiplying this relation by ai • zy (we allow here negative exponents as 
well) and by adding up these relations, we obtain a recurrence relation 

un+2k + A2k_iun±2k_ i  + • " + Ao = 0. 

And now... we are done: from the hypothesis, 2k  consecutive terms of this 
sequence vanish. Since the sequence satisfies a recurrence relation of order 2k  
with nonzero free term, it follows by a trivial induction that all terms are zero. 
This finishes the proof. 
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7.2 Problems for training 

1. Can we tile a 9 x 9 table from which we remove the central unit square 
using only 1 x 4 or 4 x 1 rectangles? 

2. Three persons A, B, C play the following game: a subset with k elements 
of the set {1, 2, ... ,1986} is selected randomly, all selections having the 
same probability. The winner is A, B, or C, according to whether the 
sum of the elements of the selected subset is congruent to 0, 1, or 2 
modulo 3. Find all values of k for which A, B, C have equal chances of 
winning. 

IMO 1987 Shortlist 

3. We roll a regular die it, times. What is the probability that the sum of 
the numbers shown is a multiple of 5? 

IMC 1999 

4. Let ak, bk, ck be integers, k = 1, 2, ..., n and let f (x) be the number of 
ordered triples (A, B, C) of subsets (not necessarily nonempty) of the set 
S = {1, 2, ... , n} whose union is S and for which 

E ai + E bi + 	3 (mod x). 
iEs \A 	iEs \B 	ies\c 

Suppose that f (0) = f (1) = f(2). Prove that there exists i E S such 
that 3 I az  ± bi 

Gabriel Dospinescu 

5. How many 100-element subsets of the set {1, 2, ... , 2000} have the sum 
of their elements a multiple of 5? 

Qihong Xie 
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6. There are 2000 white balls in a box. There is also an unlimited supply 
of white, green, and red balls, initially outside the box. At each step, 
we can replace two balls in the box by one or two balls as follows: two 
whites or two reds by a green; two greens by a white and a red; a white 
and a green by a red or a green; and a red by a white. 

a) After a finite number of steps, there are exactly three balls in the box. 
Prove that at least one of them is green. 

b) Is it possible that after a finite number of steps there is only one ball 
in the box? 

Bulgaria 2000 

7. A 7 x 7 table is tiled by sixteen 1 x 3 rectangles such that only one square 
remains uncovered. What are the possible positions of this square? 

Tournament of the Towns 1984 

8. Let k be an integer greater than 2. For which odd positive integers n 
can we tile a n x n table by 1 x k or k x 1 rectangles such that only the 
central unit square is uncovered? 

Gabriel Dospinescu 

9. Let n > 2 be an integer. At each point (i, j) having integer coordinates 
we write the number i + j (mod n). Find all pairs (a, b) of positive 
integers such that any residue modulo n appears the same number of 
times on the sides of the rectangle with vertices (0, 0), (a, 0), (a, b) , (0, b) 
and also any residue modulo 71 appears the same number of times in the 
interior of this rectangle. 

Bulgaria 2001 
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10. Let 	be the family of subsets of the set A = {1, 2, 	, 3n} having the 
sum of their elements a multiple of 3. For each member of compute 
the square of the sum of its elements. Compute in a closed form the sum 
of the numbers obtained in this way. 

Gabriel Dospinescu 

11. Let p be an odd prime. Prove that the 2 
pi 

2  numbers +1 + 2 + • • • ± P2 1  
represent each nonzero residue class mod p the same number of times. 

R. L. McFarland, AMM 6457 

12. Suppose that A1, A2, ..., An  are n sets of p integers where p is a prime 

such that the pn sums E ai  with a9, E Ai are all distinct mod pn. Then 

the n sets, with appropriate ordering, can be described as follows: the 
elements of Ai, taken mod pi are the numbers ci+jpi-1  for a fixed integer 
ci and j = 0,1, ..., p — 1. 

S. W. Golomb, AMM 

13. Prove that the number of subsets with n elements of the set of the first 
2n positive integers whose sum is a multiple of n is 

(-1)n 

n 

1)dco  (nd) (2dd) 

din 

14. Let p be an odd prime and n > 2. For a permutation o-  of the set 
{1, 2, ..., n} define S(u) = a(1) + 2o-(2) + • • • + no-(n). Let A3  be the set 
of even permutations o-  such that S(a) = j (mod p) and B3  be the set 
of odd permutations o-  for which S(a) = j (mod p). Prove that n > p if 
and only if A3  and B3  have the same number of elements for all j. 

Gabriel Dospinescu 
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15. Let p > 3 be a prime number and let h be the number of sequences 
P-1  

aj 
3=o 

number of sequences (b1, b2, 	, bp_i) C {0,1,3}P-1  such that p I > jb3. 

Prove that h < k and that the equality holds only for p = 5. 

IMO 1999 Shortlist 

16. Let p be an odd prime and let a, b, c, d be integers not divisible by p such 
that {7 } + 	+ {7,} + 	= 2 for all integers r not divisible by p 
(here 6 is the fractional part). Prove that at least two of the numbers 
a + b, a + c, a + d,b + c,b + d, c + d are divisible by p. 

Kiran Kedlaya, USAMO 1999 

a2, . , ap_i) C {0,1,2}P-1  such that p j . Also, let k be the 

p-1 

j=0 
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8.1 Theory and examples 

We start with a riddle and a challenge: what is the connection between the 
following problems? 
1. The set of nonnegative integers is partitioned into n > 1 infinite arithmetical 
sequences with common differences ri, r2, 	, r, and first terms al, a2, 	an. 
Then 

al 	a2 an  n — 1 
— ±+ 	= 	 
ri 	r2 	r, 	2 

2. The vertices of a regular polygon are colored such that each set of vertices 
having the same color is the set of vertices of a regular polygon. Prove that 
there are two congruent polygons among them. 

The first problem was discussed during the preparation of the USA IMO team, 
but it seems to be a classical result. As for the second one, well, it is a 
famous problem given at a Russian Olympiad, proposed by N. Vasiliev. If 
you have no clue, then we will give you a small hint: the methods used to 
solve both problems are very similar and can be included into a larger field, 
that of formal series. What are those? Well, given a commutative ring A, 
we can define another ring, called the ring of formal series with coefficients in 

A and denoted A[[X]]. An element of A[[X]] is of the form ari Xn , where 
n>0 

an  E A, and it is also called the generating function of the sequence (a,),>0. 
The addition and multiplication are the natural ones, defined as the similar 
operations with polynomials: 

(E anxn) (1.2  bnxn) 

n>0 	 n>0 

= E (an  + br)xn 
n>0 

and 

(Th anXn) 	b Xn) = E CnXn, >o 	
n>0  n>0 

where c„ = E apbq. Yet, for an entire function g(z) = E gnzn and a formal 
p+q=n 	 n>0 

series f (X) = E anXn we can define the formal series g(f (X)) = E br,Xn 
n>0 	 n>0 
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obtained "formally" from the formula g(f(X)) = j gn fn(X) by developing 
n>0 

f n(X) and grouping terms according to successive powers of X . You can (and 
you should, if it is the first time you encounter this object) easily prove that all 
formulae of the type of •eg = of +9, sin( f +g) = sin( f) cos(g)+sin(g) cos( f) and 
so on are valid in the ring of formal series. Also, one can define a derivative on 
this ring, similarly defined as the usual derivative of polynomials, by f(X) = 
> nai,X71-1  and check that all the properties that the derivative has on the 
n>1 

space of polynomials are preserved. Actually, all operations that are allowed 
on polynomials can be transferred formally to the ring of power series, and 
preserve their properties, as long as they are expressed purely in terms of the 
coefficients (this excludes of course speaking about zeros of a formal series). 
As we will see in what follows, formal series have some very nice applications 
in different fields: algebra, combinatorics, and number theory. But let's start 
working now, assuming familiarity with some basic analysis tools. We warn the 
reader that from time to time we will insist on some questions of convergence 
or continuity, but at other times we wilLwork only in this ring of formal series, 
therefore adopting only the operations of this ring, with no further reference 
to questions of convergence. 

LExample 1. Let al, , an  be complex numbers such that all + • • • + an = 0 
for all 1 < k < n. Then alrnumbers are equal to 0. 

Solution.  The experienced reader has already noticed that this problem is an 
immediate consequence of Newton's relations. But what can we do if we are 
not familiar with these relations? Here is a nice way to solve the problem (and 
a way to prove Newton's relations, too). First of all, observe that the given 
condition implies 

akl  + a2k  + • • • + an  = 0 

for all positive integers k. Indeed, let 

f (X) = X n+ bm_00-1  + • • • + b1X + b0  = H(X — ao. 
i=1 

Then 
azk 	 + • • • + boak—n  = 0 
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for all k > n 1. It suffices to add these relations and to prove the statement 
by strong induction. Now, let us consider the function 

 

f (z) = 
n 

1 

 

    

Developing it by using 

i=1 
— zai .  

1 
= 1 x + x2  ± • •• (for lx1 < 1), 

we obtain that f(z) = n for all sufficiently small z (meaning for such z that 
satisfy I z1 maxi <i<n{ la, < 1). Assume that not all numbers are zero and 
take ai, , a3  (1 < s < n) to be the collection of numbers of maximal ab-
solute value among the n numbers and let this maximal absolute value be r. 

By taking a sequence zp 1 — such that lzp  r I < 1, we obtain a contradiction 

with the relation 	
1 
	 = n (indeed, it suffices to observe that the left- 
1 — z a i=i 	P t 

hand side is unbounded, while the right one is bounded). This shows that all 
numbers are equal to 0. 

We are going to discuss a nice number theory problem whose solution is prac-
tically based on the same idea. This result is an important step in proving 
that the order of any finite subgroup of GL,(Z) divides (2n)!. Indeed, it is 
not difficult to prove that if G is a finite subgroup of GL„(Z) then !GI divides 
E Tr(g) (all you need is to note that E g is idempotent, which is an 

gEG 	 gEG 

immediate consequence of the fact that in a finite group the translations are 
actually permutations; or, the trace of an idempotent matrix is just its rank, 
and thus an integer). Working with the tensorial product matrices A ® A 
where A E G and repeating the above argument yields IG11 E (Tr(g))k  for 

gEG 

all k > 0. Now, all we need is to apply the result below in order to conclude 
that 

(n — Tr(gi))(n — Tr(g2)) • (n — Tr(g„)), 

1 — x 

n 
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where Tr(gi), Tr(g2), 	Tr(gs) are the distinct traces that appear in the list 

(Tr(g))gEG,g/n. Because n — Tr(gz) are distinct integers between 1 and 2n, it 
follows that IGI divides (2n)!. 

Example 2.1 Let al , a2, 	, aq, xi, x2, . , xq  and m be integers such that 

ml aixi + a24 + • • + aq xqk  for all k > 0. Then 

ml ai ll(xi — xi). 

i=2 

Solution.  Consider this time the formal series 

f (z) = E  ai  

1 — zxi i=i 

By using the same formula as in the first problem, we obtain 

(q  
f (z) = E ai + aixi) z + • • • , 

i=i 	i=i 

which shows that all coefficients of this formal series are integers divisible by 
m. It follows that the formal series 

Eai  11(1 — xiz) 
i=1 jai 

also has all of its coefficients divisible by m. Now consider S z) , the t-th funda-
mental symmetric sum in xi (j i). Because all coefficients of ilj ,(1-1
x3z) are multiples of m, a simple computation shows that we have the divisi-
bility relation 

ml x
q-1  
1 

q-2 ai — x1 
(i) 

+ • • • + (-1  isq(01. 
i=1 i=1 i=1 
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This can also be rewritten as 

m 	
ai (x7-1  - xr2S1i) 	• • + (-1)q-1S(i)  ) 1 • 

j=1 
Now, the trivial identity 

	

(xi - xi)... (x1 - 	- xi+i).. • (xi - xn) = 0 

gives us the not-so obvious relation 

	

x7-1  - x7-2 	+ + (-1)q-1 	= 0 

for i > 2. Therefore 
q 	 ( 

X-1 — X
q-2 

 Si
1) 
 + • • • + (-1)q-189121  = (xi — x2) 	(x1 — xn) 

and we are done. 

In order to solve the problem announced at the very beginning of the presen-
tation, we need a lemma, which is interesting itself, and which we prefer to 
present as a separate problem. 

Example 3. Suppose that the set of nonnegative integers is partitioned 
into a finite number of infinite arithmetical progressions with 
common differences ri,r2, • • , rn  and first terms al, a2, • , an. 
Then 

1 	1 	1 
— + — + • • • + — = 1. 
ri 	r2 	rn  

Solution. Let us observe that for any Ix1 < 1 we have the identity: 

Exaid-kri E  xa2±kr2 . . . E  xand-krn E  xk .  

k>0 	 k>0 	 k>0 	 k>0 

Indeed, all we did was to write the fact that each nonnegative integer is in 
exactly one of the arithmetical sequences. The above relation becomes: 

xal 	xa2 	 xan 	1 
	+ 	+ • +  	 (8.1) 1 _ xri 	_ xr2 	1 — Xrn 	1 X 
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-1 xa 
li 	 Let us multiply (8.1) by 1 - x and use the fact that m 
x->i 1 - x 

the desired relation 
1 	1 	1 
— + — + • + — = 1. 
r1 	r2 	rn 

= a. We find 

It is now time to solve the first problem. We will just take a small, but far 
from obvious, step and we'll be done. The fundamental relation is again (8.1). 

rExample 4.! The set of nonnegative integers is partitioned into n > 1 infi- 
nite arithmetical progressions with common differences ri, 

	

rn  and first terms al , a2, 	, an. Then 

	

at a2 	an  n - 1 
+ 	+ • • • + 	= 	 

Ti 	rz 	rn 	2 

MOSP 

Solution. Let us write the relation (8.1) in the more appropriate form: 

xal 	 xan 
	 , ± • • • + 	  = 1 	(8.2) 
1 +x+•••+xri-1 	1+x+•••+xrn- 

, 

Now, let us differentiate (8.2) and then make x 	1 in the resulting expression. 
An easy computation, which is left to the reader, shows that 

It suffices now to use the result proved in example 3 in order to conclude that 

al a2 	an  n - 1 
T1 
— +r2 + +

rn 
 = 	 

2 	• 
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Some comments about these two relations are necessary. First of all, using a 
beautiful and difficult result due to Erd6s, we can say that the relation 

1 	1 	1 
— — ± • • • ± — = 1 
r1 	r2 	rn  

implies that max(ri,r2, 	,rn) < 22n-'. Indeed, this remarkable theorem 
due to Eras asserts that if xi, x2, 	, xk are positive integers whose sum of 
reciprocals is less than 1, then 

1 	1 	1 	1 	1 	1 
—+—+...+—  < —+—+...+—,  
X1 X2 	 xk ul U2 	 Uk 

where ui  = 2, n71+1 = U2, — Un + 1. But the reader can verify immediately by 
induction that 

1 	1 	1 
— — ± • • • + — = 1 
Ul U2 	 Uk 

1 

u1u2 . • • uk 

Thus we can write 

1 — < 1 
rn 

1 

 

 

or, even better, rn  < u1u2 • • • un_i = un  — 1 (the last relation following again 
by a simple induction). Another inductive argument proves that un < 

22n-1 .  

Hence max(ri,r2, , rn) < 22" 1. Using the relation proved in example 4, we 
also deduce that 

max(ai, a2, • • • , an) < (n — 1) • 22n1-1. 

This shows that for fixed n not only is there a finite number of ways to parti-
tion the set of positive integers into n arithmetical progressions, but we also 
have some explicit (even though huge) bound on the common differences and 
first terms. 

It is now time to solve the remarkable problem discussed at the beginning 
of this chapter. We will see that using the previous results proved here, the 
solution becomes natural. However, the problem is still really difficult. 
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l Example 5J  The vertices of a regular polygon are colored in such a way 
that each set of vertices having the same color is the set of ver-
tices of a regular polygon. Prove that there are two congruent 
polygons among them. 

[N. Vasiliev] Russian Olympiad 

Solution.  Let us assume that the initial polygon (which we will call big from 
now on) has n edges, and that it is inscribed in the unit circle, the vertices 

27, 
, having as coordinates the numbers 1, e e2 , 	 en-1, where E = e 	(of course, 

we will not lose generality with all these restrictions). Let ni, n2, 	, nk be 
the number of edges of the monochromatic polygons, and assume that all 

217r 

these numbers are distinct. Let Ei  = e n3  and observe that the coordinates of 
n 

the vertices of each monochromatic polygon are zi, ziEj, 	, zjey 
1 
 for some 

complex numbers zi on the unit circle. First, a technical result. 

2i,r 

Lemma 8.1. For any complex number z and = e P we have the identity 

1 1 1 
1— z 1 — z( 1 — z(P-1  1— zP 

Proof. Proving this lemma is a simple task. Indeed, it suffices to observe that 
z, 	, z(P-1  are exactly the zeros of P(X) = XP — e. Or, observe that 

P'(X) 	1 	 1  

P(X) X — z 	X — z(P-1' 

thus by taking X = 1 we obtain the desired result. 
Now, the hypothesis of the problem and lemma allow us to write 

ni 	n2 	 nk =  + 	 + 	
n 

1 — (zzi)nl 	1 — (zz2)n2 	1 — (zzk)nk 	1 — zn
.  

Also, the simple observation n1  + n2 + • • • + nk = n yields the new identity 

	

nizi 	 ft,  

	

ni 	 ,2 2 	 nk nzn 
	 Zni + 	

n.., 2,4 	
zn2 + 	+ 	

nkzk 	
Znk  =  	(1) 

1 — (ZZiri 	1 — (ZZ2)n2 	 1 — (ZZOnk 	1 — Zn  . 



(ki,j 	 i=1 	i=1 

n 

) 	

n 	 n 

ak 	- ... + ( — 1)71-1  E arii = n! Haz. E 
i<i<j<n 
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Let us assume now that ni < min(n2, 	, nk) and divide (1) by znl. It follows 
that for any nonzero z we have 

n2z22 	zn2-ni 	nkzk k 

	 z
nk-n1 = nzn-n1  
	. (2) 

1 - (zzi)ni 	1 - (zz2)n2 	 1 - (zzk)nk 	 1 - zn 

We are done: it suffices to observe that if we make z —> 0 (by nonzero values) 
in (2), we obtain 41  = 0, which is clearly impossible, since 	= 1. The 
proof ends here. 	 ❑ 

The problem that we are going to discuss now has appeared in various contests 
in different forms. It is a very nice identity that can be proved in quite messy 
but elementary ways. Here is a magical proof using formal series. 

[
Example 6.] For any complex numbers al , a2, , an  the following identity 

holds: 
n 	n 

E ai 	

a

) 	 E 3 
i=1 	i=1(ji 

Solution. Consider the formal series 

f( z ) 	11(eza, 	1).  

i=1 

We are going to compute it in two different ways. First of all, it is clear that 

z2a? 

	

f (z)= 11 (zai + 
2! 

+ 	, 
i=1 
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hence the coefficient of z" is ITai. On the other hand, we can write 
z=i 

n  z 	ct 

	

.f (z) 
ez ,=, a, 

— E e  ,o, 	( _1)n-1 E  eza, ( 1)n.  

i=1 	 z=i 

Indeed, you are right: everything is now clear, since the coefficient of z" in ekz  

kn  
ls

!
. The conclusion follows. 

Here are two applications of this formula. The first one is a recent Putnam 
problem (2004), which asked competitors to prove that for any n there exists 
N and some rational numbers ci,c2, cN such that 

X1X2 • • ' Xn = 	cz(azi xi + ai2x2 + • • + a,nxn)n  
z=i 

holds identically in complex variables xi , x2, xn, and aid  are equal to —1,0 
or 1. It is clear that the above identity furnishes an answer N = 2' where we 
have even more, aid E {0,1}. Some twenty years before the Putnam Competi-
tion, the following problem was proposed at the Saint Petersburg Olympiad: 
A calculator can perform the following: add or subtract two numbers, divide 
any number by any nonzero integer and raise any number to the tenth power. 
Prove that using this calculator one can compute the product of any ten num-
bers. As you can immediately see, the solution follows by the above identity. 
Without using it, it is really difficult to solve this problem. 

Not only algebra problems can be solved in an elegant manner using formal 
series, but also some beautiful number theory and combinatorics problems. 
We shall focus a little more on each type of problem in the sequel. 

Example 7J Let 0 = a0 < a1  < a2 < ... be a sequence of nonnegative 
integers such that for all n the equation a, + 2a3  + 4ak = n has 
a unique solution (i, j, k). Find ai998. 

IMO 1998 Shortlist 
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Solution.  Here is the very nice answer: 9817030729. Let A = { ao, al, • • } 
and let bn, = 1 if n E A and 0 otherwise. Next, consider the formal series 
f(x) = E tone , the generating function of the set A (we can write it in a 

n>0 

more intuitive way f (x) = 	xan ). The hypothesis imposed on the set A 
n>0 

translates into 

f (x) f (x2) f (x4) =  1 1 	x . 

Replace x by x2k  . We obtain the recursive relation 

1 _ , nk+1 _ ok+2
)  

1 — 
f(x' )f(x' )f(x' 	— 	 

x2k  
Now, observe that 

H  f(x2k) = fl (f(x23k )f(x23k+1 )f  (x23k-1-2 )) 	

n 
1-r 

1 - xvk 
k>0 	k>0 	 k>0 

and 

H f(x2k) = H  (f(x23k±,)f(x23k+2)f(x2.+3)) =
111 1  x23k-Fi 

k>1 	k>0 	 k>0 

Therefore (you have observed that rigor was not the strong point in establish-
ing these relations), 

23k+1  
f (x) = 11 

1  

23k  = 11(' x8k)  x k>0 	 k>0 

This shows that the set A is exactly the set of nonnegative integers that use 
only the digits 0 and 1 when written in base 8. A quick computation based 
on this observation shows that the magical term asked for by the problem is 
9817030729. 

The following problem is an absolute classic. It has appeared under different 
forms in Olympiads from all over the world. We will present the latest one, 
given at the 2003 Putnam Competition: 
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[Example 8.1 Find all partitions with two classes A, B of the set of non-
negative integers having the property that for all nonnegative 
integers n the equation x + y = n with x < y has as many 
solutions (x, y) EA x A as in B x B. 

Solution.  Let f and g be the generating functions of A and B respectively. 
Then 

f (x) = 	anxn , g(x) = E bnxn 
n>0 	 n>0 

where, as in the previous problem, an  equals 1 if n E A and 0 otherwise. The 
fact that A and B form a partition of the set of nonnegative integers can be 
also rewritten as 

f (x) + g(x) = 	xn = 

n>0 

Also, the hypothesis on the number of solutions of the equation x + y = n 
implies that 

/2(x) — f(x2) = 
g2(x) g(x2) 

Hence 

f(x 2) g(x2) = f( - 
g (x)  

1 — x 

which can be rewritten as 

f (x) — g(x) 	1 x  
' f(x2) _ g(x2)  

Now, the idea is the same as in the previous problems: replace x by x2k  and 
iterate. After multiplication, we deduce that 

f (x) — g(x) = 1(1_x2k )  lim (f (x2n) — g(X2n )). 
n—>oo 

k>0 

Let us assume without loss of generality that 0 E A. You can easily verify 
that 

lira f(x2n ) = 1 and lim g(x2n ) = 0, 
n—>oo 	 n—>co 

1 
1 — x 
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which follows from the observation that 1 < f (x) < 1 + i x  x  and 0 < g(x) < 
xix if 0 < x < 1. 

This shows that actually 

f(x) — 
g(x) = 	— x2k) = E(  i)s2(k)xk ,  

k>0 	 k>0 

where .52(X) is the sum of the digits in the binary representation of x. Taking 
into account the relation 

f (x) + g(x) = 1 	1  

we finally deduce that A and B are respectively the set of nonnegative integers 
having even (respectively odd) sum of digits when written in base 2. 

We will discuss a nice problem in which formal series and complex numbers 
appear in a quite spectacular way: 

Let n and k be positive integers such that n > 2k-1  and let 
S = {1, 2, 	, n}. Prove that the number of subsets A of 

S for which 	x m (mod 2k) does not depend on m E 
xE A 

{0, 1, 	, 2k  — 1}. 

Solution. Let us consider the function (call it formal series, if you want): 

f (x) = 11(1 + 

If we prove that 1 + x + • • • + x2k-1  divides f (x), then we have certainly 
done the job. In order to prove this, it suffices to prove that any 2kth root 
of unity, except for 1, is a root of f . But it suffices to observe that for any 
/ E {1, 2, ... , 2k-1  — 1} we have 

( / 2/7 	
t  
. 	2 

cos 2k + sin 
2k ) 	

= —1 
2k -1—v2 (l) 
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and so 

f 

 (

cos —217  + i sin 217) = 0, 
2k 	2k 

which settles our claim. 

Finally, it is time for a tough problem, solved by Constantin Tanasescu. 

rExample 10.] Let S be the set of all words which can be formed using m > 1 
given letters. For any w E S, let 1(w) be its length. Also, let 
W C S be a set of words. We know that any word in S can 
be obtained in at most one way by concatenating words from 
W. Prove that 

E 	/ 1 171 

[Adrian Zahariuc] 

Solution.  Let A be the set of all words which can be obtained by concatenating 
words from W. Let 

f(x) = E xl(w)  , g(x) = E 1(w) x 	. 

wEW 	 wEA 

By the definition of A, 

g(x) =1+ f(x)+ P(x) + • • • = 1- f(x) .  

Hence 

f (x)g(x) = g(x) — 1. 	 (8.3) 

Now, A (and W) has at most ink elements of length k, thus g(x) < oo and 
1 	 1 

772  f (x) < oo for x < -r-ri-. Thus for all x E 0, 	the expression in (8.3) is less 

wEW 

1 
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( than g(x) and so f(x) < 1 for all x E 0, —
1 

. All we need now is to make 
m 

x tend to 
Irt 
—
1 

and we will obtain f —
1 

< 1, which is precisely the desired 

inequality. Indeed, observe that f can be written as f (x) = > anxn for some 
n>0 

nonnegative real numbers an. Fix a positive integer N. Because 

akxk  < f (x) < 1, 
k=o 

for all 0 < x < 1  by continuity of the polynomials it follows that E< 1 mk 	1
, 

k=0 
and because N is arbitrary, we have E 	< 1, that is f (1) < 1. 

k>0 

There is a very short solution for the following result using group theory. 
However, this is not the natural approach. The following solution may seem 
very involved and technical, but it was written in order to convince the reader 
that from time to time we need to work with composition of formal series, not 
merely with their sum and product. 

Example 11. 1  Let c(a) be the number of cycles (including those of length 
1) in the decomposition of a into disjoint cycles. Prove that 

1 E nc(a)  (m + n — I) , 

m! 
o-ESm  

where 8, is the set of permutations of the set {1, 2, ..., m}. 

[Marvin Marcus] AMM 5751 

Solution.  Let us start with a Lemma: 

Lemma 8.2. For given nonnegative integers k1, k2, 	, kn  such that kJ_ +2k2+ 
• • +nkn  = n, the number of permutations of {1, 2, 	, n} which have ki  cycles 
of length i for all i is 

n! 
ki!k2! • • • knqki 2k2 . nkn 
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Proof. Indeed, there are n! ways to fill in the elements of all cycles, but observe 
that every cycle of length j can be rotated around j ways and be the same 
cycle (so we must divide n! by j k3) and also there are k j ! ways to permute 
the cycles of length j in order to obtain the same permutation. All these 
operations being independent, the statement of the lemma follows. ❑ 

Thus the sum we need to evaluate is 

m! 
n, !k2! 	

km!nki+k2+•-•+k 
mk 	

m 

ki+2k2+•••+mk,n=7Th 

You will probably say that this is much more difficult than the initial problem, 
but you are not right, because the latter sum can also be written as 

1 /3! !
• • • km! ( 
	

n 	n  ) 
. . . 

P! 	 ki!k2! 	 2 )

k2 	

m)

1c m, 

 
p 	+2k2+.••+mkm=rn 

+k2 +. +km =- p 

Now, observe that the multinomial formula implies that 

Ici!k2! 
13!  • •km!  (ni )ki (n)k2 	(n)km. . _ 

2 
ki+2k2+---1-mkm=m 

-f-k2 +..•+km=p 

Xm  is the coefficient of Xm in the formal series (nX  1 + 
n 

2  
X 2  _L 	n

m  
Therefore the sum to be evaluated is the coefficient of Xm in the formal series 

m! • P
! 1 

1 (nX nX2  
- 2 + • • • + nXm 

rn! e  711). 0 +10(2  2  ± 	71XM  
m 

Finally, observe that 	n2 2  + 	nX: 	_ n ln(1 — X), so 

	

nX +n2 
 +. .+nx

m 
 + = 	1 

e 1 	2 
(1 	)7/ 

m! 
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But using the binomial formula for (1 — x)-n we easily find the coefficient of 
X' in (1 —x 1 	)n 	rn to be (n+m-1). This finishes the solution. 

We should also mention the beautiful solution using group theory. Remember 
that when a group G is acting on a set Y (that is, we can define for all g E G 
and x E Y an element g•x E Y such that for all g, h, x we have g•(h•x) = (gh)•x 
and 1•x = x), the number of orbits for the action of G on Y, that is the number 
of distinct sets of the form {g E G}, is equal to 

IGI gEG  
1 	

IFix(g)I, 

where Fix(g) is the set of x E Y such that g • x = x. This is called Burnside's 
lemma and it is very useful, even though its proof is really simple: all you need 
to do is to count in two ways the pairs (g, x) such that g-x = x. Now, consider 
Y the set of the first m positive integers, and G the set of permutations of 
its elements. G acts obviously on the set of colorings of Y with n colors 
CI., C2, ..., C, (that is, on the set Y of functions from Y to {1, 2, ..., n}). The 
number of orbits is just the number of pairwise inequivalent classes of colorings, 
where two colorings are equivalent if they can be obtained by a permutation 
of G. Clearly, there are (n+77-1) such classes of equivalence (because they 
are determined by the nonnegative integers (k1, k2, kn) which add up to m, 
where lc, is the number of objects colored with the color CC; there are (n+777-1) 
solutions of the equation k1 +k2+- • • kn  = m in nonnegative integers). On the 
other hand, we can use Burnside's lemma to count these pairwise inequivalent 
colorings. Observe that a permutation g fixes a coloring if and only if the 
numbers belonging to the cycles of g have the same color. Therefore, Fix(g) 
is the set of colorings which are constant on each cycle of g. There are n°(g) 
such colorings. Thus, there are 

1 E nc(g)  

classes of colorings, and this finishes the proof of the identity. 

M! 
gEG 

In order to see whether you understood this type of argument, try to show 
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n 
(using this technique) that n divides E Ngcd(k'n)  for all integers N. (Hint: 

k=1 
count the number of classes of colorings of the vertices of a regular n-gon, 
two colorings being equivalent if they are obtained by a rotation keeping the 
polygon invariant.) 
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8.2 Problems for training 

1. Let zl, z2 , ... , zr, be arbitrary complex numbers. Prove that for any 
s > 0 there are infinitely many numbers k such that 

1,04 + 4 + • • • + ;kJ > MaX(124111Z21) • • • )1 2'4 — E.' 

2. Find the general term of the sequence (xn)n>i given by 

In-Fk = aiXn+k-1 + ' • ' + alcxn 

with respect to xi, ... , xk. Here al, ... , ak and xl, .. • , xk 
complex numbers. 

are arbitrary 

3. Let al, a2, ... , an  be relatively prime positive integers. Find in closed 
form a sequence (xk)k>1  such that if yk is the number of positive integral 

solutions to the equation aixi + a2x2 + • • • + anxn  = k, then urn —k  = 1. 
k—>cx:, yk 

4. Prove that if we partition the set of nonnegative integers into a finite 
number of infinite arithmetical sequences, then there will be two of them 
having the same common difference. 

5. Is there an infinite set of nonnegative integers such that all sufficiently 
large integers can be represented in the same number of ways as the sum 
of two elements of the set? 

D. Newman 

6. How many polynomials P with coefficients 0, 1, 2, or 3 satisfy P(2) = n, 
where n is a given positive integer? 

Romanian TST 1994 
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7. Prove that for each positive integer k, 

1 

n1n2 • • • nk(ni. + nz + • • • + nk) = 

where the summation is taken after all k-tuples (ni, n2, ..., nk) of positive 
integers with no common divisor except 1. 

D. J. Newman, AMM 5336 

8. Let n and k be positive integers. For any sequence of nonnegative inte-
gers (al, a2, ak) which adds up to n, compute the product a1a2 • • ak. 
Prove that the sum of all these products is 

n(n2  — 12)(n
2 

22) 	(nz (k 1)2) 

(2k — 1)! 

9. In how many different ways can we parenthesize a non-associative prod-
uct aia2 	an? 

Catalan 

10. Let A be a finite set of nonnegative integers and define a sequence of 
sets by Ao = A and for all n > 0, an integer a is in An+1 if and only if 
exactly one of the integers a —1 and a is in An. Prove that for infinitely 
many positive integers k, Ak is the union of A with the set of numbers 
of the form k + a with a E A. 

Putnam Competition 

11. Let Ai = 0, 	= {0} and An+i = {1+ xl X E 	Bn-Fi (An  \ Bn) U 
(Bn  \ An). Find all positive integers n such that Bn  = {0}? 

AMM 



PROBLEMS FOR TRAINING 	175 

12. For which positive integers n can we find real numbers al, a2, . . an 
such that 

{lai — ail I 1<i < <n} = {1,2,..., (n2)}? 

Chinese TST 2002 

13. Let f(r,n) be the number of partitions of n of the form n = bo + • • + bs 
where bi  > rbi±i  for all 0 < i < s — 1, and let g(r,n) be the number of 
partitions of n where each part has the form 1 + r + • • • + ri for some 
nonnegative integer i. Prove that f(r,n) = g(r, n) for all r and n. 

D. R. Hickerson, AMM 

14. Is it possible to partition the set of all 12-digit numbers into groups of 
four numbers such that the numbers in each group have the same digits 
in 11 places and four consecutive digits in the remaining place? 

St. Petersburg Olympiad 

15. Determine whether there is a subset X of the integers with the following 
property: for any integer n there is exactly one solution of a + 2b = n 
with a, b E X. 

Richard Stong, USAMO 1996 

16. Let F(n) be the number of functions f : {1, 2, ..., n} —> {1, 2, ..., n} with 
the property that if i is in the range of f, then so is j for all j < i. Prove 
that 

	 kn  
F(n) 

2k+1.  
k>0 

L. Lovasz, Miklos Schweitzer Competition 
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17. Suppose that every integer is colored using one of 4 colors. Let m, n 
be distinct odd integers such that m + n 	0. Prove that there exist 
integers a, b of the same color such that a — b equals one of the numbers 
m, n, m — n, m + n. 

IMO 1999 Shortlist 

18. Find all positive integers n with the following property: for any real 
numbers al, a2, 	, an, knowing the numbers a, + a3, i < j, determines 
the values al, a2, 	, an  uniquely. 

Eras and Selfridge 

19. Suppose that ao = al = 1 and (n + 3)an±i = (2n + 3)an  + 3nan_i  for 
n > 1. Prove that all terms of this sequence are integers. 

Kornai 

20. Let x and y be noncommutative variables. Express in terms of n the 
constant term of the expression (x + y + x-1  + y-1)n. 

M. Haiman, D. Richman, AMM 6458 

21. Consider (bn)n>1 a sequence of integers such that b1 = 0 and define 
al  = 0 and an  = nbn  + aibn-i + • • • + an-1b1 for all n > 2. Prove that 
pap  for any prime number p. 

22. Prove that there exists a subset S of {1, 2, ..., n} such that 0, 1, 2, ..., n —1 
all have an odd number of representations as x — y with x, y E S, if and 
only if 2n — 1 has a multiple of the form 2 • 4k  — 1. 

Miklos Schweitzer Competition 
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23. Suppose that (a„),>1 is a linearly recursive sequence of integers (that 
is, there exist integers r and xi, x2, ..., xr  such that an-Fr = xian+r—i + 
x2an±,-2 + • • • + xran  for all n) such that n divides an  for all positive 
integers n. Prove that (n) is also a linearly recursive sequence. 

Polya 

24. A set A of positive integers has the property that for some positive 
integers b2 j  ci , the sets bz A + cz, 1 < i < n, are disjoint subsets of A. 
Prove that 

IMO 2004 Shortlist 

25. Let f (n) be the number of partitions of n into parts taken from its 
divisors. Prove that 

(1 + 0(1)) r2)  1) lnn < lnf(n) < (1 + o(1)) 7 (2n)  lnn, 

where r(n) is the number of divisors of n. 

D. Bowman, AMM 6640 
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9.1 Theory and examples 

We have already seen some topics where algebra, number theory and combi-
natorics were mixed in order to obtain some beautiful results. We are aware 
that such topics are not so easy to digest by the unexperienced reader, but 
we also think that it is fundamental to have a unified vision of elementary 
mathematics. This is why we have decided to combine algebra and number 
theory in this chapter. Your effort and patience will be tested again. The 
purpose of this chapter is to survey some classical results concerning algebraic 
numbers and their applications, as well as some connections between number 
theory and linear algebra. 

First, we recall some basic facts about matrices, determinants, and systems of 
linear equations. For example, the fact that any homogeneous linear system 

{ 

anxi  + ai2x2 + • • • + ainxn  = 0 
a2ix1 + a22x2 + • • • + a2nxn  = 0 

an 1 X 1 + an2X2 + • " a nnX n =0 

in which 
all 

. 	. 	. 

and 

a12 

a22 

. 	. 	. 

ant 

aln 

a2n 

ann 

0 

has only the trivial solution. Second, we need Vandermonde's identity 

1 Xi 
2 

X1 xi-1  

1 x2 X22  x721-1  = 	H 	(xi - 	) . (9 . 1 ) 
1  Xn X2  n  Xnn-1  

1<i<j<n 
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Finally, when studying the algebraic numbers, we will need two more specific 
results. The first one is due to Hamilton and Cayley, while the second one is 
known as the fundamental theorem of symmetric polynomials 

Theorem 9.1. For any field F and any matrix A E Mn(F), if pA is the char-
acteristic polynomial of A: pA(X) = det(XIn  — A), then pA(A) = On. 

Theorem 9.2. Let A be a ring and let f E A[Xl, X2, ..., Xn] be a symmet- 
ric polynomial with coefficients in A, that is for any permutation a E Sn  we 
have f 	X2, 	Xn) = f ()Cam, x0-(2), • • •, X,-(n)). Then we can find a poly- 
nomial g E A[Xi, X2, ..., Xn] such that f 	X2, • • •, Xn) = g(X1  + X2 + • • • + 

Xn, X1X2 X1X3 + • • • + Xn-lXn, •••, X1X2 • • Xn). 

This means that any symmetric polynomial with coefficients in a ring is a 
polynomial (with coefficients in the same ring) in the symmetric fundamental 
sums: 

Sk(Xj., 	Xn) = Xil • • Xik .  

1<ii<i2<...<4<n 

As usual, we start with some easy examples. Here is a nice (and direct) 
application of theorem 2: 

Example ld Given a polynomial with complex coefficients, can one decide 
if it has a double zero only by performing additions, multipli-
cations, and divisions on its coefficients? 

Solution.  Yes, one can, even though at first glance this does not seem natural. 
Let f (x) = ao + aix + • • + anxn. Then this polynomial has a double zero if 
and only if 

= 0, 

where F(xi, x2, 	, xn) = 	fl (x„, — x i) 2  and xi, x2, 	, xn  are the zeros 
1<z<j<n 

of the polynomial. At the same time 

F(xi,x2, • . • , xn) 
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is symmetric with respect to xi, x2, xn, so by theorem 2 it is a polynomial in 
the fundamental symmetric sums in xi , x2, xn. By Vieta's formulas, these 
fundamental sums are just the coefficients of f (up to a sign), so 

F(xi, x2, .. • , xn) 

is a polynomial on the coefficients of f . Consequently, we can decide whether 

F(x1,x2,...,xn) = 0 

only by using the operations on the coefficients of the polynomial mentioned 
in the hypothesis. This shows that the answer to the problem is positive. 

You may know the following classical problem: if a, b, c E Q satisfy a + b.n 
= 0, then a = b = c = 0. Have you ever thought about the general case? 

This cannot be done with only simple tricks. We need much more. Of course, 
there is a direct solution using Eisenstein's criterion applied to the polynomial 
f (X) = Xn — 2, but here is a beautiful proof using linear algebra. This time 
we need to be careful and work in the most appropriate field. 

Example 2. Prove that if ao, al, . • • , 	E Q satisfy 

ao + al 2 + • • • + 	'.■/2n-1  = 0, 

then ao  = ai = • • • = an_i = O. 

Solution.  If ao + al 2 + • • • + an-1 V2n-1  = 0, then 

kao + kal 	+ • + kan_i 	1 =0 

for any real number k. Hence we may assume that ao, al, , an_i E Z. The 
idea is to choose n values for k to obtain a system of linear equations having 
nontrivial solutions. Then the determinant of the system must be zero, and 
this will imply ao = ai = • • • = = 0. Now, let us fill in the blanks. What 
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are good values for k? This can be seen by noticing  that 1Y271-1  • 70.  = 2 E Z. 
So, the values (k1, k2, , kri) = (1, 0, , 1/2n-1) are good, and the system 
becomes 

ao + al • 	+ • • • + an_i • 1/2n-1 =0 

ao • 0 + ai • n-c/P + • • • + 2an_i = 0 

ao • 1/2n-1- + 2a1  + • • + 2an_1 • V 2n-2  = 0. 

Viewing (1,Nrn 2, ... , .V2-1) as a nontrivial solution to the system, we conclude 
that 

ao 
2an_i 

2a1 

al  
ao 

2a2 

an-i 
an-2 

ao 

=0. 

But what can we do now? Expanding the determinant leads nowhere. As 
we said before passing to the solution, we should always work in the most 
appropriate field. This time the field is Z/2Z, since in this case the determinant 
can be easily computed; it equals ao = 0, where x means the residue class of 
the integer x modulo 2. Hence ao must be even, that is ao  = 2b0 and we have 

bo 
an_i 

al 

ai 
ao 

2a2 

an-i 
an-2 

a()  

=0. 

Now, we interchange the first two lines of the determinant. Its value remains 
0, but when we expand it in Z2, it yields Zeil = 0. Similarly, we find that all 
a, are even. Let us write a2 = 2b2. Then we also have b0 + b1 + • • • + 
bn-1 • n-1/2n-1 = 0 and with the same reasoning we conclude that all b, are 
even. But of course, we can repeat this as long as we want. By the method of 
infinite descent, we find that ao = al = • • • = = 0. 
The above solution might seem exaggeratedly difficult compared with the one 
using Eisenstein's criterion, but the idea was too nice not to be presented here. 
The following problem can become a nightmare despite its apparent simplicity. 
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Example 3. Let A = {a3 +b3+c3 -3abci a, b, c E Z}. Prove that if x, y E A, 
then xy E A. 

 

Solution.  The observation that 

  

    

    

 

3 	3 	3 	r. a + b + c — oak = 

 

a c b 
b a c 
c b a 

    

leads to a quick solution. Indeed, it suffices to note that 

( a c b (x 
b a c 	y x z = 
c b a 	z y x 

(ax+cy+bz az+by+cx ay+bx+cz 
= ay+bx+cz ax+cy+bz az+by+cx 

az+by+cx ay+bx+cz ax+cy+bz 

and thus 

(a3  + b3  + c3  — 3abc)(x2  + y3  + z3  — 3xyz) = A3  + B3  + C3  — 3ABC, 

where A = ax + bz + cy, B = ay + bx + cz, C = az + by + cx. You see, identities 
are not so hard to find... 

We all know the famous Bezout's theorem, stating that if al, a2, 	, an  are 
relatively prime, then one can find integers kl, k2, 	, kn  such that kiai + 
k2a2  + • • • + knan  = 1. The following problem claims more, at least for n = 3. 

Example 4.1 Prove that if a, b, c are relatively prime integers, then there are 
integers x, y, z, u, v, w such that 

a(yw — zv) + b(zu — xw) + c(xv — yu) = 1. 
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Solution.  The given condition can be written in the form det A = 1, where 

a x u 
A= b y v . 

C Z W 

So, let us prove a much more general result. 

Theorem 9.3. Any vector v whose integer components are relatively prime is 
the first column of an integral matrix with determinant equal to I. 

Proof. We induct on the dimension n of the vector v. Indeed, for n = 2 
it is exactly Bezout's theorem. Now, assume that it is true for vectors in 
zn-1  and take v = (vi, v2, 	, vn) such that yi  are relatively prime. Con- 

sider 
	V 	Vn-i 

sider the numbers — 	, where g is the greatest common divisor of 

	

7 	7 • ' • 1 

g g 
v1 V2, • • • , Vn-l• They are relatively prime and the matrix 

a12 

an-1,2 

has determinant equal to 1. We can find a, such that ag f3vn  = 1 and 
matrix has integral entries and determinant 1: verify that the following 

u1 	a12  al,n-1 	
( 1)n-1 el 

g 

Vn-1 an-1,2 

vn 	0 

• • • 

a n - 1 , n - 	1)n-1,en-1  

9 
0 	1)n-ia 

In the chapter Look at the Exponent we have seen a rather complicated 
solution for the following problem. This one is much easier, but difficult to find: 

I 
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[Example 5. Prove that for any integers al , a2,••• n a , the number 

H aj — ai  

1<i<j<n 

is an integer. 

[Armond Spencer] AMM E 2637 

Solution.  With this introduction, the way to proceed is clear. What does the 

expression H (aj — ai) suggest? It is the Vandermonde's identity (9.1), 
1<i<j<n 

associated with al, a2, , an. But we have a hurdle here. We might want to 
use the same formula for the expression H (j  - i). This is a dead end. 

1<z<j<n 

But it is easy to prove that H (j - i) equals (n — 1)!(n — 2)! • • • 1!. Now, 
i<i<j<n 

we can write 

  

1-1 	— 	 1 

1<i<j<n 	
1! • 2! • • • (n — 1)! 

 

1 	1 	1 	1 
al 	a2 	a3 	an  

• • • • • • • • • 

n-1 	n-1 n-1 al 	a2 	a3 	an  rt 

  

As usual, the last step is the most important. The above formula can be 
rewritten as 

1 	1 	1 	 1 
al 	a2 	a3 	 an  

1! 	1! 	1! 	 1! 

n-1 	n-1 	 n-i a1 1 	a2 	a3 	 an  

(n — 1)! 	n — 1)! (n — 1)! 	(n — 1)! 

II aj  — ai 
. . = 

1<i<j<n 3  - 
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And now we recognize the form 

H  
1<i<j<n 

1 1 1 
( i ) (a2) 

1 
an 

( 1 ) 

ai — 
(a1

2
) (a22) (a2n) 

( al an  
— 1) (nag  1) 	(n — 1) 

which can be proved easily by subtracting lines. Because each number 
(a, 

 

is an integer, the determinant itself is an integer and the conclusion follows. 

At this point, you might be disappointed because we did not keep our promise: 
no trace of algebraic numbers appeared until now! Yet, we considered that a 
small introduction featuring easy problems and applications of linear algebra 
in number theory was absolutely necessary. Now, we can pass to the real 
purpose of this chapter, a small study of algebraic numbers. But what are 
they? Let us start with some definitions: we say that a complex number x is 
algebraic if it is a zero of a polynomial with rational coefficients. The monic 
polynomial of least degree, with rational coefficients and having x as a zero 
is called the minimal polynomial of x. Its other complex zeros are called the 
conjugates of x. Using the division algorithm, it is not difficult to prove that 
any polynomial with rational coefficients which has x as zero is a multiple of the 
minimal polynomial of x. Also, it is clear that the minimal polynomial of an 
algebraic number is irreducible in Q[X]. We say that the complex number x is 
an algebraic integer if it is zero of a monic polynomial with integer coefficients. 
You can prove, using Gauss's lemma, that an algebraic number is an algebraic 
integer if and only if its minimal polynomial has integer coefficients. In order 
to avoid confusion, we will call the usual integers "rational" integers in this 
chapter. There are two very important results concerning algebraic integers 
that you should know: 



THEORY AND EXAMPLES 189 

Theorem 9.4. The sum or product of two algebraic numbers is algebraic. The 
sum or product of two algebraic integers is an algebraic integer. 

Proof. This result is extremely important, because it shows that the algebraic 
integers form a ring. Denote this ring by AI. None of the known proofs 
is really easy. The one that we are going to present first uses the funda-
mental theorem of symmetric polynomials. Consider two algebraic numbers 
x and y and let xi , x2 , ..., xn  and yi, y2, ..., yrn  be the conjugates of x and y 

n m 
respectively. Next, look at the polynomial f (x) = fJ 11 (X — xi  — yi). We 

claim that it has rational coefficients. (The fact that x y is a zero of f 
being obvious.) This follows from the fundamental theorem of symmetric 
polynomials applied twice. Let R = Z[yi , y2, ..., yrn] be the ring considered 
in the statement of the Theorem 9.2. Because the coefficients of f are sym-
metric polynomials in xi, x2, ..., xn, it follows that every coefficient of f is of 
the form B( \ai, az, •••, Grn) Y1) Y2) • • • ) Ym), where ai  are the symmetric sums in 
xi, x2, ..., xri, and B is a polynomial with rational (respectively integer, if x, y 
are algebraic integers) coefficients. But the coefficients of f are also symmetric 

in Yi, Y2) • • • Y771 I so by taking R = Z[o-i ,o-2,...,a-n ] in Theorem 9.2, we deduce 
that A is a polynomial with rational (or integer) coefficients in the symmetric 
sums in xi, x2, ..., xn  and yi, y2, ..., yrn. Thus f has rational coefficients if x, y 
are algebraic and f has integer coefficients if x, y are algebraic integers. 

There is also a solution which uses only the most elementary linear alge-
bra! Indeed, we claim that a complex number z is an algebraic integer if and 
only if there exists a finitely generated commutative subring of C containing 
z. Indeed, if z is an algebraic integer, the division algorithm immediately 
shows that Z[z] is a finitely generated commutative subring of C. Now, sup-
pose that R is a commutative subring of C which is finitely generated and 
contains z. Take vi, vz, vn  that generate R and observe that the num-
bers zvi, zv2, zvn  are in R, thus they are linear combinations with integer 
coefficients of vi, v2, ..., vn. Let zvi  = adz)]. + az2v2 + + ainvn  for some in-
tegers and and let A be the matrix with entries a,9. The above system of 
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equations can be written as (z/n  — A)v = o, where v is the vector whose 
coordinates are v1, v2, ..., vn. Because v is not zero, the last relation implies 
det(z/n  — A) = 0 and thus z is a root of the characteristic polynomial of 
A, (which is unitary and has integer coefficients), because so does A. This 
proves the claim. Now, consider two algebraic integers x, y. By the previous 
characterization and the fact that clearly y is an algebraic integer over Z[x], 
it follows that Z[x, y] -= (Z[x])[y] = Z[x]vi + • • + Z[x]vin, and since x is an 
algebraic integer there exist Th., .., up  such that Z[x] = Zu1  + • • • + Zup. There-
fore Z[x, y] c zuk vi. Because Z[x + y] and Z[xy] are subsets of 

1<k<p,1</<Tri 
Z[x, y], by applying the characterization again it follows that x y and xy 
are algebraic integers. Note however (and it is very important) that the set 
of algebraic integers is not a field (the following theorem will make this state-
ment obvious), while the set of algebraic numbers is a field: if P(x) = 0 for 
some non-zero polynomial with integer coefficients P, then Q (1) = 0, where 
Q(X) = Xdeg(P) • P W. 

The next result is also very important, and we will see some of its applications 
in the following examples. 

Theorem 9.5. The only rational numbers which are also algebraic integers 
are the rational integers. 

Proof. The proof of this result is much easier. Indeed, suppose that x = P 

is a rational number (with gcd(p, q) = 1) which is also a zero of the monic 
polynomial with integer coefficients f (X) = Xn + an_iXn-1  + • • • + ctiX + ao. 
Then pn + an_ ipn—i q aipqn— aoqn = 0. Therefore q divides pn and 
since gcd(q,pn) = 1, we must have q = +1, which shows that x is a rational 
integer. Clearly, any rational integer x is an algebraic integer. 

Here is a very nice and difficult problem that appeared in AMM in 1998, and 
which is a consequence of these results. We prefer to give two solutions, one 
using the previous results and another one using linear algebra. A variant of 
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this problem was given in 2004 at a Team Selection Test in Romania, and it 
turned out to be a surprisingly difficult problem. 

Example 6.1 Consider the sequence (xn)n>0 defined by x0 = 4, xi = x2 = 0, 
x3 = 3 and xn+4 = xn+I. + xn. Prove that for any prime p the 
number xp  is a multiple of p. 

AMM 

Solution 1. Naturally, we start by considering the characteristic polynomial 
of the recursive relation: X4  — X — 1. It is easy to see that it cannot have 
a double zero. Using the theory of linear recursive sequences, it follows that 
the general term of the sequence is of the form Arl' + Br2 + Cr3 + Dr4 for 
some constants A, B, C, D. Here ri  are the distinct zeros of the caracteristic 
polynomial. Because this polynomial has no rational zero, it is natural to 
suppose that Arrii + Br2 + Cr731  + Dr4 is symmetric in r1, r2, r3, r4 and thus 
A=B=C=D. Because xo = 4, we should take A=B=C=D= 1. 
Now, let us see whether we can prove that xr, = ri + r722  + r73' + r4 for all n. 
Using Viete's formulae, we can check that this holds for n less than 4. But 

+4 since rim 	7,77 +1 + 	an inductive argument shows that the formula is true 
for any n. Hence we need to prove that p divides q+ r2 + r3 + r4 for any 
prime number p. This follows from the more general result (which is also a 
generalization of Fermat's little theorem): 

Theorem 9.6. Let f be a monic polynomial with integer coefficients and let 
r1, r2, rn  be its zeros (not necessarily distinct). Then A = (ri + r2 + • • + 
rn)P — (ri).  + r2 + • + r17,),) is a rational integer divisible by p for any prime 
number p. 

Proof. Theorem 9.2 shows that A is a rational integer because it is a symmetric 
polynomial in ri , r2, rn, and thus a polynomial with integer coefficients in 
the coefficients of f . The difficulty is to prove that it is a multiple of p. First 
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of all, let us prove by induction that if al , a2, ..., an  are algebraic integers then 
1  • ((al + a2 + • • • + ari )P - 	+ 4 + • • • + al,,;,)) is also an algebraic integer. 

For n = 2, this follows from the binomial formula 1  • ((a + b)P - aP - bP) = 
p-1 

E
P  • P  

• (P) • aP-2bi . Indeed, 1- (1?) is an integer, and we obtain a sum of products 
t=i 
of algebraic integers, which is an algebraic integer. Now, if the assertion is true 
for n-1, consider al, a2, ..., an  algebraic integers. By the inductive hypothesis, 
(al + a2 + • • • + an_l)P -(aP + 	+ • • + aPn_1) E p • AI. The case n = 2 
shows that (al + a2 + • • • + an)P - (al + a2 + • • • + an_i)P - 	E p • AI. 
Therefore, (al + az + • • • + an)P - 	+ 4 + • • • + an) E p • AI (as being the 
sum of the above expressions), which is exactly what we needed to finish the 
inductive step. Now, finishing the proof of the theorem is easy: we know that 
1  • ((al + a2 + • • • + an)P - + 4 + • • • + 4)) is a rational number which is 
also an algebraic integer. By theorem 4, it must be a rational integer. 

Solution 2. Let us consider the matrix 

( 0 
1 

A = 
0 
0 

0 
0 
1 
0 

0 
0 
0 
1 

1 
1 
0 
0 

and let Tr(X) be the sum of the entries of the main diagonal of the matrix X. 
We will first prove that xn  = Tr(An) (here A° = /4). This is going to be the 
easy part of the solution. Indeed, for n = 1, 2, 3 it is not difficult to verify it. 
Now, assume that the statement is true for all i = 1, 2, ... , n - 1 and prove 
that it is also true for n. This follows from 

Xn  = Xn_4 Xn_3 = Tr(An-4) Tr(An-3) = Tr(An-4(A + /4)) = Tr(An). 

We have used here the relation A4  = A + /4, which can be easily verified by a 
simple computation. Hence the claim is proved. 
Now, let us prove an important result-that is, Tr(AP) 	Tr(A) (mod p) for 
any integral matrix and any prime p. The proof is not trivial at all. A 
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possible advanced solution is to start by considering the matrix A obtained 
by reducing all entries of A modulo p, then by working in a field in which 
the characteristic polynomial of A has all its zeros A1, A2, ... , An. This field 
clearly has characteristic p (it contains Zp) and so we have (using the binomial 

(P formula and the fact that all coefficients 	
' 

1 < k < p — 1 are multiples of 

P) 
n 	

n 

	p 

 Tr(AP) = 	=- (E Az)= (TrA)P, 
i=1 

from where the conclusion is immediate, using Fermat's little theorem. 
But there is a beautiful elementary solution. Let us consider two integral 
matrices A, B, and write 

(A + B)P = 	E 	A1A2...Ap. 
A1,. .,Ap E{A,13} 

Observe that for any A, B we have Tr(AB) = Tr(BA), and, by induction, for 
any Xi, X2,... , Xn  and any cyclic permutation a, 

Tr (X X2 . • . Xn ) = Tr (X 0-(1)X0-(2) • X (n)) • 

Now, note that in the sum 	 AlA2...Ap we can form 2P  —  2  
A1,...,ApE{A,B} 

groups of p-cycles and that we have two more terms, AP and B. Thus 

I 	Tr(A1A2...Ap) _= Tr(AP) + Tr(BP) 
A1,...,ApE{A,B} 

modulo p (you have already noticed that Fermat's little theorem comes in 
handy once again), since the sum of Tr(A1A2 Ap) is a multiple of p in any 
cycle. Thus we have proved that 

Tr(A + B)P Tr(AP) + Tr(BP) (mod p) 

and by an immediate induction we also have 

Tr(Ai  + + Ak)P Tr(AD + • • + Tr(4) (mod p) . 
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Next, consider the matrices Ei3  that have 1 in the position (i, j) and 0 else-
where. For these matrices we have Tr(AP) =_ Tr(A) (mod p) and by using the 
above result we can write (using Fermat's little theorem one more time): 

TrAP = 
i,j 

E Tr(AP 	E aiiTrEij  = TrA (mod p). 

The result is proved, and with it the fact that xp  is a multiple of p. 

The example we are about to discuss next generated a whole mathematical 
theory and even an important area of research in transcendental number the-
ory. Let us start by introducing a definition: for a complex polynomial 

f (X) = ari Xn + an_iXn-1  + • • • +aiX +ao = ari (X —xi)• (X — x2) • • • (X — xn ) 

define the Mahler measure of f to be 

MU) = land • max(1,1xil) • • • max(1,1xn1)- 

You can immediately see that M(f g) = M(f)- M(g) for all polynomials f 
and g. Using complex analysis, we can prove the following identity: 

MU) 
	efol if(e2s7rt)Idt 

The next problem shows that a monic polynomial with integer coefficients and 
Mahler measure 1 has all of its zeros roots of unity. That is, the only algebraic 
integers all of whose conjugates lie on the unit disk of the complex plane are 
roots of the unity. This result is the celebrated Kronecker's theorem. 

[Example 7.] Let f be a monic polynomial with integer coefficients such that 
f (0) 0 and M(f) = 1. Then for each zero z of f there exists 
an n such that zn = 1. 

[Kronecker] 
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Solution.  What you are going to read now is one of those mathematical jew-
els that you do not come across every day, so enjoy the following proof. Let 
f (X) = (X — xi) • (X — x2) • • • (X — xn) be the factorization of f in C[X]. 
Consider now the polynomials fk (X) = (X — x11) • (X — 4) • • • (X — xn). The 
coefficients of these polynomials are symmetric polynomials in x1, x2, •-, xn, 
and since all symmetric fundamental sums of x1, x2, ..., xn, are integers, all fk  
have integer coefficients (we used Theorem 9.2 here). What is really awesome 
is that there is a uniform bound on the coefficients of fk. Indeed, because 
all xi  have absolute values at most 1, all symmetric fundamental sums in 
xki,x2k ...,xn  have absolute values at most ( ) . Therefore, all coefficients of 

all polynomials fk  are integers between — 2 ) and ( ). This shows that 

there are two identical polynomials among fi ,12,13, .... Let i > j be such 
that f, = f j . Consequently, there is a permutation a of 1, 2, ..., n such that 
xi = Xa(i), = X afro . An easy induction shows that xi

ir 
 = xo.

3  
,. (1)  for all 

r > 1. Because an!  (1) = 1, we deduce that xiini-a = 1 and so x1 is a root of the 
unity. Clearly, we can similarly prove that x2, x3, ..., xn  are roots of the unity. 
After this example, a natural question appears: are there algebraic integers on 
the unit circle that are not roots of unity? The answer is yes, as the following 
example shows. Actually, part a) was known much before its publication in 
AMM. We invite the reader to take a look at the last chapter of this book 
for a proof of this more general result. Burnside proved a much more general 
result, which is left as exercise in the Problems for Training section, as 
a lemma in his famous theorem stating that any group whose cardinality is 
of the form pa qb  for some primes p, q and some positive integers a, b is solvable. 

[Example 8. a) If a is a root of unity whose real part is an algebraic integer, 

then a4  = 1. 
b) There are algebraic integers of absolute value 1 and which 
are not roots of the unity. 

[H. S. Shapiro] AMM 4656 

2
+a- 1 

Solution.  The proof of a) is very ingenious. Let b = Re(a) = a 	be the 
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real part of a, and consider ai, a2, ak the conjugates of a. We claim that 
the conjugates of b are distinct numbers among Re(ai), Re(a2), Re(ak). In- 

deed, the polynomial 	(x 	 has b as a zero and its coefficients are 2 
3=1  

symmetric polynomials in ai  (because a3N  = 1 for a suitable N), and rational 
by the theorem of symmetric polynomials. Thus all conjugates of b are among 
the zeros of this polynomial. On the other hand, if a4  1 then a4 1 for all 
j and so 0 < IRe(aj)I < 1, which means that the absolute value of the product 
of all conjugates of b is smaller than 1. Let h be the minimal polynomial of 
b over Q. Because b is an algebraic integer, h has integer coefficients, thus 
h(0) is an integer. But 11(0)1 is also the absolute value of the product of all 
conjugates of b, which is smaller than 1. It follows that h(0) = 0, and because 
h is irreducible in Q[X], it follows that h(X) = X and so b = 0, which is 
impossible if a4 	1. Now b) is not so difficult. We will take a a zero of a 
polynomial of the form (X + 1)4  — uX2  for some integer u. We need to have 
I a I = 1 and also Re(a) needs to be an algebraic integer. If we also manage 
to ensure that a4  1, then we are done by a). You can easily check that by 

taking u = 8 all conditions are satisfied, and so 0 — 1 + iN/20 — 2 is an 
algebraic integer on the unit circle which is not a root of the unity. 

Some more comments on the previous examples are needed. First of all, it 
is not difficult to deduce from this result that the only monic polynomi-
als with integer coefficients whose Mahler measure is 1 are products of X 
and some cyclotomic polynomials. A famous conjecture of Lehmer says that 
there exists a constant c > 1 such that if a polynomial with integer coeffi-
cients has Mahler measure greater than 1, then its Mahler measure is actually 
greater than c. The polynomial with least Mahler measure found up to now 
is X19  + X9  X7  X6  X5  X4 	 X3  + X + 1, whose Mahler measure is 
about 1.176. For some upper bounds of the Mahler measure in terms of the 
coefficients of the polynomial, we refer the reader to example 16 of chapter 
Pigeonhole Principle Revisited. 

Showing that a sum of square roots of positive integers is not a rational number 
is not difficult as long as the number of square roots is less than 3. Otherwise, 
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this is much more complicated. Actually, one can prove the very beautiful 
result that if al, ..., an  are positive integers such that /571  + • • • + Van  is a 
rational number, then all a, are perfect squares. The following problem claims 
much less, but is still not simple. We will see how easy it becomes in the 
framework of the above results. 

Example 9. ] Prove that the number 

V10012  + 1 + V10022  + 1 + • • • + .V20002  + 1 

is irrational. 

Chinese TST 2005 

Solution.  Let us suppose that the number is rational. Because it is a sum of 
algebraic integers, it is also an algebraic integer. By theorem 4, it follows that 
V10012  + 1 + V10022  + 1 + • • • + -V20002  + 1 is a rational integer. Hence 

V10012  + 1 + -V10022  + 1 + • • • + .V20002  + 1 — (1001 + 1002 + • • • + 2000) 

is a rational integer. But this cannot hold, because 

V10012  + 1 + V10022  + 1 + • • • + -V20002  + 1 — (1001 + 1002 + • • • + 2000) = 

1 	 1 	 1 
• 

1001 + -V10012  + 1 + 
	 + + 
1002 + -V10022  + 1 	2000 + V20002  + 1 

is greater than 0 and smaller than 1. 

The following example is very elegant, and you can easily check that the result 
is sharp: 

Example 10. Let x, y be complex numbers such that the expression x'-Y'  x-y 
is an integer for some 4 consecutive positive integers n. Prove 
that it is an integer for any positive integer n. 

  

[Clark Kimberling] AMM E 2998 
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Solution.  Let an  be the given expression and let S = x+ y, P = xy. Observe 
that ari+2 - San+i + Pan  = 0 for all n. Also, it is not difficult to prove that 

- a2 = — pa-1 
art+ 1 an- 1 	 . Thus if an_i, an, and-1, ar,+2 are all integers, so are 
P71-1  and Pn. Thus P is an algebraic integer which is also rational (because 
P = p5-5 15 so that P is an integer. On the other hand, it is immediate to - 
prove by induction that an  = fn(S) for some monic polynomial fn  with integer 
coefficients, of degree n - 1. This shows that S is a zero of the monic polyno-
mial with integer coefficients fn  (X) - an, so S is an algebraic integer. Because 
S = an±2±Pan , S is also rational. Thus S is an integer, and in this case it and-1 
is obvious that all terms of the sequence are integers, by the recursive relation. 

Here is a beautiful and difficult problem, where properties of algebraic integers 
come to the spotlight. 

Example 11.1 Let al, a2, ak be positive real numbers such that Y\l/a + 

	

 	n a2 + • • • +'•=v/ik is a rational number for all 7/ > 2. Prove 
that ai = a2 = ••• = ak  = 1. 

Solution.  First of all, we will prove that al, a2, ak are algebraic numbers 
and that al  • a2 • • • ak = 1. Take an integer N > k and put 

X1 = Nyai, x2  = NVF/2, 	N!/—  xk = ak. 

Then clearly xi + 4 + • • • + xk  is rational for all 1 < j < N. Using New- 
ton's formulae, we can easily deduce that all symmetric fundamental sums of 
xi, x2, 	xk are rational numbers. Hence xi, x2, ..., xk are algebraic numbers, 
and so al = 411 , a2 = 	•.., ak = 	are algebraic numbers as well. Also, 
by the argument above, we know that 

xi • x2  • • xk = Val • a2 • • • ak 

is rational, and this happens for all N > k. This implies immediately that 
al • a2 • • • ak = 1. Now let f(x) = brXr  +br-iXr-1  + • • • + b0 be a polynomial 
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with integer coefficients which vanishes at al, a2, •••, ak. Clearly, brat, •••, brak 
are algebraic integers. But then 

br ( VFL I  + Va2 + • • • + c/Ftk) = 	• ( Vbral + Vbra2 + • • • + Vbrak) 

is also an algebraic integer. Because it is also a rational number it follows 
that it is a rational integer. Consequently, (br ( +iy(a,2 + • • • +"-‘,X))7i>i 
is a sequence of positive integers. Because it converges to kbr , it eventu-
ally becomes equal to kbr  (from a rank). Thus there is n such that + 

+ • • • + VaT, = k. Since al • a2 • • • ak = 1, the AM-GM inequality implies 
al = a2 = • • • = ak = 1 and the problem is solved. 
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9.2 Problems for training 

1. Let F1 = 1, F2 = 1 and Fri  = Fn-1+ Fn-2 for all n > 3 be the Fibonacci 
sequence. Prove that 

Fn±,Fn_l— = (-1)Th and Fm+n = FnFrn-i Fn±iFm. 

2. Compute the product 	H (63  - Ei)2, where 
0<l<3<n-1 

2 
Ek = cos 

2k71- 
± 'I sin  k  

n 	n 

for all k E {0 , 1, 	, n - 1}. 

3. Let al, a2, 	, an  E R. A move is transforming the n-tuple (x1, x2, . • • , xn) 
into the n-tuple 

(X1 + X2 X2 + X3 	Xn-1 Xn  Xn  + Xi 

Prove that if we start with an arbitrary n-tuple (al, a2) • • • an), after 
finitely many moves we obtain an n-tuple (A1, A2, , An) such that 

max lAr  - Aj I < 22005 • i<i<j<n 

4. Let a, b, c be relatively prime nonzero integers. Prove that for any rela-
tively prime integers u, v, w satisfying au+bv+cw = 0, there are integers 
m, n, p such that 

a = nw - pv, b = pu - mw , c = mv - nu. 

2 	2 	 2 	2 

1 

Octavian Stgna§ila, Romanian TST 1989 
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5. Prove that for any integers al , a2 , 	, an  the following number 

lcm(ai, a2, • • • an)  

a1a2 • • an H (ai — ai) 
1<i<j<n 

is an integer divisible by 1!2! • • • (n — 2)!. Moreover, we cannot replace 
1!2! • • • (n — 2)! by any other multiple of 1!2! • • (n — 2)!. 

6. Let A, B, C be lattice points such that the angles of triangle ABC are 
rational multiples of 7r. Prove that triangle ABC is right and isosceles. 

7. Let P be a regular polygon with 2001 sides, inscribed in the unit circle. 
Prove that the lengths of all sides and diagonals of P are irrational. 

AMM 

8. Find all non-isosceles triangles with at least two sides rational numbers 
and having all angles rational numbers, when measured in degrees. 

Ron Evans, AMM E 2668 

9. Let p be a prime and let al, a2, 	, ap+i be real numbers such that no 
matter how we eliminate one of them, the rest of the numbers can be 
divided into at least two nonempty pairwise disjoint subsets each having 
the same arithmetic mean. Prove that al = a2 = • • • = ap+i.• 

Marius RAdulescu, Romanian TST 1994 

10. Let a, b, c be integers. Define the sequence (xn)n>0 by xo = 4, x1 = 0, 
x2 = 2c, x3 = 3b and xn+3 = axn—i + bxn cxn±i. Prove that for any 
prime p and any positive integer m, the number xpm is divisible by p. 

CalM Popescu, Romanian TST 2004 
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11. Let a, b be two positive rational numbers such that for some n > 2 the 
number 7,  + vi) is rational. Prove that 	is also rational. 

Marius Cavachi, Gazeta Matematic6 

12. Prove that the polynomial X' — 1 is divisible by a cubic monic polyno-
mial, with integer coefficients if and only 

Marcel Tena, Gazeta Matematicg Contest 

13. Prove that each of the numbers Vn + 1 — AF7, for positive integers n can 
be the written in the form 2 cos ( 7r) for some integers k, m. 

Chinese Olympiad 

14. Prove that if al, a2, ..., am  are positive integers, none of which is di-
visible by the square of a prime number, and all having prime divi-
sors in the set S = {Pi, P2 	then there exist nonzero integers 
ci , c2, 	ce, d1, d2, ..., de  such that 	> 0, all prime divisors of ci C2 • Ce 

are in S and 

(di 	+ d2 c2 + • " + de AX) 	+ b2 %/a2 + " • + bn  Van) 

is a nonzero integer. Thus, the set of square roots of the square-free pos-
itive integers is linearly independent over the field of rational numbers. 

Kvant 

15. Let a be an algebraic number, and denote by K = Q[a] the field gen-
erated by a over Q. Prove that there exists a positive integer m and 
algebraic integers al, a2, ..., am  E K such that any other algebraic inte-
ger in K is a linear combination, with rational integer coefficients, of 
al , a2, 	am,. 

if 31n or 41n. 
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16. Let at, a2, ..., an  be algebraic integers linearly independent over the field 
of rational numbers. Prove that there exists a positive constant C and 
a positive integer N such that for all rational numbers qi, qz, ..., qn, not 
all zero, 

C 
lqiai + q2a2 + • . • + qnanl ?: (km 	+1(721+  ... ± ',Inv- 

John Mc Carthy, AMM 4798 

17. Let m, 11 be relatively prime numbers and x > 1 be a real number such 
that xm+2-- and xn+IF-, are integers. Prove that x +1 is also an integer. 

18. Consider 5 roots of order n of unity whose sum is not 0. Prove that the 
absolute value of their sum is at least 5'. 

Gerald Myerson, AMM 

19. Find all solutions in rational numbers to the equation 

a2 b + b2c + c2d + d2a = 0. 
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10.1 Theory and examples 

Another topic with old tricks... you will probably say. Yet we might spend 
time on a problem just because we ignore obvious clues or basic aspects of it. 
This is why we think that talking about these "old fashioned tricks" is not 
because of lack of imagination, but rather an imperious need. In this note we 
combine some classical arithmetic properties of polynomials. This is just an 
introduction to this field, but some basic things should become second nature, 
and among them there will be some problems we discuss further. As usual, 
we keep some chestnuts for the end of the chapter, hoping that the hard-core 
solver will appreciate these extremely difficult problems. 
Recall that if f E Z[X] and a, b are integers, then a —b divides f (a)—f (b). This 
is the essential result which we will use relentlessly. Here are two applications: 

Let f, g be relatively prime polynomials with integer coeffi-
cients. Define the sequence an  = gcd(f (n), g(n)). Prove that 
this sequence is periodic. 

AMM 

Solution.  As we have seen in previous problems, there exist polynomials F, G 
with integer coefficients and a positive integer A such that f F + gG = A. Thus 
an  is a divisor of A for all n. Actually, we will prove that A is a period for the 
sequence (an)n>1. Let us prove that an  an,±A. We know that f (n + A) = f (n) 
(mod A), and since an  divides A and f (n), it will also divide f (n + A). Simi-
larly, an  divides g(n + A) and so an  I an+A. But the same relations show that 
an+A divides an  and so an  = an+A• 

Example 2. Let p E Z[x] be such that deg p > 1, and let A = {p(n) In E Z}. 
Prove that there exists an infinite arithmetical sequence none 
of whose terms can be expressed in the form f(x) for some 
integer x. 
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Solution.  We will argue by contradiction: suppose that for all d > 2 and all n 
at least one of the numbers f (x) with x integer gives remainder n when divided 
by d. This means that for all n and d, the numbers p(n),p(n+1), p (n,+ d —1) 
give all remainders mod d. Indeed, because n, n +1, n+d— 1 are a complete 
system mod d, it follows that for any x, p(x) gives the same remainder mod 
d as one of p(n),p(n + 1), p(n + d — 1). In particular, any residue mod d 
appears as a residue mod d of one of the numbers p(n), p(n +1), ..., p(n+ d —1). 
Because deg(p) > 1, there exists n such that d = p(n + 1) — p(n) > 2. In this 
case, p(n) = p(n +1) (mod d) and so the numbers p(n), p(n+ 1), p(n + d — 1) 
give at most d — 1 distinct remainders mod d, which is a contradiction. 

We continue with an important result, due to Schur, that appears in many 
variations in contests. Even though in the topic At the Border of Analy-
sis and Number Theory we prove an even more general result based on a 
nice analytical argument, we prefer to present here a purely arithmetical proof. 

Example 3.1 Let f E Z[X] be a non-constant polynomial. Then the set of 
prime numbers dividing at least one nonzero number among 

f (1), f (2), 	, f (n), 

is infinite. 

[Schur] 

Solution.  First, suppose that f (0) = 1 and consider the numbers f (n!). For 
sufficiently large n, they are nonzero integers. Moreover, f (n!) 1 (mod n!) 
and so if we pick a prime divisor of each of the numbers f (n!), the conclusion 
follows (since in particular any such prime divisor is greater than n). Now, 
if f (0) = 0, everything is clear because in this case n divides f (n) for all n. 

x f (0
, Suppose that f (0) 0 and consider the polynomial g(x) 

f (f 

 (0) 

 )) 
 . Clearly 

 
g E Z[X] and g(0) = 1. Applying now the first part of the solution, the 
problem is solved. 
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This result has, as we have already said, important consequences. Here is a 
nice application. 

Example 4. I Suppose that f, g E Z[X] are monic nonconstant irreducible 
polynomials such that for all sufficiently large n, f (n) and g(n) 
have the same set of prime divisors. Then f = g. 

Solution. Indeed, by Gauss's lemma, the two polynomials are irreducible in 
Q[X]. In addition, if they are not equal, then the above remark and the fact 
that they have the same leading coefficient implies that the two polynomials 
are relatively prime in Q[X]. Using Bezout's theorem we conclude that there 
is a nonzero integer N and P, Q E Z[X] such that fP + gQ = N. This shows, 
that for n large enough, all prime factors of f (n) divide N. But, of course, 
this contradicts Schur's result. 

The result of Example 2 remains true if we assume the same property is valid 
for infinitely many numbers n. Yet the proof uses some highly non-elementary 
results of Erdos. The interested reader will find rich literature on this field. 
A refinement of Schur's theorem is discussed in the following example. The 
key additional ingredient is the Chinese remainder theorem. 

Example 5. 1 	f E Z[X] be a non constant polynomial and let n, k be L_ 
positive integers. Prove that there exists a positive integer a 
such that each of the numbers f (a), f (a + 1), . , f (a + n — 1) 
has at least k distinct prime divisors. 

Bulgarian Olympiad 

Solution. Let us consider an array of distinct prime numbers (pii)i<i, j<k such 
that f (xis) 0 (mod pig) for some positive integers xis. This is just a direct 
consequence of Schur's theorem. Now, using the Chinese remainder theorem, 
we can find a positive integer a such that a + i — 1 (mod pig ) for all 
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indices i and j. Using the fundamental result mentioned in the beginning 
(namely that f (a) — f (b) is always divisible by a — b), it follows that each of 
the numbers f (a), f (a+1), . . , f (a+n —1) has at least k distinct prime divisors. 

We continue with two more difficult examples of problems whose solutions are 
based on combinations of Schur's theorem with various classical arguments. 

[Example 6.1 For integral m, let p(m) be the greatest prime positive divisor 
of m. By convention we set p(1) = p(-1) = 1 and p(0) = co. 
Find all polynomials f with integer coefficients such that the 
sequence (p(f (n2)) — 2n),,>0 is bounded above. 

[Titu Andreescu, Gabriel Dospinescu] USAMO 2006 

Solution.  When searching for the possible answer, one should start with easy 
examples. Here, the quadratic polynomials might give an insight. Indeed, 
observe that if u is an odd integer then the polynomial f(X) = 4X — u2  is 
a solution to the problem. This suggests that any polynomial of the form 
c(4X — ai)(4X — 4)...(4X — al) is a solution if c is a nonzero integer and 
al , a2 , a/ are odd integers. Indeed, any prime divisor p of f (n2) is either a 
divisor of c (and thus in a finite set) or a divisor of some (2n — a3 ) (2n + a3). 
In this case p — 2n < max(ai , a2, ak) and so f is a solution of the problem. 
We deal now with the much more difficult part: showing the converse. Take 
f a polynomial that satisfies the conditions of the problem, and suppose that 
p(f (n2)) — 2n < 2A for some constant A. Using Schur's theorem for the poly-
nomial f (X 2), we deduce the existence of a sequence of different prime num-
bers p3  and nonnegative integers k3  such that p3  Define the sequence 
r3  = min(k3  (mod p3 ), 1)3  — k3  (mod p3 )) and observe that p3  divides f (7-32) 

and also that 0 < r3  < P32 1. Hence 1 < p3  — 2r3  < A and so the sequence 
(p3  — 2r3  )3>1 must take some value al infinitely many times. Let p3  — 2r = al 
for j in an infinite set X. Then, if m = deg( f), we have p3  14m f ((P3 

 2a1)2) 
 

for all j E X and also the polynomial 4772  • f((x-2a1\2\  ) ) has integer coefficients. 
a2 	 a2 i This shows that pl  divides 4m • f (-,1-) for infinitely many j. Hence -,11  s a root 
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of f . Because f (n2) does not vanish, al  must be odd. This means that there 
exists a polynomial g with integer coefficients and a rational number r such 
that f (X) -= r(4X — aT)g(X). Of course, g has the same property as f, and 
applying the previous arguments finitely many times we deduce that f must 
be of the form c(4X — a?)(4X — 4)...(4X — ak) for a certain rational number 
c and odd integers al, a2, ak. But do not forget that all coefficients of f are 
integers! Therefore the denominator of c is a divisor of both 4m and 4.4...4, 
thus it is 1. This shows that c is an integer and the solution finishes here. 

The next problem, which uses Schur's theorem, also needs a classical result, 
a very particular case of Hensel's lemma. Let us first state and prove this 
result and then concentrate on the following problem. So, let us first prove 
the following: 

Lemma 10.1 (Hensel's lemma). Let f be a polynomial with integer coeffi-
cients, p a prime number and n an integer such that p divides f (n) and p does 
not divide f (n). Then there exists a sequence (nk)k>1  of integers such that 
ni = n, pk  divides nk+1 — nk and pk  divides f (nk). 

Proof. The proof is surprisingly simple. Indeed, let us suppose that we have 
found i and search for ni+i = ni +b.pi  such that pi+1  divides f (ni+i). Because 
2i > i + 1, using the binomial formula yields 

f (ni  + b • pi) = f (ni) + bpi f i  (ni) (mod pz+1). 

Let f (ni ) = cpz for some integer c. Because 74 n (mod p), we have rni) 
(n) (mod p) and so rni) is invertible modulo p. Let m be the inverse 

of rn.,) modulo p. It is enough to choose b = —mc in order to finish the 
inductive step. 

We can now discuss a difficult problem used for the preparation of the Iranian 
IMO team: 
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[Example 7. Find all polynomials f with integer coefficients such that nlm 
whenever f (n)I f (m). 

 

[Mohsen Jamali] Iranian TST 

Solution.  [Adrian Zahariuc] With this preparation, the solution will be short, 
which does not mean that the problem is easy (as we already said). First of 
all, observe that for a nonconstant polynomial with integer coefficients such 
that f (0) 0 and for any k there are infinitely many prime numbers p such 
that PkIi(n)  for some integer n. Indeed, by working with an irreducible divisor 
of f , we can assume that f is irreducible. Thus f and f' are relatively prime 
in the ring of polynomials with rational coefficients. Bezout's theorem shows 
in this case that there exist integer polynomials S, Q and an integer A 0 
such that Sf Qf' =- A. Therefore, if p is a sufficiently large prime such that 

plf(n) for some 71 (the existence of infinitely many such primes follows from 
Schur's theorem), p will not divide fi(n), and we can apply Hensel's lemma 
to finish the proof of this result. 
Next, observe that XI f (X). Indeed, we have f(n)I f(n f (n)) for all n, 
so nIn + f (n) for all it which easily implies f (0) = 0. So, let us write 
f (X) = Xk g(X) with g(0) 0. Assume that g is nonconstant. By the 
previous result, there exists a prime p such that p > 19(0)1 and pk1g(m) for 
some integer m. Clearly, p does not divide g(p), so by the Chinese remain-
der theorem there exists an integer n such that n m (mod pk ) and n p 
(mod g(p)). Thus pk Ig(n) and g (p)Ig (n), and thus f (p)1 f (n). This implies 
that pin, and this is impossible, because it would follow that plg(0). Thus g 
is constant and the answer is: all polynomials of the form can. 

Here is another application of Hensel's lemma. The example below is quite a 
difficult problem, especially because examples of small degree cannot be found: 

Example 8:1 Is there a polynomial f with integer coefficients that has no 
rational zeros, but has a zero modulo any positive integer? 

Kornai 
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Solution. The answer is yes, but it is not obvious why such polynomials 
exist. A very difficult theorem of Chebotarev implies that such polynomials 
with small degree (smaller than 5) do not exist. It can be proved that there are 
such polynomials of degree 5, but the example we have chosen has degree 6: 
define f (X) = (X2 3)(x2 _ 13)(x2+ 39). We will prove that for any n there 
exists m such that n1 f (m). Observe first of all that it is enough to prove this if 
n is a power of a prime. Indeed, if we can find ml , m2 such that ni If (mi) and 
n2I f (m2) for some relatively prime integers ni, n2 then by taking m such that 
m = m1 (mod ni) and m = m2 (mod n2) (which is possible by the Chinese 
remainder theorem) we have an m such that nin2 If (m). Let us now deal with 
powers of 2. We will prove by induction the existence of a sequence xn  such 
that 2n1xn2  + 39. For n = 1 we take x1 = 1, for n = 2 we take x2 = 1, as well 
as x3 = 1. Now assume that xn2  + 39 = 2n  • k for some integer k and n > 3. 
Then (2n-1x x n)2 + 39 = 2n(xxn + k) (mod 2n+1). If k is even we define 
Xn+1 = xn• Otherwise, we define x = 1 and so xn+1 = xn  + k. In either case, 
2n+11xn2+1 + 39. Now, let us deal with powers of 3 and 13; actually, this case 
follows immediately from Hensel's lemma applied to the polynomials X2  - 13 
and X2 +3, with n = 1 and n = 6 respectively. Finally, take p a prime number 

different from 2, 3, 13 and observe that the identity ( -39) • (13) • (1 = 1 
P 	P 	P 

(where M denotes the Legendre symbol) implies that one of the numbers 

(-39)(la) and (=3-) equals 1. This shows the existence of an integer m 
P 

such that for some a equal to 3, -13, 39 we have plm2  + a. It is now enough to 
apply Hensel's lemma for the polynomial X2  + a in order to obtain a sequence 
xn  such that PnI4, 
any prime p and any positive integer n, and by the remark in the beginning 
of the solution this polynomial is a solution of the problem. 

[Example 9. Find all polynomials f with integer coefficients and the follow-
ing property: for any relatively prime positive integers a, b, the 
sequence (f (an + b)),>0 contains an infinite number of terms, 
any two of which are relatively prime. 

+ a for all n. This shows that f has a root modulo pn for 

[Gabriel Dospinescu] 



214 	10. ARITHMETIC PROPERTIES OF POLYNOMIALS 

Solution. Clearly, constant polynomials can be eliminated. We will prove 
that the only polynomials with this property are those of the form X" and 
—X', with n a positive integer. Because changing f with its opposite does 
not modify the property of the polynomial, we can assume that the leading 
coefficient of f is positive. Hence there exists a constant M such that f (n) > 2 
for all n > M. From now on, we consider only n > M. Let us prove that 
we have gcd(f(n), n) 1 for any such n. Suppose that there is an n > M 
such that gcd(f (n), n) = 1. The sequence (f (n + k f (n)))k>0 would contain 
at least two relatively prime numbers. Let them be s and r. Because f (n) 
kf(n) = kf(n) + n — n I f(kf(n)+n)— f(n), we have f(n) f(n+kf(n)) for 
any positive integer k. It follows that s and r are both multiples of f (n) > 2, 
which is impossible. We have shown that gcd(f(n), n) 1 for any n > M. 
Thus for any prime p > M we have pj f (p) and so pl f (0). Because any nonzero 
integer has a finite number of divisors, we conclude that f (0) = 0. Hence 
there is a polynomial q with integer coefficients such that f (X) = X q(X). 
It is clear that q has positive leading coefficient and the same property as f . 
Repeating the above argument, we infer that if q is nonconstant, then q(0) = 0 
and q(X) = X h(X). Because f is nonconstant, the above argument cannot 
be repeated infinitely many times, and thus one of the polynomials g and h 
must be constant. Consequently, there are positive integers n, k such that 
f (X) = kX". But since the sequence (f (2n + 3))„>0 contains at least two 
relatively prime integers, we must have k = 1. We obtain that f is of the form 
X'. Because f is a solution if and only if —f is a solution, we infer that any 
solution of the problem is a polynomial of the form ±Xn. 

Now let us prove that the polynomials of the form X', —X' are solutions. It 
suffices to prove it for X' and even for X; but this follows from Dirichlet's the-
orem. There is another more elementary approach. Suppose that xi, x2, , xp  
are chosen such that the numbers ax, + b are pairwise relatively prime. We 
prove that we can add xp+i so that axl + b, ax2 + b, . . . , axp±i + b are pairwise 
relatively prime. Clearly, ax1  + b, ax2  + b, . . . , axp  + b are relatively prime to a, 
so we can apply the Chinese remainder theorem to find an xp±i greater than 
xi, x2, , xp, such that xp+1  (1 — b)az-1  (mod axi + b), i E {1, 2, ... ,p}, 
where ai-1  is a's inverse in Z*x,±1). Then gcd(axp±i + b, ax, + b) = 1 for 
i E {1,2, , p} and thus we can add xp-Fi. 
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Example 10.] Find all polynomials f with integer coefficients such that 

f (n) Inn-1  — 1 for all sufficiently large n. 

[Gabriel Dospinescu] 

Solution. Clearly, f (X) = X — 1 is a solution, so let us consider an arbitrary 
solution and write it in the form f (X) = (X —1)7* g(X) with r > 0 and g E Z[X] 
with g(1) 0. Thus there exists M such that g(n)Inn-1  — 1 for all n > M. 
We will prove that g is constant. Assuming the contrary, we may assume 
without loss of generality that the leading coefficient of g is positive. Thus 
there is k > M such that g(n) > 2 and g(n)Inn-1  — 1 for all n > k. Now, since 
n + g(n) — nig (n + g(n)) — g(n), we deduce that g(n)1g(n + g(n)) for all n. In 
particular, for all n > k we have 

g(n)Ig(n + g(n))1(n + g(n))n±g(n)-1  — 1 

and g(n)10-1  — 1. Of course, this implies that 

— g(n) Inn±g(n) 1 	1  =(nn — )rtg(n)  ng(n)  — 1, 

that is g(n)Ing(n) — 1 for all n > k. Now, let us consider a prime number p > k 
and let us look at the smallest prime divisor q of g(p + 1) > 2. We clearly have 
qlg(p +1)1(p +1)9(7)+1)  — 1 and gl(p + 1)q-1  — 1. Since gcd(g(p + 1), g — 1) = 1 
(by minimality) and 

, gcd((p + 1)9(7)+1-)  — 1, (p + 1)q-1 	
1) 	1)gcd(g(P+1),q-1) 	1 = p 

it follows that we actually have p = q. This shows that plg(p + 1) and thus 
(again using the fundamental result) plg(1). Because this occurs for any prime 
number p > k, we must have g(1) = 0. This contradiction shows that g is 
indeed constant. 
Let g(X) = c. Thus cl2n(2n-1) — 1 for all n > M. Given that gcd(2a — 

2b — 1) = 2gcd(a,b) 1, in order to show that 1cl = 1, it suffices to exhibit 
k < m < n such that gcd(m(2m — 1), n(2n — 1)) = 1. This is easy to achieve. 
Indeed, it suffices to take a prime number m greater than M, k and to choose 
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a prime number n greater than m(2m - 1). A simple argument shows that 
gcd(m(277' - 	n(2n - 1)) = 1 and so 	= 1. 
Finally, let us prove that r < 2. Assuming the contrary, we deduce that 

(n - 1)31nn-1  - 1 <=> (n - 1)2 ni  n-2 + nn-3 	n +1 

for all sufficiently large n, and since 

nn-2 nn-3 ± • • • +n+1= 

= (n - 1)[nn-3  + 2nn-4  + • • • + (n - 3)n + (n - 2) + 

we obtain n - 1l nn 3 + 20-4  + • • + (n - 3)n + (n - 2) + 1 for all sufficiently 
large n, which is clearly impossible, since 

n'3  + 2n'4  + • • • + (n - 3)n + (n - 2) + 1 1 + 2 + • • • + (n - 2) + 1 

(n - 1)(n  - 2) 
+ 1 (mod n - 1). 

2 

Hence r < 2. The relation 

nn-1 — 1= (n - 1)2[nn-3 + 2e-4 + • • • + (n - 3)n + (n - 2) + 1] 

shows that (n - 1)2inn-1  - 1 for all n > 1 and allows us to conclude that all 
solutions are the polynomials +(X - 1)r , with r E {0,1, 2}. 

After reading the solution of the following problem, you might think that the 
problem is very simple. Actually, it is extremely difficult. There are many 
possible approaches that fail and the time spent for solving such a problem 
can be significant. 

Example 11d Let f E Z[X] be a nonconstant polynomial, and let k > 2 be 

an integer such that 10(n) E Z for all positive integers n. 
Then there exists a polynomial g E Z[X] such that f = g1. 



THEORY AND EXAMPLES 217 

Solution.  Let us assume the contrary, and let us factor f = pil ...psics gk where 
1 < k2 < k, and pi  are different irreducible polynomials in Q[X]. Suppose that 
s > 1 (which is the same as negating the conclusion). Because p1 is irreducible 
in Q[X], it is relatively prime with /42  p, and thus (using Bezout's theo-
rem and multiplication by integers) there exist polynomials Q, R with integer 
coefficients and a positive integer c such that 

Q(x)pi(x) + R(x)pii (x)p2(x) 	ps(x) =- c. 

Now, using the result from Example 1, we can take a prime number q > I cl 
and a number n such that qlpi(n) 0. We have of course qlpi(n + q) (since 
pi  (n q) = pi (n) (mod q)). The choice q > 1cl ensures that q does not divide 

P2(n) • • .ps(n) and so vq ( f (n)) = vq(pi(n)) + kvq(g(n)). But the hypothesis 
implies that k vq(f(n)), so vq (pi(n)) > 2. In a similar manner we obtain 
vq(pi(n + q)) > 2. Yet, using the binomial formula, 

Pi (n + q) = Pi (n) 	(n) (mod q2). 

Hence we must have qlpi (n), which contradicts the fact that q > I cl and 

Q(x)pi(x) + R(x)pii (x)p2(x) 	ps(x) = c. 

This contradiction shows that s > 1 is false and the result follows. 

The next problem was given at the USA TST 2005 and uses a nice combination 
of arithmetic considerations and complex number computations. We take 
advantage of many arithmetical properties of polynomials in this problem, 
although the problem itself is not so difficult (if we find a good way to solve 
it, of course...). 

Example 12.1  A polynomial f E Z[X] is called special if for any positive in-
teger k > 1, the sequence 1(4 f (2), f (3), . contains num-
bers which are relatively prime to k. Prove that for any 
n > 1, at least 71% of all monic polynomials of degree n with 
coefficients in the set {1,2, , n!} are special. 

[Titu Andreescu, Gabriel Dospinescu] USA TST 2005 
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Solution.  Of course, before counting such polynomials, it would be better to 
find an easier characterization for them. 
Let pi, p2, 	, pr  be all the prime numbers not exceeding n, and consider 
the sets Ai  = {f E MI Pilf(m),  d m E N*}, where M is the set of monic 
polynomials of degree n with coefficients in the set {1, 2, ... , n!}. We will 

prove that the set T of special polynomials is exactly M \ U Ai. Clearly, 
i=i 

T C M \ U Ai. The converse, however, is not that easy. Let us suppose that 
i<r 

f E Z[X] belongs to M \ U A, and let p be a prime number greater than 
7,=-1 

n. Because f is monic, Lagrange's theorem ensures that we can find m such 
that p is not a divisor of f(m). It follows that for any prime number q at 
least one of the numbers f (1), f (2), f (3), . . . is not a multiple of q. Let k > 1 
and let qi, q2,... , q, be its prime divisors. Then we can find ul, , us  such 
that q, does not divide f (u,). Using the Chinese remainder theorem, there is 
a positive integer x such that x u, (mod qi). Consequently, f(x) gui) 
(mod qi) and thus q, does not divide f (x), so gcd(f (x), k) = 1. The equality 
of the two sets is now proved. 
Using a raw estimation, we obtain 

r 

U Ai 
i=i 

?_ Iml - 	lAil. 
i=1 

(n!)n 
Let us now compute IA;  I. Actually, we will show that IN = 

a monic polynomial in Ai, 

f (X) = X' + an_iXn-1  + • • • + a1X + 

 

Let f be 

 

Then, for any m > 1, 

0 f (m) 	+ (al + ap  + a2p_1 + a3p-2 • . . )ni 

+(a2 ap+1 a2p + ... )m2  + • • + (ap—i + a2p-2 + a3p-3+ • • • )mP 1  (mod p), 
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where, for simplicity, we put p = A. Again, using Lagrange's theorem it 
follows that p i ao, p I al + ap  + a2p-1 + • • • • • • 1p I ap-1 a2p-2 + • • • 
We are going to use this later, but a small observation is still needed. Let 
us count the number of s-tuples (x1, x2, , x 3) E {1, 2, , n!}3  such that 
xl + x2 + • • • + xs  u (mod p), where u is fixed. Let 

27r27r 
E = cos — + sin — 

p 	p 

and observe that 
0= (E E2 	En!  

p-1 

1{(xl, X2, 	Xs) E {1) 21 • • • nfts 1 	+ • • + Xs 	k (mod P)}1. 
k=0 

A simple argument related to the irreducibility of the polynomial 1+ X + X 2  + 
• + XP-1  shows that all numbers that appear in the above sum are equal, 

and that their sum is (n!)8, thus each number equals (n!)S  
p 

We are now ready to finish the proof. Assume that among the numbers 
ai, ap, a2p_i, ... there are exactly vi numbers, and so on, finally there are 
vp_i numbers among ap_i, a2p_2, .... Using the above observations, it follows 
that 

n! (n!r1 	(n!)vP-1- 	(n!)fl 
I Ai I = p 	p 	p 	PP  

Hence 

I T1 (on - 
(n!)n 

p prime PP  

But 
1 	1 	1( 	1 	1 	1 	1  

55  ± 77  + 	< 55 	+ 5 + 52  + • • • < 1000 

and so the percent of special polynomials is at least 

100 
 (

1 - - 
1 ) 

= 75 
100 

 1> 71. 
4 27 1000 27 10 
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Just a few more observations about this problem. The authors discovered (af-
ter the problem was submitted and given in the TST) that this question was 
the object of Jan Turk's article The fixed divisor of a polynomial published in 
the fourth issue of the American Mathematical Monthly, 1986. In this arti-
cle, with a completely different idea and technique, much more involved and 
precise estimations are obtained. For instance, the author proves that the 
probability for a random polynomial with integer coefficients to be special is 

H (1 - 1), which is approximately 0.722. This shows that even though our 
PP  

estimations were very elementary, they were not far from reality. We invite 
the reader to read this fascinating article. 

Suppose that a polynomial f with integer coefficients has no 
double zeros. Then for any positive integer r there exists an 
n such that in the prime decomposition of f (n) there are at 
least r distinct prime divisors, all of them with exponent 1. 

Iranian Olympiad 

Solution. Already for r = 1 the problem is in no way obvious. So let's 
not attack the general case directly, but rather concentrate first on the case 
r = 1. Suppose the contrary, that is for all n the prime divisors of f (n) have 
exponent at least 2. Because f has no double zero, gcd(f, = 1 in C[X] and 
thus also in Q[X] (because of the division algorithm and Euclid's algorithm). 
Using Bezout's theorem in Q[X], we can find polynomials P, Q with integer 
coefficients such that P (n) f (n) + Q(n) f' (n) = c for some positive integer c. 
Using the result in the first example, we can take q > c a prime divisor of 
some f (n). Our hypothesis ensures that q2 lf (n). But then, also, ql f (n + q) 
and so q2 jf (n + q). Using Newton's binomial formula, we deduce immediately 
that f (n + q) = f (n) + qf y  (n) (mod q2). We finally find ql (n) and so q1c, 
which is impossible, since our choice was q > c. Thus the case r = 1 is proved. 
Let us now try to prove the property by induction and suppose it is true for r. 
Of course, the existence of P, Q such that P (n) f (n) + Q (n) (n) = c for some 
positive integer c did not depend on r, so we keep the above notations. By 

13. 
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the inductive hypothesis, there is n such that at least r prime divisors of f (n) 
have exponent 1. Let these prime factors beP1, P2, , pr. But it is clear that 

n + kp7p3 p2, has the same property: all prime divisors pi, P2, • • • , Pr  have 
exponent 1 in the decomposition of f (n+kpiA . . . p7.2). Because at most a finite 
number among them can be zeros of f , we may assume from the beginning that 
n is not a zero of f. Consider now the polynomial g (X) = f (n+ (pi . 1302  X), 
which is obviously nonconstant. Thus using again the result in Example 1, we 
find a prime number q > maxficl, pi, ... ,Pr, IP(n)11 and a number u such that 
qlg(u). If vq(g(u)) = 1, victory is ours, since a trivial verification shows that 
q, pi , are different prime numbers whose exponents in f (n+ (pi  pr)2u) 
are all 1. The difficult case is when vq (g(u)) > 2. In this case, we will consider 
the number 

N = n + u(pi pr )2  + uq(pi  pr)2  

Let us prove that in the decomposition of f (N), all prime numbers q, pi, 	, pr  
have exponent 1. For any pi, this is true since f (N) f (n) (mod (p1  ...pr)2). 
Using once again the binomial formula, we obtain 

f (N) = f (n + (p1  pr ) 2u) + uq(pi pr.)21(N) (mod q2). 

Now, if vq ( f (n)) > 2, then since vq(f (n + (pi 	pr ) 2u)) = vq(g(u)) > 2, we 
have qiu(pi 	/302  (N). Recall that the choice was q > maxficl, pi , 	, pr, 
Ip(n)l} so necessarily qlu (if qlf (N) ql(f (N), (N))1c = q < contradic-
tion). But since gig (u), we have qlg(0) = f (n). Fortunately, we ensured that 
n is not a zero of our polynomial and also that q > max{ ... ,pr , Ip(n)1} 
so the last divisibility cannot hold. This finishes the inductive step and solves 
the problem. 

Did you like ErdOs's Corner in chapter Look at the Exponent? We repeat 
the experience, with a series of difficult problems related to prime divisors 
of polynomials. When we say difficult, we say however solvable, because one 
should know that most of the problems concerning quantitative estimates for 
prime divisors of polynomials are still unsolved and will probably remain so 
for very long time. Let us recall a few terrible results that have been obtained 
so far, of course without proofs. Let P(n) be the greatest prime divisor of n. 
Even the fact that P(f (n)) tends to oo for any polynomial f of degree at least 
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2 is a very difficult result (even the case deg( f) = 2 requires the Thue-Siegel 
theorems). An extremely difficult theorem of Erd6s shows that the largest 
prime divisor of f (1)f (2)... f (n) is greater than n • e(ln n) c  for some absolute 
constant c > 0. All these results require very deep results in algebraic and ana-
lytic number theory. Another is the famous open question of prime-producing 
polynomials: any polynomial f without a fixed divisor should produce prime 
numbers infinitely many times. All these questions are far beyond the known 
results. But, of course, we will discuss just a few results with elementary (more 
or less) solutions. 

The first problem investigates Schur's theorem for a family of polynomials. 
The following solution was suggested to us by Vesselin Dimitrov. The beauty 
of the result can be easily seen when studying the second part of the problem, 
where we prove by elementary means a result that usually was proved using 
Galois theory. Even though we haven't found the first article studying this 
problem, we did find one signed by T. Nagell, so we will call this Nagell's 
theorem. 

[Example 14. a) Let fi , 12, • • • , fn  be nonconstant polynomials with inte-
ger coefficients. Prove that there are infinitely many primes 
numbers p with the property that fl , f2, • • • , fn  have a zero 
in Z/p7L (that is, there exist integers k1 , k2, • • • , k,, such that 
pifi(ki) for all i). 
b) Prove that for any nonconstant polynomial f with inte-
ger coefficients and any positive integer k there are infinitely 
many primes of the form 1 + qk that divide at least one of 
the numbers f (1), f (2), f (3), .... 

Nagell's theorem 

Solution. For n = 1, a) is just Schur's theorem. Actually, the idea is to 
reduce the study to this special case, by proving the existence of polynomials 
gi , g2, , gn  such that fi (gi (X)) have a common nontrivial divisor. This is 
not immediate, however. Let us see what we are asking for: of course, if there 
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exists a common nontrivial divisor, it must have a complex root z, so first of all 
we should see whether we can find g2 with rational coefficients and some z such 
that fi (g,(X)) have common root z. In this case, g2(z) would be all the zeros 
of L, so it is more than natural to start by fixing some roots xi, x2, . , xn  of 

f 2, , f,,, respectively and trying to find some z and some gi  with g2(z) = 
xi. And now, a very useful theorem from algebraic number theory (but whose 
proof is completely elementary) helps us: actually, any finite extension of the 
field of rational numbers is generated by one element. T hat is, if al , a2, . • • , ak 
are algebraic numbers (over the field of rational numbers), then there exists an 
algebraic number a such that Q(ai, a2, , ak) = Q(a). We will leave the proof 
of this theorem as a beautiful exercise for the reader (in case you do not manage 
to solve it alone, any introductory book to algebraic number theory gives a 
proof of this result). Now, xi  are clearly algebraic, since they are roots of f„. 
Thus there exists some algebraic number z for which Q(xi, x2, . , xn) = Q(z). 
By multiplying z by a suitable integer, we may assume that z is actually an 
algebraic integer. This means that each xi  can be written in the form gi (z) 
for some polynomial gi  with rational coefficients. Of course, there exists some 
integer N for which hi  = Ng, have integer coefficients and there exists some 

large d for which F., (X) = Nd  fi  (11' (Nx) ) also has integer coefficients. Now, all 

Fi  are divisible by P, the minimal polynomial of z in Q[X]. Because z is an 
algebraic integer, P is a monic polynomial with integer coefficients, and thus 
primitive. From Gauss's lemma, it follows that F, are divisible by P in Z[X]. 
Finally, let us apply Schur's theorem to this polynomial. There are infinitely 
many prime p > N for which F has a zero np  in Z/pZ. Fix such a prime p 
and note that x = np. Let f2 (X) = As Xs + As_1Xs-1  + • • • + Ao. We know 
that p divides 

AsNd—shz(x)s + As  iNd—s+ihi(x)s—i + • • • + Ao Nd. 

Of course, p is relatively prime to N, so p will actually divide 

Ashi(x)s  + 

Thus, if N' is the inverse of N in Z/pZ, N'hi (x) is a zero of L modulo p. Since 
i was arbitrary, it follows that all fi  have a zero in Z/pZ for any such prime 
p. The conclusion follows. 
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Part b) is actually a fairly immediate consequence of a). The idea is that for 
n > 1, any prime divisor of cbri(a), the nth  cyclotomic polynomial, is either 
congruent to 1 modulo p or divides n. The proof of this result is not very 
difficult. Indeed, consider p such a prime divisor. Then plan —1 and thus, if d 
is the order of a modulo p, we have din and dlp — 1. Clearly, if d = n, we are 
done, so assume that d < n. Then since pad  — 1 - = 11 kid Ok(a), there exists a 
divisor k of d such that plcbk(a). However, X' — 1 is the product of all cyclo-
tomic polynomials whose orders divide n, so it is a multiple of Ok(X) • cbn(X). 
Therefore, X' — 1 will have a as a double root in Z/p.Z. This is impossible 
unless pin, because in this case a would be a root of nXn-1  and thus pin 
(since p is not a divisor of a). This proves the claim Now, using a) for the 
polynomials cbk (X) and f(X), we know there are infinitely many primes p 
such that both these polynomials have roots in the field with p elements. But 
the observation made in the beginning of b) shows that only finitely many of 
these prime numbers are not congruent to 1 modulo k. Thus, infinitely many 
are of the form 1 + kq and the proof finishes here. 

The next example concerns the very classical problem of square free numbers 
among polynomial values. More generally, one defines k-free numbers as non-
zero integers which are not divisible by any k-th power of a prime. One can 
prove (the idea is exactly the same as in the problem that we will discuss) 
that if f is a primitive polynomial of degree d and if f is not the d-th power 
of a linear polynomial, then a positive proportion of positive integers n have 
the property that f (n) is d-free. A more difficult result was proved by Eras: 
under some natural conditions imposed on f , there are infinitely many n for 
which f (n) is d—free. Needless to say, the proof if highly nontrivial. We will 
discuss a closely related problem concerning square free numbers of a special 
form. 

The next result is a lot stronger than the one proved by Laurentiu Panaitopol, 
stating that there are infinitely many triples of consecutive numbers, all square 
free. The solution is adapted from a beautiful argument due to Ravi Boppana. 
Before passing to this problem, let us give a definition: we say that a set A of 
positive integers has positive density if there exists a constant c > 0 such that 
for all sufficiently large x there are at least cx elements of A less than x. 
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Example 15. Prove that the set of positive integers n such that 

  

1 
—
2

n(n + 1)(n + 2)(n2  + 1) 

is square free has positive density. 

[Vesselin Dimitrov] 

Solution.  Let us search for such numbers of the form n = 180k + 1 for some 
positive integer k. By this choice, ln(n + 1)(n + 2)(n2  + 1) is not divisible by 
4 or 9 or 25. So we can ignore the prime factors 2, 3 and 5. Let p be a prime 
greater than 5. There is exactly one k (mod p2) such that n = 180k + 1 is 
divisible by p2, exactly one k (mod p2) such that n + 1 is divisible by p2, and 
exactly one k (mod p2) such that n + 2 is divisible by p2 . Also, there are at 
most two k (mod p2) such that n2  + 1 is divisible by p2. Indeed, if p21a2  + 1 
and P2 Ib2  + 1, then p21(a — b) (a + b) . Then p2 la — b or p2 la + b (otherwise, 
p divides a — b and a + b, thus it divides a too, which is clearly impossible). 
Altogether there are at most five k (mod p2) such that one of n, n + 1, n + 2, 
or n2  + 1 is divisible by p2. Let N be a large positive integer. By the previous 

observation, there are at most 5 11912. -11 values of k between 1 and N such that 

n, n+ 1, n +2, or n2 +1 is divisible by p2. If p > 180N + 1, then p is too large 
for n, n + 1, n + 2, or n2  + 1 to be divisible by p2. Altogether the number of 
k between 1 and N such that one of n, n + 1, n + 2, or n2  + 1 is not square 

free is at most z_, v,1
p

N80+1 5  [N] 
7 	

• 

We can bound the last sum by 

180N+1 

E (5 + 5pN) < 57(180N + 1) + 5N E p2 2 
P=7 	 p>7 

and since 

\--■ 1 	 1 	1 (1 	1 	1 	1 	1 
P  P

2 	

>3 
m +1)(2m — 1) < 2 	7

+ 
 7 9

± 
 ) 10' 

m 
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we infer that the number of "bad" k is at most /4 + o(N). We used here the 
classical fact that 7r(x) = o(x), where 7(x) = E 1 is the counting function of 

p<x 

the prime numbers (for a proof of this result, see the chapter At the Border 
between Analysis and Number Theory). 

Therefore, the number of 1 < k < N for which all numbers n, n+1, n+2, n2 +1 
(where n = 180k +1) are squarefree is at least 2  + o(N). For any such number 
k, In(n + 1)(n + 2)(n2  + 1) is squarefree (the only common prime divisors of 
two numbers among n, n+ 1, n+ 2, n2 +1 are 2, 3, 5 and we saw that the choice 
of n ensures that 4, 9, 25 are not divisors of n(n+1) (n+2) (n2 + 1)). Thus, the 
number of n < 181N such that .n(n + 1)(n + 2)(n2 + 1) is squarefree is at least 
/4 + o(N), which means that the set of n for which ln(n + 1)(n + 2) (n2  + 1) 
is squarefree has positive density. 
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10.2 Problems for training 

1. Given a finite family of polynomials with integer coefficients, prove that 
for infinitely many integers n they assume at n only composite numbers. 

2. Let f and g E Z[X] be nonzero polynomials. Consider the set Df,g  = 
{gcd(f (n), g(n)) I n E N}. Prove that f and g are relatively prime in 
Q[X] if and only if D f ,g  is finite. 

Gazeta Matematical 1985 

3. Prove that there are no polynomials f E Z[X] with the property that 
there exists an n > 3 and integers xi, 	, xn  such that f(xi) = 
i = 1, n (indices are taken mod n). 

4. Let f E Z[X] be a polynomial of degree n > 2. Prove that the polynomial 
f (f (X)) — X has at most n integer zeros. 

Gh. Eckstein, Romanian TST 

5. Find all integers n > 1 for which there is a polynomial f E Z[X] such 
that for any integer k we have f (k) congruent with either 0, or 1 modulo 
n and both these congruences have solutions. 

6. Find all polynomials f with rational coefficients such that f (n)I2n — 1 
for all positive integer n. 

Polish Olympiad 

7. Let f be a polynomial with integer coefficients and let a0 = 0 and 
an  = f(an_i) for all n > 1. Prove that (an)n>0 is a Mersenne sequence, 
that is gcd(am, an) = agcd(m,n) for all positive integers m and n. 
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8. Let p be a prime number. Find the greatest degree of a polynomial 
f E Z[X] having coefficients in the set {0,1, 	,p — 1}, such that its 
degree is at most p and if p divides f(m) — f (n) then it also divides 
m — n. 

9. Find all integers k such that if a polynomial with integer coefficients f 
satisfies 0 < f (0) , f (1), 	f (k) < k then f (0) = f (1) = • • • = f (k). 

IMO 1997 Shortlist 

10. Let f be a polynomial with integer coefficients. Prove the equivalence of 
the following two properties: i) for any integer n one has f (n) E Z; ii) 
There exist integers n and ao, al, a2, ..., an  such that f (X) = ao + al X + 

X (X -1) 	 X(X-1).••(X-n+1)  a2 2  + + an  n! 

11. Let n be a positive integer. What is the least degree of a monic polyno-
mial f with integer coefficients such that ni f (k) for any integer k. 

12. Let f be a polynomial with rational coefficients such that f (n) E Z for 
all n E Z. Prove that for any integers m, n the number 

lcm[1,2, ..., deg( f)] f (m) - f (n)  

is an integer. 

MOSP 2001 

13. Let P(Xl , X2, ..., X1) be a polynomial with real coefficients. Give a nec-
essary and sufficient condition for P to send Z1  in Z. Deduce that for 
any integers al, a2, ..., an  the number 	n 	a3 —I 3 	 is integer. 

<2<3 <n 

m — n 
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14. Let f(x) = ao + aix + • • • ± amxm, with m > 2 and am 	0, be a 
polynomial with integer coefficients. Let n be a positive integer such 
that: 
i) a2, a3, 	, a, are divisible by all prime factors of n; 
ii) al and n are relatively prime. 
Prove that for each positive integer k there is a positive integer c such 
that f (c) is divisible by Thk . 

Romanian TST 2001 

15. Find all quadratic polynomials f E Z[X] with the property that for any 
relatively prime integers m, n, the numbers f (m), f (n) are also relatively 
prime. 

St. Petersburg Olympiad 

16. Let d, r be positive integers with d > 2. Prove that for any nonconstant 
polynomial f with real coefficients of degree smaller than r, the numbers 
f (0) , f (1), f (dr  — 1) can be divided into d disjoint sets such that the 
sum of the elements of each set is the same. 

J. 0. Shallit, AMM E 3032 

17. Let a, b, c, d, k, m be integers such that a, c > 0. Suppose that m is rel-
atively prime to both c and k. Prove that there exists a polynomial f 
of degree d with integer coefficients such that f (n) k • can±b  (mod m,) 
for all nonnegative integers n if and only if m is a divisor of (ca — w+d. 

18. Let f E Z[X] be a nonconstant polynomial. Prove that the sequence 
f (3') (mod n) is not bounded. 
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19. a) Prove that for each positive integer n there is a polynomial f E Z[X] 
such that all numbers f (1) < f (2) < • • • < f (n) are prime numbers. 
b) As above, except the numbers now need to be powers of 2 rather than 
primes. 

20. Are there polynomials p, q, r with positive integer coefficients such that 

2 
p(x) + (x2  — 3x + 2)q(x) and q(x) = 

(20 15 + 12) rx).  

Vietnamese Olympiad 

21. Let (an)n>i be an increasing sequence of positive integers such that for 
some polynomial f E Z[X] we have an  < f (n) for all n. Suppose also 
that m — nlarn  — an  for all distinct positive integers m, n. Prove that 
there exists a polynomial g E Z[X] such that an  = g(n) for all n. 

USAMO 1995 

22. We call a sequence of positive integers (an)n>1 pairwise relatively prime if 
gcd(ani, an) = 1 for any different positive integers m, n. Find all integer 
polynomials f E Z[X] such that for any positive integer c, the sequence 

(f [71]  (c))7i>1 is pairwise relatively prime. Here f [n]  is the composition of 
f with itself taken n times. 

Leo Mosser 

23. Suppose that f E Z[X] is a nonconstant polynomial. Also, suppose that 
for some positive integers r, k, the following property holds: for any pos-
itive integer n, at most r prime factors of f (n) have exponent at most 
equal to k. Does it follow that any zero of this polynomial has multi-
plicity at least k + 1? 
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24. Prove that for all n there exists a polynomial f with integer coefficients 
and degree not exceeding n such that 2n divides f (x) for all even integers 
x and 2' divides f (x) — 1 for all odd integers x. 

P. Hajnal, Komal 

25. Find all polynomials f with integer coefficients and such that f (p)12P —2 
for any prime number p. 

Gabriel Dospinescu, Peter Schoelze 

26. Prove that for any c > 0 there are infinitely many n such that the largest 
prime divisor of n2  + 1 is greater than cn. 

Nagell 
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11.1 Theory and examples 

Almost everyone knows the Chinese Remainder Theorem, which is a remark-
able tool in number theory. But does everyone know the analogous form for 
polynomials? Stated like this, this question may seem impossible to answer. 
Then, let us make it easier and also reformulate it: is it true that given some 
pairwise distinct real numbers xo, xi, x2, 	, xn  and some arbitrary real num- 
bers ao, al, a2, 	, an, we can find a polynomial f with real coefficients such 
that f (xi) = ai  for i E {0, 1, 	, n}? The answer turns out to be positive, 
and a possible solution to this question is based on Lagrange's interpolation 
formula. It says that an example of such polynomial is 

n 

f (x) = 	ai H 
 x _ xi  
	 . 

xi  _ xi  
i=0 0<j<n 

j 2  

(In what follows along this unit, a product like the above one will be written, 
for simplicity, just as 	x—x,  .) 

x1 — x) 
Indeed, it is immediate to see that f (xi) = ch for i E {0, 1, 	, n}. Also, the 
above expression shows that this polynomial has degree less than or equal to 
n. Is this the only polynomial with this supplementary property? Yes, and 
the proof is not difficult at all. Just suppose we have another polynomial g of 
degree less than or equal to n and such that g(xi) = ai  for i E {0, 1, 	, n}. 
Then the polynomial g— f also has degree less than or equal to n and vanishes 
at x0, xi , 	, xn. Thus, it must be null, and the uniqueness is proved. 
What is Lagrange's interpolation theorem good for? We will see in the follow-
ing problems that it helps us to immediately find the value of a polynomial 
in a certain point if we know the values in some given points. And the reader 
may have already noticed that this follows directly from the formula (1), which 
shows that if we know the value in 1+ deg f points, then we can find the value 
in any other point without solving a complicated linear system. Also, we will 
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see that it helps in establishing some inequalities and bounds for certain spe-
cial polynomials, and will even help us in finding and proving some beautiful 
identities. Now, let us begin the journey through some nice examples of prob-
lems where this idea can be used. As promised, we will first see how we can 
rapidly compute the value in a certain point for some polynomials. This was 
one of the favorites problems in the old Olympiads, as the following example 
illustrates. 

Let F1  = F2 = 1, Fn+2 = Fn Fn,-ki and let f be a polynomial 
of degree 990 such that f(k) = Fk for k E {992, , 1982}. 
Show that f (1983) = F1983 — 1. 

[Titu Andreescu] IMO 1983 Shortlist 

Solution. So, we have f (k + 992) = Fk+992 for k = 0, 1, ..., 990 and we need 
to prove that f (992+991) = F1983 —1. This simple observation shows that we 
don't have to bother too much with k + 992, since we could work as well with 
the polynomial g (x) = f (x+992), which also has degree 990. Now, the problem 
becomes: if g(k) = Fk+992, for k = 0, 1, ..., 990, then g(991) = F1983 — 1. But 
we know how to compute g(991). Indeed, looking again at the interpolation 
formula (as we name equation (1)), we find that 

990 	 990 
991 

.9(991) = 	g(k)( 
991  
k  ) (-1)k  =LJ k  J Fk+992(-1)k  

k=0 	 k=0 

which shows that we need to prove the identity 

(99l) 
k  Fk+992 — 1 )k  = F1983 — 1 . 

k=0 

We know that 

990 

an — bn F 
Ti- 



THEORY AND EXAMPLES 237 

+1  
where a =

2 
 and b = 

try a direct approach: 

1 — .\/-g 
Bearing this in mind, we can of course 

2 	• 

990 09, 

Fk+992( — 1  )k  
k=0 

[

990 
	 E  (7) ak+992 i)k 	(991) bk+992( i)ki 

k=0 	 k=0 

But using the binomial theorem, the above sums vanish: 

• (99

▪ 

 k 

 1) ak+992 ( 1)k = a992 990 E 
(991) 

k=0 ) k=0 

(_a)k = a992 [(1 a)991 a991].  

Since a2  = a + 1, we have 

a992[(1 — a)991  + a991] = a(a a2 \) 991 + a1983 = —a + a1983. 

Since in all this argument we have used only the fact that a2  = a +1 and since 
b also satifies this relation, we find that 

990 

i (9k91) /1+992,- , , \ k = 1 (a1983 b1983 a + b) 
k=0 

a1983 b1983 	a — b 
	= F1983 — 1. 

And this is how, with the help of a precious formula and with some smart 
computations, we could solve this problem and also find a nice property of the 
Fibonacci numbers. 

The following example is a very nice problem proposed for IMO 1997. Here, 
the steps following the use of Lagrange's interpolation formula are even better 
hidden in some congruences. It is the typical example of a good Olympiad 
problem: no matter how much the contestant knows in that field, one may 
have great difficulties in solving it. 

990 



p-1 P-1  

E(_i)k 	1)1(k) 
k=0 

f (k) (mod p). 
k=0 

238 	11. LAGRANGE INTERPOLATION FORMULA 

Example 2.1 Let f be a polynomial with integer coefficients, and let p be a 
prime such that f(0) = 0, f(1) = 1 and f(k) is congruent to 
either 0 or 1 modulo p, for all positive integers k. Show that 
the degree of f is at least p — 1. 

IMO 1997 Shortlist 

Solution. Such a problem should be solved indirectly, arguing by contradic-
tion. So, let us suppose that deg f < p — 2. Then, using the Interpolation 
Formula, we find that 

p-1 

f (x) = E f (k) H x -j .  
k — 

k=0 

Now, since deg f < p — 2, the coefficient of xP-1 in the right-hand side of the 
identity must be zero. Consequently, we have 

P-1  (_1)p-k-1 

E k!(p — 1 — k)! f (k  
k=0 	

) 

From here we have one more step. Indeed, let us write the above relation in 
the form 

p-1 

E(-1)k  (P  k  1) f(k) = 0 
k=0 

and let us take this equality modulo p. Since 

k! (1)  k  1) = — k)(p — k + 1) . . . (p — 1) = (-1)k  k! (mod p) 

we find that 

-k 1) = (-1)k 
 

(mod p) 

and so 

0. 
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Thus, 

E f (k) 0 (mod p), 
k=0 

which is impossible, since f(k) 	0,1 (mod p) for all k and not all of the 
numbers f (k) have the same remainder modulo p (for example, f (0) and f (1)). 
This contradiction shows that our assumption was wrong and the conclusion 
follows. 
It's time now to see how some formidable identities are simple consequences of 
the Lagrange interpolation formula, although in these problems polynomials 
do not appear at first sight. 

[Di...ample 3. Let al, a2, 	, an  be pairwise distinct positive integers. Prove 

al: 
that for any positive integer k the number E 	 is 

i=1  1(ai  — aj) 

an integer. 

United Kingdom 

Solution. Just by looking at the expression, we recognize the Lagrange In-
terpolation formula for the polynomial f(x) = xk. But we may have some 
problems when the degree of this polynomial is greater than or equal to 
n. This can be solved by working with the remainder of f modulo g(x) = 
(x—ai)(x—a2) . . . (x—an). So, let us proceed by writing f (x) = g(x)h(x)+r(x), 
where r is a polynomial of degree at most n — 1. This time we don't have to 
worry since the formula works, and we obtain 

n 

r(ai) TT x  ai  
ai  — aj 

i=1 

Now, we need three observations. The first one is r(ai) = alic, the second one 
is that the polynomial r has integer coefficients, and the third one is that 
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E a2
is just the coefficient of xn-1 in the polynomial 

i=i  ii(ai — ai ) 
jOi 

E r(ai) f x 	ai  . 
ai  — ai 

i=1 	jai 

	

Combining these observations, we find that E 	 is the coefficient 
j=1 I1(ai —  a3 ) 

3 2  
of xn-1  in r, which is an integer. Thus, not only have we solved the problem, 
but we have also found a rapid way to compute the sums of the form 

E FF 

ai  

 

i=i 	 ai)  

The following two problems concern some combinatorial sums. If the first 
one is relatively easy to prove using a combinatorial argument (it is a very 
good exercise for the reader to find this argument), for the second problem a 
combinatorial approach is much more difficult. But we will see that both are 
immediate consequences of the interpolation formula. 

 

Let f (x) = Eakxn-k. Prove that for any non-zero real num- 
k--=0 

ber h and any real number A we have 

Example 4. 

 

E( 1)'k 	f (A + kh) = a()  • n! • hn. 

k=0 

Solution.  Since this polynomial has degree at most n, we have no problems 
in applying the interpolation formula 

-v-r x - 
f (x) = E f (A + kh) 11 

(k
A-jh  
— j)h 

k=0 	 jk 
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Now, let us identify the leading coefficients in both polynomials that appear 
in the equality. We find that 

71  

kh) TT  1 
 

f 	 ( 	\ 

il[(k  — j)h] 	n!hn 	
n—k 

1) 	f + kh), 
k=0 

.7 1c 

which is exactly what we had to prove. Simple and elegant! Notice that the 
above problem implies the well-known combinatorial identities 

E( 	(
k
) kp 0  

k=0 

for all p E {0, 1, 2, . . . , n — 1} and 
k=0 

(-1 
 n—k (n) kn = n!. (Notice that the 

identity remains valid for h = 0, too!) 

As we promised, we will discuss a much more difficult problem. The reader 
might say after reading the solution: but this is quite natural! Yes, it is 
natural for someone who knows the Lagrange Interpolation formula very well 
and especially for someone who thinks that using it could lead to a solution. 
Unfortunately, this isn't always so easy. 

Example 5. Prove the identity 

E(_i)n—k (n) kn+1 n(n + 1)!—  
2 	• 

k=o 

 

Solution. We take the polynomial f (x) = xn . (Why don't we take the poly- 

nomial f (x) = xn+1? Simply because (-1)' (n  appears when writing the 

formula for a polynomial of degree at most n.) We write the Interpolation 
Formula 

n 

ao = 
k=0 

xn  
x(x — 1) 	(x  — k — 1)(x — k ± 1) • • • (x n)  1)n—k 

(n — k)!k! 

 

k=0 



242 	11. LAGRANGE INTERPOLATION FORMULA 

Now, we identify the coefficient of xn-1 in both terms. We find that 

0 = E(-1)1"  (1 km(1 + 2 + • • • + n — k). 

And now the problem is solved, since we found that 

E(_i)n-k (n)kn+1 n(n + 1)  En  ( 	(n) kn 
k) 	 2 

k=0 	 k=0 

and we also know that 

E( i)n-k (n)  kn = n l 

k=0 

from the previous problem. 

If the Lagrange interpolation formula was good only to establish identities and 
to compute values of polynomials, it would not have been such a great discov-
ery. Of course this is not the case—it plays a fundamental role in analysis. 
However, we are not going to enter this field, and we prefer to concentrate on 
another elementary aspect of this formula and see how it can help us establish 
some remarkable inequalities. And some of them will be really tough. 
We begin with a really difficult inequality, originally published by H.S. Shapiro 
in the American Mathematical Monthly, in which the interpolation formula is 
really well hidden. But denominators can give valuable indications from time 
to time. 

;Example 6. Prove that for any real numbers xi, x2, . , x7, E [ —1, 1] the 
following inequality is true: 

1 E >  2n-2.  

i=1 H 	— Xi I 

 

k=0 

[H. S. Shapiro] Iranian Olympiad 
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Solution. The presence of f  xj - xi i is the only hint to this problem. But 
3 

even if we know it, how do we choose the polynomial? The answer is simple: 
we will choose it to be arbitrary, and only in the end we will decide which 

n-1 

one is optimal. So, let us proceed by taking f(x) = )' akx an arbitrary 
k=0 

polynomial of degree n — 1. Then we have 

n 

f(x) = 
f(xo  _FT  x-xj.  

k=1 
xk — Xi 

.j1c 

Combining this with the triangle inequality, we get 

If (x)I E If (x01 11 
k=1 

X — X j 

Xk — Xi 

Only now comes the beautiful idea, which is in fact the main step. From the 
above inequality we find that 

I an- 

71 
	

If (X1c)1  

k=1 11 ixk - xj 
jk  

H (1 _ 
x 

.j1c 

f(x)  
xn-1  

and since this is true for all non-zero real numbers x, we may take the limit 
when x —> oo and the result is pretty nice: 

If (x0I 
L.  

k= 111Xk 
30k 

This is the right moment to decide what polynomial to take. We need a poly-
nomial f such that I f(x)1 < 1 for all x E [-1, 1] and such that the leading 
coefficient is 2n-2. This time our mathematical culture will decide. And it says 
that Chebyshev polynomials are the best, since they are the polynomials with 
the minimum deviation on [-1, 1] (the reader will wait just a few seconds and 
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will see a beautiful proof of this remarkable result using Lagrange's interpola-
tion theorem). So, we take the polynomial defined by f (cos x) = cos(n — 1)x. 
It is easy to see that such a polynomial exists, has degree n — 1, and leading 
coefficient 2n-2, so this choice solves our problem. 

Note also that the inequality lan_i l < 
	If (xk )1 can be proved by 

k=1 	ixk - X3I 

identifying the leading coefficients in the identity 

f (x) 
k=1 

f (xk) 
vr x - Xj 

xk - xj 

and then using the triangle inequality. 
The following example is a fine combination of ideas. The problem is not 
simple at all, since many possible approaches fail. Yet, in the framework of 
the previous problems and with the experience of Lagrange's interpolation 
formula, it is not so hard after all. 

[

Example 7.1 Let f E R[X] be a polynomial of degree n with leading coef-_ 	 
ficient 1, and let xo < xi < x2 < • • • < xr, be some integers. 
Prove that there exists k E {0,1, . . . , n} such that 

If(x01 > - 2n  

Crux Matematicorum 

Solution. Naturally (but would this be naturally without having discussed so 
many related problems before?), we start with the identity 

f(xo n- x - Xj 

xk - xj 
k=0 	jk 
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Now, repeating the argument in the previous problem and using the fact that 
the leading coefficient is 1, we find that 

En 	if(xol  > 1. 
k=0 H ixk - 

j0k 

It is time to use the fact that we are dealing with integers. This will allow us 
to find a good lower bound for H ixk  - x3 I This is easy, since 

30k 

H I Xk — xjI = I (Xk — X0)(Xk — X1) • " (Xk Xk-1)(Xk+1 Xk) • • • (Xn Xk)I 

jr/k 

> k(k — 1)(k — 2) • • • 2 • 1 • 1 • 2 • • • (n — k) = k!(n — k)!. 

And yes, we are done, since using these inequalities, we deduce that 

71,  .f(x 	> 1
. 

 

k!(n — k)! 
k=0 

Now, since 

>2,  k!(n — k)! 	(k 	n! 

n) 2n  

k=0 	 k=0 

it follows that 

If (x01 

for some 0 < k < n. 

The following example is an answer to a conjecture of F. J. Dyson (1962). The 
elegant proof presented here, based on an identity obtained by Lagrange's in-
terpolation formula, is due to I. J. Good (1970): 
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[Example 8.1 Let ai, a2, ..., an  be nonnegative integers and let f (a1, a2, .••, an) 
be the constant term of the "polynomial" 

n (1 _ xi 

1<i,j<n 	3 

jA3 

Prove that 

, 	(al + a2 + • • • + an)!  
f a2 • • • an) = a1!a2!...an! 

Solution.  Define 

g(ai, a2, .., an) = 
a1!a2!...an! 

We will prove by induction on al + a2 + • • • + an  that f(ai, a2, •••, an) = 

g(ai, a2, ..., an). If al = a2 = • • • = an  = 0 the claim is obviously true. 
Now, observe that 

g(ai,a2,..., an) = g(ai — 1, a2,..., an) + • • • +g(ai,a2,...,a„ — 1) 

if all a, are positive and 

an) = 

if ak = 0. Therefore it would be enough to prove the same relation for f. If 

ak = 0 it is clear that 

f (ai, a2, 	 '..5 an) = f (al, a2, ••-, 	ak+17 •••, an), 

so assume that all a, are positive. In order to prove that 

f(ai, a2, 	an) = f (ai — 1, a2, ..., an) + • • • + f (al , a2, ..., 	— 1) 

it is enough to prove the identity 

1<i,j<n 	3 	i=1 i 	x3 	 X •) 3 

 a2 	 xi 
11 (1 — 	=- 	

(1  Xi ) H  _ 

(al + a2 + ••• +  an)!  

--1 
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which reduces of course to 

	

1 = 	(1 - 
xj 

i=1 joi 

But this is just Lagrange's interpolation formula written for the polynomial 
f (X) = 1 with nodes xi, x2, xn  and evaluated at x = 0. 

We will discuss one more problem before embarking on a more detailed study 
of Chebyshev polynomials and their properties. This was given in the Ro-
manian Mathematical Olympiad and is a very nice application of Lagrange's 
interpolation formula. It is sufficient to say that it follows trivially using a 
little bit of integration theory and Fourier series. 

Prove that for any polynomial f of degree n and with leading 
coefficient 1 there exists a point z such that 

izi = 1 and If (z)I > 1. 

[Marius Cavachi] Romanian Olympiad 

Solution.  Of course, the idea is always the same, but this time it is necessary 
to find the good points for which we should write the interpolation formula. 
As we did before, we will be blind at the beginning and we will try to find 
these points in the end. Until then, let us call them xo, xi, x2, . . , xn  and write 

	

En 	If(X01  > 1. 

This inequality was already proved in Example 6. Now, consider the polyno-
mial 

9(x) = fJ(x — xi). 
i=o 

k=0 11 iXk — X ji 

jOk 
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We have then 

Ig' (xi) I = 

 

   

n 

Now, we would like, if possible, to have I xiI = 1 and also 
k=0191 (

1 

X01 
< 1. In 

n 

k=0 II1Xk — X 

numbers If (xk)1 is greater than or equal to 1 and the problem would be solved. 
Thus, we should find a monic polynomial g of degree n + 1 with all roots of 

modulus 1 and such that E 	1 	< 1. This is trivial: it suffices, of course, 
k=0 Igi(Xk) 

n 

to consider g(x) -= xn+1  — 1. The conclusion follows. 
We have an explanation to give: we said the problem follows trivially with a 

n 

little bit of integration theory tools. Indeed, if we write f (x) = 	akxk  then 
k=-0 

one can check with a trivial computation that 

1 	27r 
ak = 

27r 	
f  (eit)e—iktdt  

fo  

and from here the conclusion follows since we will have 
27r 	 27r 

f(eit)e—tradt  < 	rteitNi )dt 5_ 27r max I f (z)1. 
0 	 lz1=1  

Of course, knowing this already in 10th grade (since the problem was given to 
10th  grade students) is not something common... 

Before passing to the next more computational problem (which does not mean 
less interesting, of course), let us recall some properties of the Chebyshev's 
polynomials of the first kind. They are defined by Tn(x) = cos(n arccos(x)), 
or, equivalently, Tn(cos x) = cos(nx). You can easily check by induction, us-
ing the obvious relation Tn+i (x) = 2xTn(x) — Tn_1(x) that this gives you a 

this case it would follow from > 1 that at least one of the 

27r = fo  
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polynomial of degree n, having leading coefficient 2n-1  and all of whose coef-
ficients are integers. Among hundreds of interesting and useful properties of 
these polynomials, let us state a few, the proof of which is left as a very useful 
exercise for the interested reader. 

Theorem 11.1. The polynomials TT, have the following properties: 

• An explicit formula for Tn  is 

Tn  (x) = 
(x + Jx2 	— 1)n + (x — x2  — 1)n  

2 

• The polynomials Tn  and T, commute, that is Tn(Tm(x)) = Tm(Tn(x)) 
for all m, n and all x. 

• The generating function of these polynomials is given by: 

z(x — z) 
1 — 2zx + z2  

• They form an orthogonal system on the interval [-1, 1] for the weight 
v(x) = Jll  

x2  j that is for all i j positive integers the following relation 
holds 

f 1 

 T

i(x)T3 (x)  

J-1 — x 

The following problems will be based on a very nice identity that will allow 
us to prove some classical results about norms of polynomials, to find the 
polynomials having minimal deviation on [-1, 1], and also to establish some 
new inequalities. In order to do all this, we need two quite technical lemmas, 
which are not difficult to establish, but very useful. 

ETn(x)zn  = 
n>1 

for all 	<1 and lx1 <1. 

= 0. 



2n\/x2  – 1 

Using this formula and de Moivre's formula we easily deduce i). 

(x) = '214i  [(x + x2  — 1)n  + (x – ✓ 2 — 1)71+ 

X  
	[(x + 1/42  — 1)n  — (x — VX2  — 1)n]. 
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Lemma 11.2. If we let tk = cos —k7r , 0 < k < n, then 

Vx2  —  
f (x) = ll(x - tk) = 	[(x + 1/42  — 1)72  — (x — 	

— 1)nl• 
k=0 	 2n 1 

Proof. The proof is simple. Indeed, if we consider 

Vx2  –  
g(x) = 	27, 

1 
 [(x ✓X2  — 1)n  — (X — ✓X2  — 1)n], 

using the binomial formula we can establish immediately that it is a polyno- 

mial. Moreover, from the obvious fact that lim 
g(x) 

= 1, we deduce that it 
x–,00 xn-F1  

is actually a monic polynomial of degree n 1. The fact that g(tk) = 0 for 
all 0 < k < n is easily verified using de Moivre's formula. All these prove the 
first lemma. 	 ❑ 

A little bit more computational is the second lemma. 

Lemma 11.3. The following relations are true: 

i) FIN - ti) = 
 2n - 

if 1 < k < n – 1; 
_ 1)kn

1  
j 
n 

ii) fJ(to – ti) = 	 
2n-2' 

j=1 
n-1 - 

iii) 
 ll(t, - t j ) = ( 2n-
1)

2
n 

 
j=0 

Proof. Simple computations, left to the reader, allow us to write: 
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To prove ii) and iii) it suffices to compute lim f'(x) and lim f'(x), using the 
x->1 

above formula; we let the reader to do the dirty job. 	 ❑ 

Of course, you hope that all these computations have an honorable purpose; 
and you're right, since these lemmas will allow us to prove some very nice 
results. The first one is a classical theorem of Chebyshev, about minimal de-
viation of polynomials on [-1, 1]. 

LExample 10.1 (Chebyshev's theorem) Let f E R[X] be a monic polynomial 
of degree n. Then 

1 
max If(x)1 > 	 

xE[-1,1] 	2n-1 

and this bound cannot be improved. 

Solution. Using again the observation from Problem 7, we obtain the identity: 

Egto 11 4, 	1  = 1. 
k=0 

Thus, we have 
—1 

1 < max If(tic)1E 
- 0<k<n 

(tk - t 
jk k=0 

) 

Now, it suffices to apply Lemma 2 to conclude that we actually have 

—1 

II(tk tj) 
	2n-1.  

j$k 

This shows that max1] 
	2n

1 
 -1 If(x)1 > 	 and so the result is proved. To prove —  

that this bound is optimal, it suffices to use the polynomial Tn. Then the 

k=0 
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1 
polynomial 2n-1Tn  is monic of degree n and 

max 
xE[-1,1] 

1 
2n-1 	Tn(x) 

 

1 

 

(11.2) 

 

2n-1 • 

      

There are many other proofs of this result, a lot of them are much easier, but 
we chose this one because it shows the power of Lagrange interpolation theory. 
Not to mention that the use of the two lemmas allowed us to prove that the 
inequality presented in Example 7 is actually the best. 

Some years ago, Walther Janous presented in Crux the following as an open 
problem. It is true that it is a very difficult one, but here is a very simple 
solution using the results already achieved. 

Example 11. I Suppose that ao, 	, an  are real numbers such that for all 
x E [-1, 1] we have 

iao + aix + • • • + anxn1 < 1. 

Then for all x E [-1, 1] we also have 

Ian  + an_ix + • • + aoxm l < 2n-1. 

[Walther Janous] Crux Matematicorum 

Solution.  Actually, we are going to prove a stronger result, that is: 

Lemma 11.4. Denote, for f E R[X], 

Ilf 11 = xr1,11  If (x)1. 



< 	1 luln11f11 
-Fr  1—ti lt 

II— tj 
k=0 jk 

n 
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Then for any polynomial f E R[X] of degree n the following inequality is 
satisfied: 

(x)1 	iTn(x)Hif for all lx1 > 1. 

Proof. Using Lagrange's interpolation formula and the triangle inequality, we 
deduce that for all u E [-1, 1], u 0, we have: 

The brilliant idea is to use the Lagrange interpolation formula again, this time 
for the polynomial Tn. We shall then have (also for u E [-1, 1] , u 0) 

 

-Fr  1—  uti  

'Ulm k=0 j11k 	til 

 

(the last identity being ensured by lemma 11.2). By combining the two results, 
we obtain 

 

Lill for all u E [-1, 1], u # 0 

  

and the conclusion follows. 	 ❑ 

Coming back to the problem and considering the polynomial f (x) = 	kX 
k 

the hypothesis says that 11f11 < 1 and so by the lemma we have 
	k=0 

I f (x)I < ITn(x)I for all lx1 > 1. 

We will then have for all x E [-1,1], x 0: 

Ian + an-ix + • • • + aoei = 

 

xnTn  (-1) 
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It suffices to prove that 

  

 

xnTii  (-1) 
x 

< 2n-1,  

  

which can be also written as 

(1 + -V1 — x2)n + (1 — .V1 — x2)n < 2n. 

But this inequality is very easy to prove: just set a = -V1 — x2  E [0, 1] and 
observe that h(a) = (1 — a)n + (1 + a)n is a convex function on [0, 1], thus 
its superior bound is attained at 0 or 1 and there the inequality is trivially 
verified. Therefore we have 

Ian  + an_ix + • • • + aoxn  I < 2n-1 

and the problem is solved. 

Since we are here, why not continuing with some classical, but very important 
results of Riesz, Bernstein and Markov? We unified these results in a single 
example because they have the same idea, and moreover they follow one from 
another. We must mention that a) is a result of M. Riesz, while b) was 
obtained by S. Bernstein and finally c) is a famous theorem of A. Markov, 
the real equivalent of an even more celebrated Bernstein's complex theorem 
(whose proof you will surely enjoy: it is among the training problems). 

Example 12.1  a) Let P be a polynomial with real coefficients of degree at 

most n — 1 such that V1  — x21P(x)1 < 1 for all x E [-1, 1]. 
Prove that IP(x)I < n for all x E [-1, 1]. 
b) Let 

n 

1(x) = 	(ak cos(kx) + bk sin(kx)) 
k=0 

be a trigonometric polynomial of degree n with real coeffi-
cients. Suppose that If (x)I < 1 for all real numbers x. Prove 
that If(x)i < n for all real numbers x. 
c) Prove that if P has degree n and real coefficients and more-
over IP(x)I < 1 for all x E [-1,1] then 1 P' (x)I — 
x E [-1, 1]. 

< n2  for all 



Ti 

(-1)z-1  
X — Xi 

x? • P (xi) Tn(x)  
p (x)  

1=1 

THEORY AND EXAMPLES 255 

Solution. a) Let us write the Lagrange interpolation formula for P with the 
points xi, x2, ..., xn, where x3  = cos( (232-771)7r)  are the zeros of the nth Cheby-
shev's polynomial Tn. We obtain the important identity 

Take now x E [-1, 1]. Observe that if x E [xn,xi.] = [ — xi,xi] then by the 
hypothesis IP(x)I <  1  < 	1  	< n

' 
 the last inequality being equivalent 

 N/ ix?  
to sin() > 	which is clear by a convexity argument. So, assume that 
x > x1, the case x < —xi being identical. In this case the triangle inequality 
applied to the previous identity shows that 

I P(x ) 1 

But the last sum is exactly 	(x). Because Tn(cos u) = cos(nu), we have 

Tn' (cos u) = nsi
SI

n.(nu)  However, an easy induction shows that I sin(nu) I < n < 
R U 

sM ul for all u and all positive integers n. This implies that IT7c(x)i < n2  
for all x E [ —1, 1]. Combining this with the inequality IP(x)I < • Tr,' (x) we 
deduce that IP(x)I < n for all x > x1. This finishes the proof of the first part. 

b) First of all, let us see what happens when all a, are zero, that is 

f (x) = b1 sin x + b2 sin(2x) + • • • + bn sin(nx). 

Observe that in exactly the same way as you could have proved the existence 
of the polynomial Tn  (that is, by induction), you can prove the existence of a 

polynomial 11„, of degree n — 1 such that Rn(cos x) = sin
sin  x

(nx)  Therefore there 
exists apolynomial P of degree at most n — 1, with real coefficients, and such 
that = P(cos x). Observe that this polynomial satisfies the conditions 

sin x 
of a), because I sin x • P(cos x)I < 1 for all real x. Therefore we can apply a) 
to deduce that IP(x)I < n for all x E [-1, 1], that is If(x)I < n • I sin xl for 
all x. Dividing by x and letting x —> 0 we deduce that f'(0)1 < n. Now, 
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let us come back to the general problem and fix a real number x0. Define 
g(x) 	f(x+x0)2 f(x-xo)  . Using standard trigonometric formulae, we deduce 
that g(x) is of the form ci sin x + c2 sin(2x) + • • • + cn  sin(nx) for some real 
numbers c3. The triangle inequality also ensures that Ig(x)I < 1 for all real 
numbers x. Thus, by the result that we have just obtained, we must have 
1.V MI < n. Because g'(0) = f(x0) and because xo was arbitrary, b) is proved. 

c) Let us consider this time f (x) = P(cos x). An immediate induction based 
on the most elementary product formulae for trigonometric functions shows 
that (cos x)3  is a trigonometric polynomial of degree at most n. Thus by b) 
we must have f' (x) < n for all x. This means that Isin x • P' (cos x)I < n 
for all x, which shows that the polynomial satisfies the conditions of a). 
Thus it has values not exceeding n on [-1,1], which means that P' does not 
exceed n2  on [-1,1], and this finishes the proof of this beautiful theorem. 

We end this topic with a very difficult problem, which refines an older one 
given in a Japanese mathematical Olympiad in 1994. The problem has a nice 
story: given initially in an old Russian Olympiad, it asked to prove that 

n 	 7a 

max TI 	ai  < los-  max 11 I x — ail 
xe[0,2] 	

— 	
.E[0,1] i=1 i=1 

for any real numbers al , a2, , an. The Japanese problem asked only to prove 
the existence of a constant that could replace 108. A brute force choice of 
points in the Lagrange interpolation theorem gives a better bound of approx-
imately 12 for this constant. Recent work by Alexandru Lupa§ reduces this 
bound to 1 + 2.\/g. In the following, we present the optimal bound. 

[Example 1371 For any real numbers al , a2, , an, the following inequality 	  j  
holds: 

(3 + 	2 4 	4 n  +  (3 — 2n 
max nix ai l < 	 max H lx-ai l. 

xE[o,2] i=1 	 2 	 xe[om i=1  

[Gabriel Dospinescu] 
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Solution.  Let us denote 

IlfIl[a,b] = xnel[a,,,) f ]  If (x)I 

for a polynomial f and let, for simplicity, 

(3 + 24n + (3  — 2-\)n 
en = 2 

We thus need to prove that I f II [0,2] 	cnIlf II Ail where 

f (x) = 11(x — ai) . 
i=i 

We shall prove that this inequality is true for any polynomial f , which allows 
us to suppose that VII [0,i] = 1. We shall prove that for all x E [1,2] we have 

1 + tk  
f (x)I < cn. Let us fix x E [1,2] and consider the numbers xk = 

2 
where tk's are as in Lemma 11.2. Using the Lagrange interpolation formula, 
we deduce that 

If (x)I E 
k=0 

Fr X — Xj 

" Xk — X j 
jec 

=
iok x 

_ xi  
_ xi i k=o 

   

5- E
n 
 H 

2 — 	
E

n 
II 

3 —  ti 

k=_O.W 
I

c 
Xk — Xi I 

k=0 j 	
1 

Ok 	ti 

Using Lemma 11.3, we can write 

n 	
3 — t 	2n-i n-1 

EH 	= n 	11(3 ti)+  
k=0 jk 	 k=1 

j = 0 	 j=1 
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Based on the expression of the derivative from the proof of Lemma 11.3, we 
obtain: 

n-1 	 n-1 
EH(3_t3)+ 	— t3) + 11(3 — t3 ) = 
k=1j#k 	 j=0 	 j=1 

= -7-1  
2n
-[(3 + 2An  + (3 — 2VJ)n] 	

3  

2n 
 0 [(3 2An  — (3 — 2V2)Th]. 
+1-   

All we have to do now is to compute 

n-1 	 n 	 n-1 
11(3 — t3)+ H(3 — t3 ) = 6 H(3 — t3). 
j=0 	 j=1 	 j=1  

But, according to Lemma 11.2, we deduce immediately that 

n-1 

11(3- t3 ) 
3=1 

1 
2n+i [(3 ± 2An (3  _ 2.‘5 

v-- 	
)71. 

Putting all these observations together and making a small computation, that 
we leave to the reader, we easily deduce that I f(x)I < cn. This proves that 

11f11 [0,2] C crillf11[0,1] and solves the problem. 
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11.2 Problems for training 

1. A polynomial of degree 3n takes the value 0 at 2,5,8, . . . , 3n — 1, the 
value 1 at 1,4,7, .. . , 3n — 2 and the value 2 at 0,3,6, .. . , 3n and it's 
value at 3n + 1 is 730. Find n. 

USAMO 1984 

2. A polynomial p of degree n satisfies p(k) = 2k  for all 0 < k < n. Find 
its value at n + 1. 

Murray Klamkin 

3. Prove that for any real number a we have the following identity 

E(— 1)k  (71) (a — 	= n!. 
k=0 

Tepper's identity 

4. Find E(_i)k (n  ) kn+2  and E(-1)k (nk) 0+s. 

k=0 	 k=0 

AMM 

5. Prove that 

jk 

and evaluate 
n+2 

Xk  

\ • 

k=0 	(Xk Xj) 

jOk 
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6. Prove the identity 

(nk) 
, E(  1)k_1 	(n kr = E±. 

k=1 	 k=2 

Peter Ungar, AMM E 3052 

7. Let a, b, c, d E R such that lax3  + bx2  + cx + dl < 1 for all x E [-1, 1]. 
Prove that 

+ Ibl + 1c1+1d1 < 7. 

IMO Shortlist 1996 

8. Define F (a, b, c) = max 1x3  — ax2  — bx — 	What is the least possible 
xE[0,3] 

value of this function over R3? 

Chinese TST 2001 

9. Let a, b, c, d E R such that lax3  + bx2  + cx + dl < 1 for all x E [-1, 1]. 
What is the maximal value of 1cl? For which polynomials is the maximum 
attained? 

Gabriel Dospinescu 

10. Let a > 3 be a real number and p be a real polynomial of degree n. 
Prove that 

max 	lai  — p(i)1 > 1. 
i=0,1,...,n+1 

11. Find the maximal value of the expression a2  + b2  + c2  if lax2 + bx cl < 1 
for all x E 

Laurentiu Panaitopol 
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12. Let f E R[X] a polynomial of degree n that verifies I f(x)1 < 1 for all 
x E [0, 1], then 

< 2n+1 1.  

 

13. Let a, b, c be real numbers and let f(x) = ax2  + bx + c such that 
max{lf(±1)1,1f(0)11 5_ 1. Prove that if Ix1 < 1 then 

5 
IA4 	and < 2. 

  

Spain 1996 

14. Let A = fp E R[X]l degp < 3, Ip(±1)1 5 1, 

Find sup max 1p"(x)I. 
PEA lx1<1  

p  (±) 
2 

IMC 1998 

15. a) Prove that for any polynomial f having degree at most n, the following 
identity is satisfied: 

 
xf'(x) = f (x) + „ 	

2Zk 
„ 2_, f (xzk) (1 	_ zo2 

k=1 

where zk are the roots of the polynomial X' + 1. 
b) Deduce Bernstein's inequality: II f ' II < 	where 

= 	If(x)1. 

P. J. O'Hara, AMM 
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16. Let f be a complex polynomial of degree at most n, and let zo, zi, ..., zd 
be the zeros of the polynomial Xd+1  — 1, where d > n. Define 11f11 as 
the maximum of f (z)1 over all complex numbers z on the unit circle of 
the complex plane. 
a) Prove that if there exist n 	1 pairwise distinct zeros xo, xi, •••,xn 
among zo,zi,...,zd such that f (xi)1 < ad then 11 f H < 1. 
b) Deduce that 11f11 110 < 4d  • 11/911- 

Gelfand 

17. Let f be a complex polynomial of degree n such that f (x)1 < 1 for all 
x E [-1, 1]. Prove that for all k and all real numbers x such that lx1 > 1, 

1.0) (x)i < IT(k)(x)1. Prove that Chebyshev's theorem is a consequence 
of this result. 

W. W. Rogosinski 
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12.1 Theory and examples 

It is probably time to see the contribution of non-elementary mathematics in 
combinatorics. It is quite difficult to imagine that behind a simple game such 
as football, for example, or behind a day-to-day situation such as handshakes, 
there exists such a complicated machinery. But this sometimes happens, as will 
be soon demonstrated. In the beginning of the discussion, the reader does not 
need any special knowledge, just imagination and the most basic properties 
of matrices, but, as soon as we advance, things may change. Anyway, the 
most important fact is not the knowledge, but the ideas and, as we will see, 
it is not always easy to discover that non-elementary fact that hides behind 
a completely elementary problem. Now that we have clarified what is the 
purpose of the unit, we can begin. 

The first problem we are going to discuss is not classical, but it is relatively 
easy and shows how a very nice application of linear-algebra can solve elemen-
tary problems. 

Let n > 3 and let An, Bn  be the sets of all even, respectively 
odd, permutations of the set {1, 2, ... , n}. Prove that 

n 
	 n 

E E li — 0-col = E 	1 0-(i)i. 
crEA, i=1 	 crE13, i=1 

[Nicolae Popescu] Gazeta Matematica 

Solution. Writing the difference 

	

n 	 n 

E E li — awl — E E Ii — um 

	

0-EAn i=1 	 aEBn  i=1 

as 
n 

E 6(a) 	 awl, 
,Esn 	i=1 
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where 
E(a) 	J +1, if a-  E A, 1   

if a-  E Bn  

reminds us about the formula 

det A = 	(a-)ai,(0a20-(2) • • • anu(n) 
ES, 

We have taken here Sr, = An  U By,. But we have no product in our sum! 
This is why we take an arbitrary positive number x and consider the matrix 
A = (xli-31)1<,,i<n. We have 

det A = 
CIES n 

(_ r(a) x  I 1 	(1)I 	x  I rt-a (n)I = 

li-a(i)l 	 li-a(i)1 
xj=i 	 xj=1  

o- E An 	 a-  E 

This is how we obtain the identity 

1 x x2  Xn-2  Xn-1  

X 1 X xn-3  xn-2 

x2 
X I. X

n-4 Xn-3 

• 	' 	• 
Xn-1 Xn-2 x 1 

x i= 1 
Ii-c(i)1 	 x i= 1 

	
(12.1) 

o-  even 	 a odd 

Anyway, we do not have the desired difference yet. The most natural way 
is to differentiate the last relation, which is nothing other than a polynomial 
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identity, and then to take x = 1. Before doing that, let us observe that the 
polynomial 

1 x x2  Xn-2  X71-1  

X 1 X Xn-3  Xn-2  

X2 X 1 Xn-4 e-3 

Xn-1 Xn-2 X 1 

is divisible by (x — 1)2. This can be easily seen by subtracting the first line 
from the second and the third one and taking from each of these lines x — 1 
as a common factor. Thus, the derivative of this polynomial is a polynomial 
divisible by x — 1, which shows that after we differentiate (12.1) and take 
x = 1, the left-hand side vanishes, while the right-hand side becomes 

n 

E 	0-(i)1 	 a(i)l. 
aEAn  i=1 	 aEBn  i=1 

This completes the proof. 

Here is another nice application of this idea. You probably know how many 
permutations do not have a fixed point. The question that arises is how many 
of them are even. Using determinants provides a direct answer to the question. 

[Example 2. Find the number of even permutations of the set {1, 2, ... , n} 
that do not have fixed points. 

Solution. Let Cn  and Dn  be the sets of even and odd permutations of the set 
{1, 2, ... , n}, that do not have any fixed points, respectively. You may recall 
how to find the sum 1C711 + IDn 1: using the inclusion-exclusion principle, it is 
not difficult to establish that it is equal to 

1 	1 	(-1)n)  
n! (1 — 	• • + 

1! 	2! 	n! 

Hence if we manage to compute the difference ICn1 — 
answer to the question. Write 

ICI 	= E 1— E 1 
crEA, 	crEBn  
a(i)#i 

we will be able to 
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using An, Bn  from Example 1, observe that this reduces to computing the 
determinant of the matrix T = (tu)i<i,3<n, where 

f 1, if i 	j 
1 0, if i = j 

t 

That is, 

— DnI = 

1 1 
1 1 

1 0 

0 	1 
1 	0 

But computing this determinant is not difficult. Indeed, we add all columns 
to the first and factor n — 1, then we subtract the first column from each of the 
other columns. The result is 1Cml —  IDn = (-1)n-1  (n — 1), and the conclusion 
is: 

1 	1 	1) n-2  
cnl 	

) 	- + (-1)n 	1)] . = 	[n! (1 	3! 	
( 

(n 2)! 

In the following problems we will focus on a very important combinatorial 
tool, that is the incidence matrix. Suppose we have a set X = {x1, x2, . • , 
and X1, X2, . , Xk a family of subsets of X. Now, define the matrix A = 
(aij)i<i<n, where 

1<j<k 

f 1, if xi  E X3  
a" _ 0, if xi  cl Xi 

This is the incidence matrix of the family Xi, X2, . , Xk and the set X. In 
many situations, computing the product AT • A helps translate the conditions 
and the conclusion of certain problems. From this point, we turn on this 
machinery, and solving the problem is on its way. 
Let us discuss first a classical problem. It appeared at the USAMO 1979, 
Tournament of the Towns 1985 and in the Bulgarian Spring Mathematical 
Competition 1995. This says something about the classical character and 
beauty of this problem. 
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Example 3. Let A1, A2, . . . , An+i  be distinct subsets of the set {1, 2, ... , n}, 
each having exactly three elements. Prove that there are two 
subsets among them that have exactly one common element. 

Solution.  We argue by contradiction and suppose that IA, n A31 E 0,21 for 
all i 	j. Now, let T = (tip) 1<2<n, be the incidence matrix of the family 

1<j<n+1 
A1, A2, . . . , An+1 and compute the product 

/ 	
n 	 n 	 n z t 	 tk,ltk,2 ,, 	tk,ltk,n+1  

k=1 	k=1 	 k=1 
tT • T = 	... 	... 	 ... 

n 	 n 	 n 

tk,n+ltk,1 E tk,n+ltk,2 	tz,n, 
k=1 	 k=1 	 k=1 	/ 

But Etki=Ail = 3 and E tkitki  = Ai  n Aj I E {0,2}. 
k=1 	 k=1 

Thus, considered in the field Z/2Z, we have 

C:1 
tT • T = (... 

where X is the matrix having as elements the residues classes of the elements 
of the matrix T. Because det X = det X, the previous relation shows that 
det tT • T is odd, hence nonzero. This means that tTT is an invertible matrix 
of order n + 1, thus rank(tT • T) = n + 1 which contradicts the inequality 
rank(tT • T) < rank(T) < n. This shows that our assumption is wrong and 
there indeed exist indices i j such that 14, n A31 = 1. 

The following problem is very difficult to solve by elementary means, but the 
solution using Linear Algebra is straightforward. 

[Example 4.1 Let n be even and let A1, A2, , An  be distinct subsets of 
the set {1, 2, , n}, each of them having an even number of 
elements. Prove that among these subsets there are two having 
an even number of common elements. 

o 



I 
tT 	•T = (. . . 

1 1 

1 0 1 1 
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Solution. Indeed, if T is the incidence matrix of the family A1, A2 , 	, An, 
we obtain as in the previous problem the following relation 

	

n A21 	IA1 n Anl 
tT • T = 
	

(12.2) 

	

IAnnAll 1An n A21 	lAn1 

Now, let us suppose that all the numbers IAi n I are odd and interpret the 
above relation in the field Z/2Z. We find that 

which means again that det tT T is odd. Indeed, if we work in Z/2Z, we 
obtain 

1 	1 	1 	0 
= 1.  

The technique used is exactly the same as in the previous example. Note that 
this is the moment when we use the hypothesis that n is even. Now, since 
det tT • T = det2  T, we obtain that det T is also an odd number. Hence we 
should try to prove that in fact det T is an even number and the problem will 
be solved. Just observe that the sum of elements of the column i of T is 'Ai l, 
hence an even number. Thus, if we add all lines to the first, we will obtain 
only even numbers on the first line. Because the value of the determinant does 
not change under this operation, it follows that det T is an even number. But 
a number cannot be both even and odd, so our assumption is wrong and the 
problem is solved. 
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Working in a simple field such as Z/2Z can allow us to find quite interesting 
solutions. For example, we will discuss the following problem, used in the 
preparation of the Romanian IMO team in 2004. 

Example 5. The squares of an n x n table are colored white and black. 
Suppose that there exists a nonempty set of rows A such that 
any column of the table has an even number of white squares 
that also belong to A. Prove that there exists a nonempty set 
of columns B such that any row of the table contains an even 
number of white squares that also belong to B. 

[Gabriel Dospinescu] 

Solution. This is just the combinatorial translation of the well-known fact 
that a matrix T is invertible in a field if and only if its transpose is also 
invertible in that field. But this is not so easy to see. In each white square we 
write the number 1 and in each black square we put a 0. We thus obtain a 
binary matrix T = (43 )1<,,3<n• From now on, we work only in Z/2Z. Suppose 

that A contains the rows al, a2, 	, ak. It follows that 	tai  = 0 for all 

j = 1, 2, ..., n. Now, let us take 

xi = { 1, if i E A 
0, f i A i 

It follows that the system 

tilZi t21Z2 + • • • + tn1Zn =0 
t12Z1 t22Z2 + • • ' tn2Zn = 0 

tinzi + t2nz2 + • • • + tnnzn  = 0 

has the nontrivial solution (xi, x2, ... , xn). Thus, det T = 0 and consequently 
det tT = 0. But this means that the system 

{

him, ± ti2Y2 + " • + tlnYn 

t21y1 + t22y2 + " • + t2nYn 

=0 
=0 

tnlyi tn2Y2 ' 	tnnYn = 0 
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also has a nontrivial solution in Z/2Z. Now, we take B = 	y2 01  and we 

clearly have B 0 and E .ix = 0, i = 1,2, ..., n. But this means that any 
x B 

line of the table contains an even number of white squares that also belong to 
B, and the problem is solved. 

The cherry on the cake is the following very difficult problem, where just 
knowing the trick of computing to • A does not suffice. It is true that it is one 
of the main steps, but there are many more things to do after we compute 
tA•A. And if for these first problems we have used only intuitive or well-known 
properties of the matrices and fields, this time we need a more sophisticated 
arsenal: the properties of the characteristic polynomial and the eingenvalues 
of a matrix. It is exactly the kind of problem that knocks you down when you 
feel most confident. Note that the problem can also be reformulated in a more 
down-to-earth way: for which m, n is there a directed graph with n vertices 
in which every pair of vertices is connected by exactly m paths of length 2? 

Example 6. Let S = {1, 2, ... , n} and let A be a family of pairs of elements 
in S with the following property: for any i, j E S there exist 
exactly m indices k E S for which (i, k),(k,j) E A. Find all 
possible values of m and n for which this is possible. 

 

[Gabriel Carrol] 

Solution.  It is not difficult to see what hides behind this problem. Indeed, if 
we take T = (ti3 )].<2,3<n, where 

tij 	

1, if (i, i) E A 
= 	(), otherwise 

the existence of the family A reduces to 
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So we must find all values of m and n for which there exist a binary matrix T 
such that 

	

m m 	m 

	

T2 

= m m 	m 

Let us consider 
m m 
m m, 

B =( 

	

m m 	m 

and find the eigenvalues of B. This is not difficult, since if x is an eingenvalue, 
then 

m—x m 	m 
m m—x 	m 

=0 

m m 772 — X 

If we add all columns to the first and then take the common factor mn — x, 
we obtain the equivalent form 

(mn — x) 

1 
1 m — x 

=0. 

1 m 	m — x  

In this last determinant, we subtract from each column the first column mul- 
tiplied by m and we obtain in the end the equation xn-1(mn — x) = 0, which 
shows that the eigenvalues of B are precisely 0, 0, ... 0, mn. But these are 

n-1 times 
exactly the squares of the eigenvalues of T. Hence T has the eigenvalues 
0, 0, 	, 0, \/mn, because the sum of the eigenvalues is nonnegative (being 

n-1 

equal to the sum of the elements of the matrix situated on the main diagonal). 
Since Tr(T) E Z, we find that mn must be a perfect square. Also, because 
Tr(T)< ?I, we must have m < n. 
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Now, let us prove the converse. Suppose that m < n and mn is a perfect 
square and write m = du2, n = dv2. Let us take the matrices 

I = (1 . . .1), 	0 	( 	 ). 

dv times 	 dv times 

Now, let us define the circulant matrix 

/ I...ro...o ■ 
U 	11-U 

Oar  
u 	v — u —1 

I . . 0 . . . 0 .I 
\ 	v-u 

E Mv,n({0, 1}). S= 

Finally, we take 

SS 
E Mn({0,1}). 

S 

It is not difficult to see that 

m m m 

A2  = 
m m m 

m m m 

which concludes the proof. 

The last idea that we present here (but certainly these are not all the methoG 
of higher mathematics applied to combinatorics) is the use of vector spaces. 
Again, we will not insist on complicated concepts from the theory of vector 
spaces, just the basic facts and theorems Maybe the most useful fact is that 
if V is a vector space of dimension n (that is, V has a basis of cardinality n), 
then any n + 1 or more vectors are linearly dependent. As a direct application, 
we will discuss the following problem, which is very difficult to solve by means 

A = 
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of elementary mathematics. Try first to solve it without vectors and you will 
see how hard it is. The following example is classical too, but few people know 
the trick behind it. 

[Example 7.] Let n be a positive integer and let A1, , An+1 be nonempty 
subsets of the set {1, 2, ... , n}. Show that there exist nonempty 
and disjoint index sets I = {i1,i2,... , ip} and J = , jql 
such that 

U Ai2  U • • • U 	= Ai 	2 	• • U 

Chinese Olympiad 

Solution. Let us assign to each subset Ak a vector vk E Rn, where vk = 
(x/10  , xri) and 

f 0, if / E Ak 

Xk 	1 1, if / E Ak 

Because dim Rn  = n, the vectors we have just constructed must be linearly 
dependent. So, we can find ai, a2 , 	, an+i E R, not all of them 0, such that 

aivi + a2v2 + • " + an±ivn±i = 0. 

Now take / = {i, E {1,2,... ,n+1}1ai > 0} and J = 	E {1,2, ..., n+1}1 aj < 
0}. It is clear that I and J are nonempty and disjoint. Let us prove that 

U Ai  = U Ai  and the solution will be complete. Take h E U Ai  and sup-
iEI 	 iEI 

pose that h U A3. Then the vectors vi  with j E J have zero on their hth 
jEJ 

component, so the hth component of the vector aivi + a2v2 + • • • + ari+ivn+1 is 

E , > 0, which is impossible, since aivi + a2V2 + • • • + an-FiVn,±1 = 0. This 
xEA, 
iEI 

shows that U Ai  c U A3. The reversed inclusion can be proved in exactly 
iEI 	jEJ 
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the same way, 

And probably 

l Example 8. 

so we conclude that U A, = U A3' 
iEI 	3EJ 

an even more difficult result: 

Let S be a finite subset of [0,1] containing 0 and 1 and such 
that every distance that occurs between pairs of elements oc-
curs at least twice, except for the distance 1. Prove that S 
contains only rational numbers. 

 

[E.G.Strauss] Iran 1998 

Solution.  Let (et, e2, ..., en) be a basis of the linear space spanned by S over 
the field of rational numbers; this basis can be chosen such that en  = 1. Now, 
write each element x, of S in this basis: x, = aiiei + az2e2 + • • • + aznen• 
We can define an order relation on the set of these vectors, by saying that 
x,> x3  if there exists a position inn which the two vectors differ and x, has a 
larger coordinate in the first position where they differ. This (lexicographic) 
order is total, so we can choose the maximal and minimal elements for it to 
be x, and x3  respectively. We know that xi — xi  = xk — xi for some k,I. Thus 
using the maximality and minimality of x, and xi  respectively, we deduce that 
xi = (0,0, ..., 0,1) and x3  = (0,0, ..., 0). Because any other vector xr  is less 
than x, but greater than x3 , we deduce that all vectors have the first n — 1 
coordinates zero, which is equivalent to the fact that all elements of S are 
rational. 
We conclude this discussion with another problem, proposed for the TST 2004 
in Romania, whose idea is also related to vector spaces. 

Example 9. Thirty boys and twenty girls are training for the Team Se-
lection Test. They observed that any two boys have an even 
number of common acquaintances among the girls and exactly 
nine boys know an odd number of girls. Prove that there ex-
ists a group of sixteen boys such that any girl attending the 
training is known by an even number of boys from this group. 

 

[Gabriel Dospinescu] 
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Solution. Let us consider the matrix A = (aii) where 

{ 1, if Bi  knows Fi  

We have considered here that B1, B2, , B30 are the boys and F1, F2, , F20 

are the girls. Now, consider the matrix T = A • At. Observe that all the 
elements of the matrix T, except those from the main diagonal, are even 

20 

(because ti3  = E aikaik is the number of common acquaintances among the 
k=1 

girls of the boys Bi, B3 ). Each element on the main diagonal of T is precisely 
the number of girls known by the corresponding boy. Thus, if we consider 
the matrix T in (Z/2Z, •), it will be diagonal, with exactly nine nonzero 
elements on its main diagonal. From now on, we will work only in Z/2Z. We 
have seen that rank(T) = 9. Using Sylvester's inequality, we have 

9 = rank(T) > rank(A) + rank (At) — 20 = 2 • rank (At ) — 20 

hence r = rank (At) < 14. Let us consider now the linear system in (Z/2Z, +, •): 

The set of solutions of this system is a vector space of dimension 30 — r > 16. 
This is why we can choose a solution (x1, x2, 	, x30) of the system, hav- 
ing at least 16 components equal to 1. Finally, consider the set M = 	E 

{1, 2, ... , 30}1 xi  = -IT We have proved that 'MI > 16 and also E a3, = 0 
jEm 

for all i = 1, 2, 20. But observe that 	aji is just the number of boys Bk 

jEM 
with k E M such that Bk knows Fi. Thus, if we choose the group of those 
boys Bk with k E M, then each girl is known by an even number of boys from 
this group, and the problem is solved. 

aii = 
0, otherwise 

{

allxi. ± a2ix2 + " • + a30,1x3o =0 
auxi + a22x2 + • • • + a30,2X30 = 0 

a1,20X1 a2,20X2 ' • • + a30,20X30 = 0 



278 	12. HIGHER ALGEBRA IN COMBINATORICS 

A famous result of Sylvester (proved by Gallai and then by many other math-
ematicians) states that if A is a finite set of points in the plane such that there 
is no line which contains A, then there exists a line passing through exactly 
two points of A. The following example is a refinement of this result and the 
proof is almost magical: 

Example 10:1 Prove that n distinct points, not all of them lying on a line, 
determine at least n distinct lines. 

[Paul Era's] 

Solution.  Number the points with 1, 2, ..., n. Let X be the set of distinct lines 
passing through two of the n points and let Ai be the set of those lines in X 
that contain the point i. Then any two of the sets Ai, Ai have exactly one 
common element. We need to prove that their union, X has at least n elements. 
Suppose the contrary, namely that there are only p < n such elements of 
X (and let /1, , /3, be these lines). Then because any homogeneous linear 
system with p equations and more than p unknowns has a nontrivial solution, 
it follows that we can assign numbers xi , x2, ..., xn, not all 0, to the points 
such that the sum of the numbers on each line of X is 0. Then E xi  = 0 for 

iEt, 
all j. Therefore 

0 = 	xi)2 . 
3=1 TE/, 

However, observe that in the last sum every x2 appears at least twice (since 
not all the points are on the same line), yet every product 2xi x3  with i j 
appears only once (this is where we use the fact that any two sets among 
Ai, A2, ..., An  have exactly one common point). We therefore obtain xi + xz + 

• + xn2 + (x1  + x2  + • • • + xn)2 < 0, which forces all xi  to be zero, which 
contradicts the choice of xi, x2, • • 

In the framework of the previous problem, the next example should not be 
very difficult to solve. However, it is worth saying that this problem has 
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no combinatorial proof until now: this is the famous Graham-Pollak theorem. 
The solution, due to Tverberg, is taken from the excellent work Proofs from 
The Book. 

Example 11. There exists no partition of the complete graph on n vertices 
with fewer than n-1 complete bipartite subgraphs (such that 
every edge belongs to exactly one subgraph). 

[R. Graham, 0. Pollak] 

Solution.  Denote by 1, 2, ..., n the vertices of the complete graph on n ver-
tices and suppose that B1, B2, ..., Bm  is a partition of this graph with complete 
bipartite subgraphs. Every such subgraph Bk is defined by two sets of ver-
tices Lk and Rk. Put a real number x, in each vertex of the complete graph Kn. 

The hypothesis implies that 

E xix, = E [(E xi) • (E x j )1 . 
i<i<j<n 	k=1 	iELk 	iERk 

The idea is (like in the previous problem) that if m < n — 1 then we can 
choose the real numbers x1, x2, xn  such that not all of them are zero, 
x1 + x2 + • • • + xn  = 0 and E xi  = 0 for all k. Indeed, this linear sys-

ieLk  
tem has a nontrivial solution, because the number of unknowns exceeds the 

number of equations. Using the above identity and the fact that E xF = 
i=i 

(E x j)2  — 2 E xi xi, we infer that x7 + 4 + • • • + xn2  = 0, which contra- 
i=1 	1<i<j<n 

dicts the choice of x1, x2, • • • , xn• 

We end this chapter with a very tricky problem, which became classical: we 
found traces of it and variants in AMM, Mathematics Magazine, as well as 
Iranian, Russian, and German Olympiads: 
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Example 	Let G be a simple graph, all of whose vertices are colored in 
white. A legal operation consists of choosing a vertex and 
changing the color of that vertex and of all of its neighbors 
(vertices connected to it) to the opposite color (black in white 
and white in black). Prove that one can make all vertices of 
the graph black in a finite number of legal operations. 

Solution. We will assume by convention that any vertex is connected to itself, 
so that the adjacency matrix A of the graph (defined by az3  = 0 if i and j 
are not connected and 1 otherwise) is symmetric and has only 1 on the main 
diagonal. The idea is to prove the existence of a set S of vertices of the graph 
such that any vertex of G is connected to an odd number of vertices of S. 
In this case, all we need is to perform legal operations on the vertices of S 
in order to change the color of all vertices of the graph. Now, observe that 
if we find a vector v = (v1, v2, ..., vn) with integer coefficients such that Av 
has all coordinates odd numbers we are done: it is enough to choose S the 
set of those i such that vi  is odd. Thus, the problem reduces to proving that 
for any binary symmetric matrix A with diagonal (1, 1, ..., 1), there exists a 
vector v such that Av has all coordinates odd numbers. Translated in the 
field F = Z/2Z, this comes down to proving that for any symmetric matrix 
A e 111„(F), there exists a vector v E Fn such that Av = (1, 1, ..., 1). By a 
classical argument, it is enough to show that the orthogonal vector space of 
Im(A) is a subset of the orthogonal vector space of (1,1, ..., 1). But if x is 
orthogonal to Im(A), then we must have 

Xi E aijy, 0 

i=i 	i=i 

for all yi, yn  E F, which means that E azixi  = 0 for all j. Thus 
i=i 

n 	n 

E x j  E azjxz  = 0, 
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which can be also written as 

E (aii + aii)xixi + E aii4 = 0. 
1<i<j<n, 	 i=1 

The matrix is symmetric, so the first sum is 0. Also, we have 4 = xi  and 
aii  = 1, so we infer that x1 + x2 + • • + xn  = 0, which means that x is orthog-
onal to v. This finishes the proof. 
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12.2 Problems for training 

1. The squares of an n by n board are filled with 0 or 1 such that any two 
lines differ in exactly -7-1  positions. Prove that there are at most n • 
ones on the board. 

2. Consider 2n + 1 real numbers with the property that no matter how 
we eliminate one of them, the rest can be divided into two groups of 
n numbers, the sum of the numbers in the two groups being the same. 
Then all the numbers must be equal. 

3. A handbook classifies plants by 100 attributes (each plant either has a 
given attribute or does not have it). Two plants are dissimilar if they 
differ in at least 51 attributes. Show that the handbook cannot give 51 
plants all dissimilar from each other. 

Tournament of the Towns 1993 

4. Let A1, A2, 	, Am  be distinct subsets of a set A with n > 2 elements. 
Suppose that any two of these subsets have exactly one element in com-
mon. Prove that m < n. 

5. The edges of a regular 24-gon are colored red and blue. A step consists of 
recoloring each edge which has the same color as both of its neighbors in 
red, and recoloring each other edge in blue. Prove that after 2n-1  steps 
all of the edges will be red and that need not hold after fewer steps. 

Iran Olympiad 1998 

6. Is there in the plane a configuration of 22 circles and 22 points on their 
union (the union of their circumferences) such that any circle contains 
at least 7 points and any point belongs to at least 7 circles? 

Gabriel Dospinescu, Moldova TST 2004 
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7. Let p be an odd prime and let 71 > 2. For any permutation a E Sn, we 
consider 

5(a) = > k (k). 
k=1 

Let A3  and B3  be the set of even and odd permutations a for which 
S(a) j (mod p) respectively. Prove that n > p if and only if A3  and 
B3  have the same number of elements for all j E {0, 1, ,p —1}. 

Gabriel Dospinescu 

8. A number of teams compete in a tournament, and each team plays 
against any other team exactly once. In each game, 2 points are given 
to the winner, 1 point for a draw, and 0 points for the loser. It is known 
that for any subset S of teams, one can find a team (possibly in S) whose 
total score in the games with teams in S is odd. Prove that n is even. 

D. Karpov, Russian Olympiad 1972 

9. Let n > 2. Find the greatest p such that for all k E {1,2, ... ,p} we have 

(n 

E Eif(i)) = E (Eif(i)) 
crEA, i=-1 	 crE.13,, i=1 

where An, Bn  are the sets of all even and odd permutations of the set 
{1,2, . , n} respectively. 

Gabriel Dospinescu 

10. Let r be the number of disjoint cycles in the decomposition of a per-
mutation a of the set {1, 2, ..., n}. Prove that a cannot be written as 
the product of fewer than n — r transpositions. Determine the minimal 
number of transpositions that generate the symmetric group of order n. 
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11. A simple graph has the property: given any nonempty set H of its 
vertices, there is a vertex x of the graph such that the number of edges 
connecting x with the points in H is odd. Prove that the graph has an 
even number of vertices. 

12. In an m by n table, real numbers are written such that for any two 
lines and any two columns, the sum of the numbers situated in the 
opposite vertices of the rectangle formed by them is equal to the sum 
of the numbers situated in the other two opposite vertices. Some of the 
numbers are erased, but the remaining ones allow us to find the erased 
numbers using the above property. Prove that at least 71+771-1 numbers 
remained on the table. 

Russian Olympiad 1971 

13. Find the least m such that it is possible to decompose the complete 
graph on n vertices into m complete subgraphs such that every edge 
belongs to exactly one such subgraph. 

14. Let Al, A2, ..., An, B1, B2, ..., Bn  be subsets of {1,2, , n} such that: 

a) for any nonempty subset T of A, there is an i E A such that Ai  n 
is odd, and 

b) for any i, j E A, Ai  and Bi  have exactly one common element. 
Prove that B1 = B2 = • • • = 

Gabriel Dospinescu 

15. Let xi, x2, 	, xn  be real numbers and suppose that the vector space 
spanned by xi  — x3  over the rationals has dimension m. Then the vector 
space spanned only by those xi — xi  for which xi  —x3  xk —x/ whenever 
(i, j) (k,l) also has dimension m. 

Strauss's theorem 



PROBLEMS FOR TRAINING 	285 

16. Light bulbs L1, L2, ..., Li, are controlled by switches Si, 82, 	S. Switch 
Si  changes the on/off status of light Li  and possibly the status of some 
other lights. Suppose that if Si  changes the status of L3  then Sj changes 
the status of Li. Initially all lights are off. Is it possible to operate the 
switches in such a way that all the lights are on? 

Uri Peled, AMM 10197 

17. Let s be a function defined by s(ai, a2, .••, ar) = (Iai —a21, I a2 — a3 1/ • • • ar — 
au I ). Prove the equivalence of the following statements: i) for all non- 
negative integers al, a2, 	ar , there exists n such that the n-th iterate 
of s evaluated at (al, a2, 	ar) is (0,0, ..., 0); ii) r is a power of 2. 

Ducci's problem 

18. Let A be a finite set of real numbers between 0 and 1 such that for all 
x E A there exist a, b different from x, which belong to A or which are 
equal to 0 or 1, such that x = az 6 . Prove that all elements of A are 
rational. 

Bay Area Competition 

19. Let X be a set of n prime numbers and let m be a positive integer. Find 
the number of subsets A of X having the following properties: i) A has 
m elements, all of them being square-free. ii) the product of the elements 
in any subset of A is not a perfect square. iii) any prime divisor of an 
element of A is in A. 

Iran 1998 

20. In a contest consisting of n problems, the jury defines the difficulty of 
each problem by assigning it a positive integral number of points (the 
same number of points may be assigned to different problems). Any 
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participant who answers the problem correctly receives that number of 
points for the problem; any other participant receives 0 points. After 
the participants submitted their answers, the jury realizes that given any 
ordering of the participants (where ties are not permitted), it could have 
defined the problems' difficulty levels to make that ordering coincide with 
the participants' ranking according to their total scores. Determine, 
in terms of n, the maximum number of participants for which such a 
scenario could occur. 

Russian Olympiad 2001 

21. In a society, acquaintance is mutual and even more, any two persons 
have exactly one common friend. Then there is a person who knows all 
the others. 

Universal friend theorem 

22. Let A1, A2, 	, Am  be subsets of {1, 2, 	, n}.Then there are disjoint 

sets I, J such that U Ai = U Ai  and n, = n 
iEI 	jEJ 	iEI 	jEJ 

Lindstrom's theorem 

23. On an m x n sheet of paper a grid dividing the sheet into unit squares is 
drawn. The two sides of length n are taped together to form a cylinder. 
Prove that it is possible to write a real number in each square, not all 
zero, so that each number is the sum of the numbers in the neighboring 
squares, if and only if there exist integers k, I such that 7/ + 1 does not 
divide k and 

2/7r/c7r 	1 

17/ 
cos — + cos 	 

n + 1 
= 

2 
 

Ciprian Manolescu, Romanian TST 1998 
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24. Let A1, A2, . , Am  and B1, B2, . , B,, be subsets of {1, 2, . , n} such 
that A2, fl B, is an odd number for all i and j. 'Then mp < 2n-1. 

Benny Sudakov 

25. A figure composed of 1 by 1 squares has the property that if the squares 
of a fixed m by n rectangle are filled with numbers the sum of all of 
which is positive, the figure can be placed on the rectangle (possibly 
after being rotated by a multiple of 2) so that the numbers it covers also 
have positive sum (however, the figure may not have any of its squares 
outside the rectangle). Prove that a number of such figures can be placed 
on the rectangle such that each square is covered by the same number 
of figures. 
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13.1 Theory and examples 

It may seem weird, but geometry is really useful in number theory, and some-
times it can help in proving difficult results with some extremely simple argu-
ments. In the sequel we are going to exhibit a few applications of geometry in 
number theory, almost all of them revolving around the celebrated Minkowski's 
theorem. This theorem will give a very efficient criterion for a centrally sym-
metric convex body to contain a nontrivial lattice point. The existence of this 
point has important consequences in the theory of representation of numbers 
by quadratic forms, and in the approximation of real numbers by rational 
numbers. As usual, we will present only a mere introduction to this extremely 
well-developed field of mathematics. You will surely have the pleasure of con-
sulting some reference books about this fascinating area of research. 

First of all, let us define the notion of convex body (or convex set; in what 
follows we will call bodies sets in lir). A subset A of Rn will be called a convex 
body if it is convex, that is A contains the segment {tx-F(1—t)y 10 < t < 1} once 
it contains two points x, y. A is called centrally symmetric if it is symmetric 
with respect to the origin, that is —x E A if x E A. We will take for granted 
that convex bodies have volumes (this is more delicate than it seems, actually). 
We start by proving the celebrated Minkowski's theorem. 

Theorem 13.1 (Minkowski). Suppose that A is a bounded centrally symmetric 
convex body in Rn having volume strictly greater than 2n. Then there is a 
lattice point in A different from the origin. 

Proof. The proof is surprisingly simple. Indeed, begin by making a partition of 
Rn into cubes of edge 2, having as centers the points that have all coordinates 
even integers. It is clear that any two such cubes have disjoint interiors and 
that they cover all space. That is why we can say that the volume of A is 
equal to the sum of the volumes of the intersections of A with each cube 
(because A is bounded, it is clear that the sum will be finite). But of course, 
one can bring any cube into the cube centered around the origin by using a 
translation by a vector all of whose coordinates are even. Since translations 
preserve volume, we will have now an agglomeration of bodies in the central 
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cube (the one centered at the origin), and the sum of volumes of all these 
bodies is greater than 2Th. It follows that there are two bodies which intersect 
at a point X. Now, look at the cubes where these two bodies where taken from 
and look at the points in these cubes whose image under these translations is 
the point X. We have found two different points x, y in our convex body such 
that x — y E 2Zn. But since A is centrally symmetric and convex, it follows 

x 
2 i 

 y 
that 	 s a lattice point different from the origin and belonging to A. The 

theorem is proved. 	 0 

Here is a surprising result that follows directly from this theorem. 

rExample 1. Suppose that at each lattice point in space except for the origin 

one draws a ball of radius r > 0 (common for all the balls). 
Then any line that passes through the origin will intercept 
some ball. 

Solution. Let us suppose the contrary and consider a cylinder having as axis 
r 
—
2 

that very line and base a circle of radius . We choose it sufficiently long to 

ensure that it has a volume greater than 8. This is clearly a bounded centrally 
symmetric convex body in space and using Minkowski's theorem we deduce 
the existence of a nontrivial lattice point in this cylinder (or on the border 
or the corresponding sphere). This means that the line will intercept the ball 
centered around this point. 

Actually, the theorem proved before admits a more general formulation: 

Theorem 13.2 (Minkowski). Let A be a convex body inRn and let v1 , v2, • • • , vn 
be linearly independent vectors in Rn. Consider the fundamental parallelepiped 

n 

P = E 	0 < xi < 1 and denote by Vol(P) its volume. If A has a vol- 
i=i 

ume greater than 2n  • Vol(P), A must contain at least one point of the lattice 
L = Zvi  + • • • + Zvn, different from the origin. 
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Proof. With all these terms, it would seem that this is extremely difficult to 
prove. Actually, it follows trivially from the first theorem. Indeed, by con-
sidering the linear transformation f sending vi  into e, = (0, 0, , 1, 0, , 0), 
one can easily see that P is sent into the "normal" cube in IV (that is, the set 
of vectors all of whose components are between 0 and 1), and that f maps L 
into Z. Because the transformation is linear, it will send A into a bounded 

Vol(A) 
centrally symmetric convex body of volume 	 > 2n 

Vol(P) 	
. It suffices to apply 

the first theorem to this bounded centrally symmetric convex body and to 
look at the preimage of the lattice point (in Zn), in order to find a nontrivial 
point of A n L. This finishes the proof of the second theorem. 	 ❑ 

In the chapter Primes and Squares we proved that any prime number of 
the form 4k +1 is the sum of two squares. Let us prove it differently, this time 
using Minkowski's theorem. 

Example 2.] Any prime number of the form 4k +1 is the sum of two squares. 

Solution.  We have already proved that for any prime number of the form 
4k + 1, call it p, we can find an integer a such that p1 a2  + 1. Consider 
then vi =- (p, 0) and v2 = (a, 1). Clearly, they are linearly independent 
and moreover for any point (x, y) in the lattice L = Zv1  + Zv2 we have 
plx2  + y2. Indeed, there are m, n E Z such that x = mp + na, y = n and 
thus x2  +y2  = n2(a2  +1) 0 (mod p). In addition, the area of the fundamen-
tal parallelogram is 11 vi A v211 = p. Next, consider as convex body (when the 
context is clear, we will no longer add bounded centrally symmetric convex 
body, just convex body) the disc centered at the origin and having radius . 
Clearly, its area is strictly greater than four times the area of the fundamental 
parallelogram. Thus, there is a point (x, y) different from the origin that lies 
in this disc and also in the lattice L = Zv1 + Zv2. For this point we have 
plx2  + y2  and x2  + y2  < 2p, which shows that p= x2  + y2. 

Proving that some Diophantine equation has no solution is a classical prob- 
lem, but what can we do when we are asked to prove that some equation has 
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solutions? Minkowski's theorem and, in general, the geometry of numbers give 
responses to such problems. Here is an example: 

[Example 	Consider positive integers a, b, c such that ac = b2  + b + 1. 

Prove that the equation ax2  — (2b + 1)xy + cy2  = 1 has integer 
solutions. 

Polish Olympiad 

Solution.  Here is a very quick approach: consider in R2  the set of points 
satisfying ax2  — (2b + 1)xy + cy2  < 2. A simple computation shows that 

it is an elliptical disc having area —
47 

> 4. An elliptical disc is obviously 
Nid 

a convex body and, even more, it certainly is symmetric about the origin. 
Thus by Minkowski's theorem there is a point in this region different from the 
origin. Since ac = b2  + b + 1, we have for all x, y not both equal to 0 the 
inequality ax2  — (2b + 1)xy + cy2  > 0. Thus for (x, y) E Z2  \ {(0, 0)}, we have 
ax2  — (2b+1)xy + cy2  = 1 and the existence of a solution of the given equation 
is proved. 

The following problem (like the one above) has a quite difficult elementary 
solution. The solution using geometry of numbers is more natural, but it is 
not at all obvious how to proceed. Yet... the experience gained by solving the 
previous problem should ring a bell. 

Example 4. Suppose that n is a positive integer for which the equation 
x2 + xy + y2 = n has rational solutions. Then this equation 
has integer solutions as well. 

 

Kemal 

Solution.  Of course, the problem reduces to: if there are integers a, b, c such 
that a2  + ab + b2  = c2n, then x2  + xy + y2  = n has integer solutions. We will 
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assume that a and b are nonzero (otherwise the conclusion follows trivially); 
and more, a classical argument allows us to assume that a and b are each 
relatively prime (which implies that a and b are each relatively prime to n, 
too). We try again to find a pair (x, y) E Z2 \{(0, 0)} such that x2+xy+y2  < 2n 
and such that n divides x2  + xy + y2. In this case we will have x2  + xy + y2  = n 
and the conclusion follows. 

First, let us look at the region defined by x2  + xy + y2  < 2n. Again, simple 

computations show that it is an elliptical disc of area —47 n. Next, consider 

the lattice formed by the points (x, y) such that n divides ax - by. The area of 
the fundamental parallelogram is clearly at most n. By Minkowski's theorem, 
we can find (x, y) E Z2  \ {(0, O)} such that x2  + xy + y2  < 2n and n divides 
ax - by. We claim that this yields an integer solution to the equation. Ob-
serve that ab(x2  + xy + y2) = c2xyn + (ax - by) (bx - ay) and so n also divides 
x2+xy+y2  (since n is relatively prime with a and b) and the conclusion follows. 

Before continuing with some more difficult problems, let us recall that for any 
symmetric real matrix A such that 

E aijxixj > 0 
i<753  <n 

for all x = (xi, x2, . , xn) E Rn  \ {0} the set of points satisfying 

E ai 
	<1 

i<i,j<n 

Vol(Bn)
where 

	

has volume equal to  	
\Met A 

Vol(Bn) = 	n 
F(1+ 2) 

cc 
where Bn  is the nth  dimensional Euclidean ball (and F(x) = J 

e-ttx-idt  is  

Euler's gamma function). There are explicit formulae for F(1 + 3) because 

71-3 
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F(n) = (n — 1)! for positive integers n (so this takes care of the case n even) 
and 

F (1 + ) 
	  

= 
2 3/1-1-1  

2 2  x ((n — 1)/2)! 

for odd n. The proof of this result is not elementary and we invite you to 
read more about it in any decent book of multivariate integral calculus. In 
particular, you should notice that these results can be applied to previous 
problems to facilitate the computations of different areas and volumes. With 
these fact in mind, let us attack some serious problems. 
If we talked about squares, why not present the beautiful classical proof of 
Lagrange's theorem on representations using four squares? 

1 Example 5.1 Any positive integer is a sum of four perfect squares. 

[Lagrange] 

Solution. This is going to be much more complicated, but the idea is always 
the same. The main difficulty is finding the appropriate lattice and centrally 
symetric convex body. First of all, let us prove the result for prime numbers. 
Let p be an odd prime number (for the prime 2 the result is obvious) and 
consider the sets A = {a21 a E Z/pZ}, B = {—b2  — ll b E Z/pZ}. Since 

there are 
p ± 1 

distinct squares in Z/pZ (as we have already seen in previous 
2 

chapters), these two sets cannot be disjoint. In particular, there are integers 
x and y such that 0 < x, y < p — 1 and plx2  + y2  + 1. This is the observation 
that will enable us to find a good lattice. Consider now the vectors 

vi  = (P, 0, 0, 0), v2 = (0,p, 0, 0), v3 = (x, y, 1, 0), v4 = (y, — x, 0,1) 

and the lattice L generated by these vectors. A simple computation (using 
the above formulas) allows us to prove that the volume of the fundamen- 
tal parallelepiped is p2. Moreover, one can easily verify that for each point 
(t, u, v, w) E L we have plt2  + u2  + v2  + w2. Even more, we can also prove 
(by employing the non-elementary results stated before) that the volume of 

\ Fr x n! 
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the convex body C = {(t, u, v, w) E R41 t2  + u2  + v2  + w2  < 2p} is equal to 
272p2  > 16Vol(P). Thus C n L is not empty. It suffices then to choose a point 
(t, u, v, w) E C n L and we will clearly have t2 + u2 + v2 + w2 = p. This finishes 
the proof for prime numbers. 
Of course, everything would be nice if the product of two sums of four squares 
is always a sum of four squares. Fortunately, this is the case, but the proof is 
not obvious at all. It follows form the miraculous identity: 

(a2  + b2  + C2  + d2 ) (X2  + y2  + z2  + t2) = (ax + by + cz + dt)2  

+(ay — bx + ct — dz)2  + (az — bt + dy — cx)2  + (at +bz — cy — dx)2. 

This is very nice, but how could one answer the eternal question: how on earth 
should I think of such an identity? Well, this time there is a very nice reason: 
instead of thinking in eight variables, let us reason only with four. Consider 
the numbers z1 = a + bi, z2 = c+ di, z3 =- x + yi, z4 = z + ti and introduce 
the matrices 

	

Zi Z2 	 ( Z3 	4 ) M = 
z 	

N = 
z 

	

2 zi 	 4 Z3 

We have 
det(M) = Izi 12  + 1z212  — a2  + b2  + c2  + d2  

and similarly 
det(N) = X2  + y2  + z2  + t2. 

It is then natural to express (a2  + b2  + c2  + d2)(x2  + y2  + z2  + t2) as det(MN). 
But surprise! We have 

MN = ( ziz3 — z2z4 ziz4+ z2z3  ) 
 

and so det(MN) is again a sum of four squares. The identity is now motivated. 

Let us concentrate a little bit more on approximations of real numbers. We 
have some beautiful results of Minkowski that deserve to be presented after 
this small introduction to the geometry of numbers. The following one is ex-
tremely important while studying algebraic number fields. 

— Z1Z4 Z2Z3 Z1Z3 Z2Z4 
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Example 6.1 Let A = (ai3 ) be an n x n invertible matrix with real en-
tries, and let Cl, , cn  be positive real numbers such that 
c1c2 • • • cn  > Idet Al. Then there are integers xi , x2, .. • xn, 

not all 0, such that E ,x3  < cz  for all i = 1, , n. 
3=1 

Minkowski's linear forms theorem 

Solution. We need to prove that there exists a nonzero integer vector X 
that also belongs to the region {Y E Rni (AY)21 < Cz, i = 1, n} (here 
(AY)i  denotes the i-th coordinate of AY). But {Y E Rn i RAY)21 < ci , i = 
1, . . . , n} is exactly the image through A-1  of the parallelepiped {Z E Rn  

< ZZ < c2 i  i = 1, . . . , n} (which has volume 2nci 	cn). Thus {Y E 
Rni 1(AY),1 < ci , i =1,...,n} is a centrally symetric convex body of volume 

1 

I det AI 
2nc1 	cn  > 2n. By Minkowski's theorem, this body will contain a 

nonzero lattice point, which satisfies the conditions of the problem. 

Actually, there exists a very useful sharpening of the last result: if we suppose 
only that ci c2 • • • cn  > Idet Al, then the integers xi, x2, 	, xn, not all 0, can be 

chosen such that E ai3 x3  < ci and E azi x j  < a, for all i > 2. The proof is 
j=i 

not difficult at all, once example 6 is proved. Indeed, note that if c > 0 then by 
the previous result there are integers xi  (c), x2(c), 	, xn(c), not all 0 and such 

that 	(c) < c2  for i = 2, 3, n and E ai3 x3 (6) < ci(l+E). Because 
3-1 	 j=i 

the matrix A is invertible, there exist only finitely many (xi (c), x2(E), 	xn(E)) 
with these properties for fixed E. Indeed, the condition says that the vector 
Ax(E) is bounded where x(c) is the vector with components xi(c). Thus the 
vector x(c) is also bounded in Rn. This shows that it is possible to construct 
a sequence Ek that converges to 0 and such that x3  = xj(ck) does not depend 
on k for all j. All we need is then to make k oo in the above inequalities. 
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Now, this theorem implies Dirichlet's approximation theorem (also discussed 
in the chapter Density and regular distribution: for all real numbers 
al , a2, ..., an  and all positive integers M there exist integers ml , m2, 	p 
such that 	< Mn and lmi — pad < - for all i). Indeed, all we need is to 
apply the above result to the (n + 1) x (n + 1) matrix 

/ 1 0 0 0 —al \ 
0 1 0 0 —a2 
0 0 1 0 —a3 

0 0 0 1 —an 
\ 0 0 0 0 1 	j 

And here is a nice consequence of the previous example. Our last example of 
Diophantine approximation that can be obtained using Minkowski's theorem 
will imply the product theorem for homogeneous linear forms: 

l Example 7. Let A = (aid) be an n x n invertible matrix with real entries 
(n > 2). Show the existence of integers xi, x2, xn, not all 0, 
for which 

E aiixi + ai2x2 + - • • + ainxrd < Vn! IdetAl.  
i=1 

Solution. Let us start by computing the volume of the figure 0(x, n) consist-
ing of all points (xi, x2, ...,xn) such that 1x11+ lx21+ • • • + Ixn1 < x. For n = 1 
it is certainly 2x. Now, using Fubini's theorem we can write 

Vol(0(x, n))
= 	

dxidx2...dxn  = 

dxi...dxn—i 

f 	
fixr,1<x 

= 	Vol(O(x — Ixrd,n — 1))dxn = Vol(0(1,n-1))/ 	(x 
lx”.1<x 	 I 
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= Vol(0(1,n - 1)) 
2xn 

71 

2rAn immediate induction shows that Vol(O(x, n)) = ( ; Now, the problem 
asks to prove that there exists some nonzero integer vector X such that AX 
lies in the figure O( /n! • I det AI, n). Stated otherwise, we need to prove that 
the image of this figure by the linear application determined by A-1  contains 
a nonzero lattice point. But the volume of this centrally symetric convex body 
is 2n  (just replace x by /n! • I det AI). Unfortunately, we cannot directly ap-
ply Minkowski's theorem, because this volume is not strictly greater than 2n. 

However, we can imitate the argument used after the solution of the previous 
exercise in order to obtain the desired result: for all E > 0 we know that the 
octahedron O( /n! • I det AI + E, n) contains some AX, (where X, is a nonzero 
integer vector). One shows that these vectors X, are uniformly bounded, then 
extracts a constant family of vectors and takes the limit. We leave to the 
reader the details. 

The highlight of the IMO 1997, the very beautiful problem 6 also has a mag-
nificent solution using geometry of numbers. Actually, we will prove much 
more than the result asked in the contest, which shows that, for large values 
of n, one of the bounds asked by the IMO problem is very weak: 

I Example CI For each positive integer n, let f (n) denote the number of ways 
of representing it as a sum of powers of two with nonnegative 
integer coefficients. Representations that differ only in the 
ordering of their summands are considered to be the same. 
For instance, f (4) = 4. Prove that there are two constants a, b 
such that 

n2 
2-y 

n2 
 —nlog2(n)—an < f(2n) < 22—n1og2 (n)—bn 

for all sufficiently large n. 

Adapted after IMO 1997 
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Solution. It is clear that f (2n) is just the number of nonnegative integer 
solutions of the equation ao  + 2a1  + • • • + 2nan  = 2n, which is the same as 
the number of solutions in nonnegative integers of the inequation 2ai + 4a2 + 
• • • + Tian  < 2n. For any such solution different from (0, 0, ..., 0,2n) we have 
an  = 0 and we will consider the hypercube H(ai, a2, •, an_i) = [al, ai + 1) x 
[a2, a2 + 1) x x [an_ i , an_i +1). It is clear that these hypercubes are pairwise 
disjoint for distinct solutions (al, a2, an_i). So the number of solutions of 
the inequation is the total volume of these hypercubes. Now, observe that any 
such hypercube is included in the set of points (xi, x2, xn_i) with xi > 0 and 
n-1 
E 22 (x, - 1) < 2Th. Also, the union of these cubes covers the region consisting 
i=1 

n-1 
of those points (xi, x2, ..., xn_i) with xi  > 0 and E 2'xi < 2Th . Indeed, take a 

i=1 
point (x1, x2, ..., xn_i) in this region. Then ([x1], [x2], ..., [xn_i], 0) is a solution 
of the inequation and the point belongs to the corresponding hypercube. Now, 
let us consider more generally the region R(ai , a2, ..., an, A) defined by the 
inequations xi > 0 and aixi + a2x2 + • • • + anxn  < A. Its volume is 

Vol(R(ai, .••, an, A)) = dxidx2...dxn  = 
fx,>0,aixi+•••+anx,<A 

i0<.,,,<2- xi,.•.,.,-1>0,aixi±-±an-ixn-i <A—anxn 
dxi...dxn-i 

A -=  I an 
Vol(R(ai, an_i, A - anxn))dxn  = 

A 

= VOI(R(al, •••) an-1) 1)) f (A - anxn)n-ldxn = 

An  
	 Vol(R(ai, 	an-1, 1))• Tian  

This relation easily implies by induction that Vol(R(ai, a2, •.•, an)) = n i.a1an2 ...an  • 
Thus, because the sum of the volumes of the hypercubes is between the vol- 
ume of R(2,4, ..., 2n-1, 2n) and R(2,4, ..., 271-1,2 + 22  + 2n-1 + 2n) = 

0 
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R(2, 4, ..., 2n-1, 2n+1-  2), counting the solution (0, 0, ..., 0, 2Th), we deduce that 
the number of solutions satisfies the inequalities 

2 	2 	< f (2n)  < 1 4_  (27+1 2)n-1 
1 + (n 1)!  

2

Th2Z 

2 n  • (n - 1)! 

Now, note that 

2  n
2 
 -

n 
 2  21+0(n)-log2((n-1)!) 

(n - 1)! 

and that 

1 
log2((n - 1)!)= 

—1n2 ((n  
1) ln(n - 1) + 0(n)) = n log2(n) + 0(n) 

by Stirling's formula. Similarly, 

(2n+1 2 ) n-1 	n2 
	 = 	n log2  (n) + 0(n). 

The existence of the two constants is now obvious. 

We end this chapter with some difficult problems concerning representations 
of solutions of some Diophantine equations. We will show, using Minkowski's 
theorem, that if n < 4 and A is a symmetric and positive matrix (that is, 
t xAx > 0 for all vectors x E Rn) in SL,(Z) (the set of integer n x n matrices 
with determinant 1), then there exists a matrix B with integer coefficients 
such that A = B • Bt  (a result which actually holds for n < 7, for n = 8 being 
false). This will have some nice applications in the study of some Diophantine 
equations. Let us start with some notations and easy observations. A bases of 
Zn will be a family B = (vi, v2, ...,vp) of vectors in Z'2, such that any vector 
x E Zn  can be uniquely expressed as kivi k2v2 + • • • + kpvp  for some integers 
k1, k2, kp. For instance, it is clear that the canonical bases (el, e2, en) 
of Rn is a basis of Zn, where ez  is the vector which has 1 on position i and 
0 otherwise. But there are many other bases of Zn. Actually, in the chapter 
A Little Introduction to Algebraic Number Theory we proved that 

n2  
2 2  • (n - 1)! 	2  
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any integer vector whose coordinates are relatively prime can be completed 
to a basis of Zn. We can easily prove that any two bases B1 = (v1, v2, •-•, vp) 
and B2 = (W1, W2, ..., wq) have the same number of elements. Indeed, let us 
write v, = aiiwi + ai2W2 + • • • + atqWqr and w, = bay' + bi2v2 + • • • + bzpvp  
for some integers au, bu. Then if A and B are the matrices with entries au  
and bu, we have AB = _r„ (just replace in v, = aiiwi + ai2w2 + • • + aiqwq  
each w, by bay]. + bi2v2 + • • • + b2pvp  and then use the linear independence 
of vi). Thus p = rank(AB) < rank(A) < q and by symmetry we also 
have q < p, so q = p. (Now one can see that, due to the existence of the 
canonical basis mentioned above, any basis of Zn has n elements.) Now, for 
an n x n matrix A with integer coefficients we can define a bilinear form 
gA(x, y) = E aijxiyj  = xtAy, where x = xi el + x2e2 + • • • + xnen  and 

1<i<j<n 

y = y1e1 + y2e2  + • • • + ynen. Let fA be the quadratic form associated with 
this bilinear form, that is fA(x) = g A(x , x). Now, take B = (v1, v2, vn) a 
basis in Zn and suppose that vi  = viiei + v2,e2 + • + vnien. By the previous 
argument (showing that two basis have the same cardinality) we know that 
V = (vu) is invertible. For an integer vector whose coordinates are xi  in the 
canonical basis and x", in B, we have x = Vx', and a short computation shows 
that g A(x , y) = xit (VtAV)V. On the other hand, a direct computation shows 
that g A(x , y) = xitGy' where G = (g A(u,, v3)), and this shows that G = VtAV. 

lExample 9.1 If A E SLn(Z), n < 4, is a symmetric positive matrix, then 

there is a matrix B with integer entries such that A = BtB. 

Solution. We will keep the notations used in the introduction to this exam-
ple. Let us start with a very modest result, but one which, as we will see 
immediately, is the key idea for solving the problem. 

Lemma 13.3. There exists a vector vi E Zn such that fA(vi) = 1. 

Proof. The proof is a direct consequence of Minkowski's theorem. Indeed, we 
have seen that the volume of the ellipsoid defined by fA(x) < 2 is equal to 
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r(i+3)
. For n < 4, using the fact that F(n) = (n — 1)! and F(n + 	=- 

1-3....•(2n-1)  
\Fr, you can easily verify that (3)71  > (F (1 + "02. This shows 2" 

that the volume of the ellipsoid is greater than 2n and thus it contains a 
nontrivial lattice point, which we call v1. Because fA(vi) > 0 (A is invertible 
and positive) and fA(vi) E Z, it is clear that vi is a good choice. 

Now, we will extend this vector v1 to a basis B = (v1,v2,...,vn) so as to have 
the first line and column of G constructed: 

Lemma 13.4. Let v1 be a vector as found in lemma 13.1. Then there exist 
integer vectors v2,v3,...,vn  such that B = (vi,v2,...,vn) is a basis of Zn and 
gA(vi,vi) = 0 for all i > 2. 

Proof. The proof is very beautiful. Consider H = {x E Zn IgA(vi, x) = 01. 
Clearly, H is a submodule of Zn, thus it is of the form 7Gv2  + • • • + Zvr  for 
some linearly independent integer vectors v2, v3, ..., vr. We claim that B = 
(v1, v2, ..., vr) is a basis of Zn. Indeed, take x E Zn. We need to study the 
equation x = kivi  + v , where v E H. All we need is gA(vi , x — kiv 1) = 0, which 
is the same as ki fA(vi) = gA(vl , x), thus k1  = gA(vl, x). Thus k1  exists and is 
uniquely determined. This means (because v2, ..., yr  are linearly independent) 
that there exist unique integers k1, k2  , kr  such that x = k1v1  k2v2 + • • • + 
krvr. Thus B is a basis of Zn, and consequently we also have r = n. This 
finishes the proof of lemma 2. 

1=1 

Now, we can proceed to an inductive proof. We will prove that the assertion 
holds for n > 1 by induction. Of course, the case n = 1 is trivial, so assume 
that the result holds for n — 1. Using lemma 1 and lemma 2, we know that for 

1 0 
some matrix S with integer coefficients we have A = St  • 

0 A' 	
S, where 

clearly A' is a symmetric positive matrix in SLn_1(Z). Applying the inductive 
hypothesis, we can write A' = BitB' for some matrix B' with integer entries. 
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( 1 0 
' 
) 

Therefore A =134B where B = 	B • S. 
0 

Let us now discuss two beautiful applications of this result. The first is quite 
classical; it was among the results obtained by Fermat. However, it appeared 
as an old proposal for the IMO, as well as in the Iranian Olympiad in 2001. 

Example 10. Let x, y, z be positive integers such that xy = z2  + 1. Prove 

that there exist integers a, b, c, d such that x = a2  + b2, y = 
c2  + d2  and z = ac + bd. 

 

z 
Solution.  Let us consider the matrix A = 

x 
y . Then A E SL2(Z) 

z  
because xy = z2  + 1. Also, tr(A) = x + y > 2, thus A has positive eigenvalues, 
so A is symmetric and positive. (This could have been established directly, 
too, by showing that 

2 (XU zv)2  + v2  
XU2  2zuv + yv = 	 > 0 

x 

for all u, v not both equal to 0.) By the previous result, A can be written as 

B • Bt  for some matrix B = 
( a 

d  
b 

. By identifying entries in the equality 

A = B • Bt, we deduce the desired representation. Note that the last example 
implies a famous theorem of Fermat: each prime number of the form 4k + 1 is 
a sum of two squares. Indeed, we saw that for such a prime p there is always 
an n such that pin2  + 1. However, the last theorem shows that any divisor of 
a number of the form n2  + 1 is a sum of two squares. 

Next, let us see a very difficult Diophantine equation, whose solution follows 
in a few lines from the important result proved above. 

TExample 11. Find all integers a, b, c, x, y, z such that axe  + by2  + cz2  = 

abc + 2xyz — 1, ab + be + ca > x2  + y2  + z2, and a, b, c > 0. 

[Gabriel Dospinescu] Mathematical Reflections 
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a z y 
Solution.  Let us consider the matrix M = 	z 

( 
b x Clearly, M is 

y x c 
symmetric. The condition 

ax2 by2 cz2  = abc + 2xyz — 1 

implies that M E SL3(Z). Now, let us prove that A is positive. Because M is 
symmetric and invertible, it is enough to prove that its eigenvalues are positive. 
Let these eigenvalues be u, v, w. Then we know that u, v, w are real numbers 
(because M is symmetric), that uvw = 1 and u+v+w = tr(M) = a+b+c > 0. 
On the other hand, it is not difficult to see that 

uv + vw + wu = ab — z2  + bc — x2  + ac — y2  > 0, 

the sum of the principal second-order minors. Thus u, v, w are zeros of a 
polynomial of the form X3  — UX2  + VX — 1 for some nonnegative U, V. 
Clearly, such a polynomial can have only nonnegative zeros, thus u, v, w > 0. 
Because det(M) = 1, it follows that M satisfies all conditions of the previous 
theorem, so M is of the form tNN for some integer matrix N. If we write 

al a2 a3 
N = 	b1 b2 b3 	, we deduce that a = 11A112  b = 11B112, c = 11C112  

C1 C2 C3 
z = (A, B), y = (A, C) and finally x = (B, C) for some integer vectors A, B ,C 
(here II 11 and (•) are the Euclidean norm and inner product respectively) that 
form a basis of Z3  (they are the rows of the matrix N). All these triples found 
are actually solutions. Indeed, if A, B ,C form a basis in Z3, then the matrix 
N whose rows are A, B ,C is in GL3(Z), that is its determinant is —1 or 1, so 
det(tNN) = (det(N))2  = 1. Thus det(A) = 1 and 

ax2  + by2 
 
+ cz2  = abc + 2xyz — 1. 

Also, 
X2 + y2 + Z2 < ab bc ca 

is a consequence of the Cauchy-Schwarz inequality, because 

x2  = (137 	 111311 2  dr112. 
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Thus these are the solutions of the Diophantine equation. 

And last but not least, let us prove a beautiful theorem which, although not 
related to Minkowski's theorems, has strong connections with the geometry 
of numbers. You will notice, if you know the three-squares theorem, that the 
problem is trivial. But if not, what would you do? Without such an advanced 
result, the problem is not easy at all, but as we will see, a good geometric 
argument is the key of a very elementary solution: 

[Example 12.] Prove that any integer which can be written as the sum of 
the squares of three rational numbers can also be written as 
the sum of the squares of three integers. 

[Davenport-Cassels] 

Solution. Let us suppose by contradiction that the property does not hold. 
We will use a geometric argument combined with the extremal principle. Let 
S be the sphere of radius Nrn in R3  and suppose that a E S has all coordinates 
rational numbers. There exists an integer vector v E Z3  and an integer d > 1 
such that a = d. Choose the pair (a, v) for which d is minimal. We claim 
that there exists a vector b E Z3  such that Ha — b11 < 1, where 11x11 is the 
Euclidean norm of the vector x. Indeed, it is enough to write a = (x, y, z) and 
to consider b = (X, Y, Z), where integers X, Y, Z are such that 

1 
1X — x1 < 

2 Yi 
1 
—2  , 1Z — ,z1 < 

2 
—
1

. 

Now, since a is assumed to have at least one non-integer coordinate, a 	b. 
Consider the line ab. It will cut the sphere S in a and another point c. Let us 
determine precisely this point. Writing c = b + A • (a — b) and imposing the 
condition 11c11 2  = n yields a quadratic equation in A, with an obvious solution 
A = 1. Using Viete's formula for this equation, we deduce that another solution 

11b11
Hab11

2—n
2  is A = 	On the other hand, the identity 

Ha b112  = n +1142 	(b,v) 
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and the fact that 0 < I la — bl 1 < 1 show that I la — bl 12  = 4 for a cer- 
tain positive integer A smaller than d. Therefore, A = 1(1Ib112  — n) and 

c = b + Il bl Al 2'  (v db) = "ti ',A for an integer vector w. This shows that the 
pair (c, w) contradicts the minimality of (a, v) and proves the result. 



PROBLEMS FOR TRAINING 	309 

13.2 Problems for training 

1. Consider a lamp (a point) in space. Prove that no matter how we place 
a finite number of closed spheres of equal radius, the light of this lamp 
will be able to go to infinity (that is, there exists a direction in which 
the light will not hit any of these spheres). The spheres must not touch. 

Iran 2003 

2. Suppose that a and b are rational numbers such that the equation axe  + 
bye  = 1 has at least one rational solution. Then it has infinitely many 
rational solutions. 

Kurschak Competition 

3. Is there a sphere in R3  which has exactly one point with all coordinates 
rational numbers? 

Tournament of the Towns 

4. In the plane consider a polygon of area greater than n. Prove that it 
contains n + 1 points Aa (xi , yi) such that xi  — x3 , yi  — y3  E Z for all 
1 < j < n + 1. 

Chinese TST 1988 

5. Let S = {pi ., P2, pn} be a set of prime numbers and let f (S, x) be the 
number of integers not exceeding x, all of whose prime divisors are in S. 
Prove that 

f (S, x) 	
(ln 

 
n! • lnpi  • In p2 • • • lnpn  

Deduce that there are infinitely many primes. 

Michael Rubinstein 
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6. Suppose that a, b, c are positive integers such that ac = b2  + 1. Prove 
that the equation axe  + 2bxy + cy2  = 1 is solvable in integers. 

7. Let A = (au) where au  (1 < i, j < n) are rational numbers such that 

aiixixi > 0 for all x = (xi, . , xn) E Rn  \ {0}. Prove that there 
l<z,3<n 
are integers. xi, 	, xr, (not all zero) such that 

au xixi < n '\Ydet A. 
1<i,j<n 

Minkowski 

8. Prove that if A = (au) is an n x n invertible matrix with real entries 
then there exist integers xl , x2, ..., xn, not all zero, such that 

< —
n! 
 • IdetAl. 

nn 

Product Theorem for Homogeneous Linear Forms 

9. Consider a disc of radius R. At each lattice point of this disc, except 
for the origin, one plants a circular tree of radius r. Suppose that r 
is optimal with respect to the following property: if you look from the 
origin, you can see at least one point situated at the exterior of the disc. 
Prove that 

1 	1 	< r  <—. 
\/R2  + 1 	 R 

George Polya, AMM 

10. Let f : Rn 	R be an even function such that f (x) > 0 for all x E Rn, 
different from 0, f (ax) = a f (x) for all a > 0 and all x E Rn, and 
f (x + y) < f (x) + f(y) for all x, y. Prove that there exists an open, 
bounded, convex set B = {x E Rn if(x) < 1} such that f (x) is the gauge 
of B, that is f (x) = inf{A > 0j E B}. 

n 

aijxj  

=1 
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11. Let B be a convex, open and bounded set in Rn, and let f be its 
gauge (defined in the previous problem). Prove that minxEzn,x00  f (x) < 

2 	where V (B) is the volume of B. ii/v(s)' 

Minkowski 

12. Let a, b, c, d be positive integers such that there are 2004 pairs (x, y) 
with x, y E [0,1] for which ax + by, cx + dy E Z. If gcd(a, c) = 6, find 
gcd(b, d). 

Nikolai Nikolov, Bulgarian Olympiad 2005 

13. Prove that there is no position in which an n by n square can cover more 
than (n 1)2  integral lattice points. 

D.J.Newman, AMM E 1954 

14. Let n > 5 and let al, 	, an, b1, 	, bri  be integers such that that all 
pairs (ai, bi) are different and laibi+i — ai±ibil = 1, 1 < i < n (here 
(an+i, bn+1) = (al, b1)). Prove that we can find 1 < i — j < n — 1 such 
that laibi — 	= 1. 

Korean TST 

15. Let us denote by A(C, r) the set of points w on the unit sphere in Rn  

with the property that lw kl > 	for any nonzero vector k E Z 
— PP'  

(here w • k is the usual dot product and I kII is the Euclidean norm of 
the vector k E Zn). Prove that if r > n — 1 there exists C > 0 such that 
A(C, r) is nonempty, but if r < n — 1 there is no such C. 

Mathlinks Contest (after an ENS entrance exam problem) 
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16. Prove that for a positive integer n the following assertions are equivalent: 
a) n is the sum of three squares of integers; b) the set of points with 
all coordinates rational on the sphere centered at the origin and having 
radius \Ft is dense in this sphere. 

17. Suppose that xi, x2, 	, xn  are algebraic integers such that for each 
1 < i < n there is at least one conjugate of x, which is not among 
x1, x2, • • • , xn. Prove that the set of n-tuples (f (xi), f (x2), • • • , f (xn)) 
with f E Z[X] is dense in RTh .  

18. Let f (X) = (X — xi)(X — x2) • • • (X — xn) be an irreducible polynomial 
over the field of rational numbers, with integer coefficients and real zeros. 
Prove that 

nn 
H ixi - xi l 

1<i<j<ri 	 71.  

Siegel 
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14.1 Theory and examples 

Quite often, a collection of simple ideas can make very difficult problems look 
easy. We have seen or will see a few such examples in our journey through 
the world of numbers: congruences that readily solve Diophantine equations, 
properties of the primes of the form 4k + 3, or even facts about complex 
numbers, analysis or higher algebra, cleverly applied. 
In this unit, we will discuss a fundamental concept in number theory, the order 
of an element. It may seem contradictory for us to talk about simple ideas 
and then say "a fundamental concept". Well, what we are going to talk about 
is the bridge between simplicity and complexity. The reason for which we say 
it is a simple idea can be guessed easily from the definition: given an integer 
n > 1 and an integer a such that gcd(a, n) = 1, the least positive integer d 
for which nlad  — 1 is called the order of a modulo n. The definition is correct, 
since from Euler's theorem we have n1 a`P(n) — 1, so such numbers d exist. The 
complexity of this concept will be illustrated in the examples that follow. 

We will denote by on(a) the order of a modulo n. A simple property of an(a) 
has important consequences: if k is a positive integer such that nlak  — 1 and 
d = on(a), then dlk. Indeed, because nlak  — 1 and nlad  — 1, it follows that 
niagcd(k,d) 1. But from the definition of d we have d < gcd(k, d) , which 
cannot hold unless dlk. Nice and easy. But could such a simple idea be 
of any use? The answer is yes, and the solutions of the problems to come 
will vouch for it. But before that we note a first application of this simple 
observation: on(a)fr,o(n). This is a consequence of the above property and of 
Euler's theorem. 
Now an old and nice problem, which may seem really trivial after this intro-
duction. It appeared in Saint Petersburg Mathematical Olympiad and also in 
Gazeta Matematica. 

[Example 1.1 Prove that nic,o(an — 1) for all positive integers a and n. 

Solution. What is oan_i  (a)? It may seem a silly question, since of course 
oan_1(a) = n. (because if ak  — 1 is a multiple of an — 1, then ak  — 1 > an —1 
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and so k > n-we assumed a > 1, otherwise the conclusion is clear; thus the 
order is at least n and on the other hand it obviously divides n) Using the 
observation in the introduction, we obtain exactly nico(an — 1). 

Here is another beautiful application of the order of an element. It is the first 
case of Dirichlet's theorem that we intend to discuss, a classical property. 

Example 2.] Prove that any prime factor of the n-th Fermat number 2
2n 
 +1 

is congruent to 1 modulo 2n+1. Then show that there are 
infinitely many prime numbers of the form 2nk + 1 for any 
fixed n. 

Solution. Let us consider a prime p such that pl22n  + 1. Then p divides 
(22n  + 1)(22n  — 1) = 22n+1  — 1 and consequently op(2)12n+1. This ensures the 
existence of a positive integer k < n + 1 such that op(2) = 2k. We will prove 
that in fact k = n + 1. Indeed, if this is not the case, then op(2)12n, and so 

PI2°P(2) — 1122n  — 1. But this is impossible, since OP  + 1 and p is odd. Hence 
we found that op(2) = 2n+1  and we need to prove that op(2)1p — 1 to finish the 
first part of the question. But this follows from the introduction of this chap-
ter. The second part is a direct consequence of the first. Indeed, it is enough 
to prove that there exists an infinite set of pairwise relatively prime Fermat's 
numbers (22nk  11 ink>n- Then we could take a prime factor of each such 
number and apply the first part to obtain that each such prime is of the form 
2nk + 1. But not only is it easy to find such a sequence of pairwise relatively 
prime numbers, but in fact, any two different Fermat numbers are relatively 
prime. Indeed, suppose that digal(22n  + 1,22n+k  + 1). Then d122n+1  — 1 and 
so c/122n+k  — 1. Combining this with d122n+k + 1, we obtain a contradiction. 
Hence both parts of the problem are solved. 

We continue with another special case of the well-known and difficult theo-
rem of Dirichlet on arithmetical sequences. Though classical, the following 
problem is not straightforward, and this probably explains its presence on a 
Korean TST in 2003. 
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Example 3. For a prime p, let fp(x) = xP-1+ XP-2  + • • • + x + 1. 

a) If plm, prove that any prime factor of fp(m) is relatively 
prime to m(m — 1). 

b) Prove that there are infinitely many positive integers n such 
that pn +1 is prime. 

Solution.  a) Take a prime divisor q of fp(m). Because q11 + m + • • + mP-1, 
it is clear that gcd(q,m) = 1. Moreover, if gcd(q, m — 1) 1, then qlm — 1 
and because ql1 + m + • • • + mP-1, it follows that qlp. But plm and we find 
that qlm, which is clearly impossible. 
More difficult is b). We are tempted to use a) and explore the properties of 
fp(m), just like in the previous problem. So, let us take a prime qlfp(m) for a 
certain positive integer m that is divisible by p. Then we have qimP — 1. But 
this implies that oq(m)lp and consequently oq(m) E {1,74. If oq(m) = p, then 
q 1 (mod p). Otherwise, qlm — 1, and because qlf p(m), we deduce that qlp. 
Hence q = p. But, while solving a), we have seen that this is not possible, 
so the only choice is plq — 1. Now, we need to find a sequence (mk)k>1 of 
multiples of p such that f p(mk) are pairwise relatively prime. This is not as 
easy as in the first example. Anyway, just by trial and error, it is not too 
difficult to find such a sequence. There are many other approaches, but we 
like the following one: take ml  = p and mk = Pfp(Tri1)ip(n12) • • • ip(rnk—i)• 
Let us prove that f p(mk) is relatively prime to f p(mi), f p (7112) • • • fp(mk-i)• 

But this is easy, since fp(m1)fp(m2) • • • fp(mk—t)i.ip(mk) —  fp(0) = fp(mk )— 1. 

Let us use this special case of Dirichlet's theorem to prove the following non-
trivial result: 

Example 4. Let k > 2 be an integer. Prove that there are infinitely many 

composite numbers n with the property that nian—k  — 1 for all 
integers a relatively prime to n. 

 

[A.Makowski] 

Solution.  Let us choose these numbers of the form n = kp for some suitable 
prime number p. We need plan—k  -1, so it is enough to have 	k, which 
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is clearly true. Next, we need klan-k — 1, which (by Euler's theorem) is true 
if n — k is divisible by co (k). So, it would be enough to have co(k)lp — 1 and 
to be sure that p > k so that gcd(p, k) = 1. But from the previous problem 
there are infinitely many prime numbers p 1 (mod co (k)) and those numbers 
greater than k furnish infinitely many good numbers n. 

The following problem has become a classic, and variants of it appeared in 
mathematics competitions. It seems to be a favorite Olympiad problem, since 
it uses only elementary facts and the method is nothing less than beautiful. 

[Example 5.1 Find the least n such that 22005117n — 1. 

Solution.  The problem actually asks for 022005(17). We know that 

, 022005 (17)1(p (220135) = 22004  

so 022005(17) = 2k , for some k E {1, 2, ... , 2004}. The order of an element has 

done its job. Now, it is time to work with exponents. We have 220051172k  — 1. 
Using the factorization 

172k  — 1 = (17 — 1)(17 + 1)(172 ± 
	(1721,1 ± 1) 

 

we proceed by finding the exponent of 2 in each factor of this product. But 
this is not difficult, because for all i > 0 the number 1721  + 1 is a multiple of 
2, but not a multiple of 4. Hence v2(172k  — 1) = 4 + k and the order is found 
by solving the equation k + 4 = 2005. Thus 022005 (17) = 22001. 

Another simple, but not straightforward, application of the order of an element 
is the following divisibility problem. Here, we also need some properties of the 
prime numbers. 

Find all prime numbers p and q such that p2  + 112003g +1 and 

q2  + 112003P + 1. 

[Gabriel Dospinescu] 
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Solution. Without loss of generality, we may assume that p < q. We discuss 
first the trivial case p = 2. In this case, 5120034  + 1 and it is easy to deduce 
that q is even, hence q = 2, which is a solution to the problem. Now, suppose 
that p > 2 and let r be a prime factor of p2  + 1. Because r1200324  — 1, it 
follows that or (2003)I2q. Suppose that gcd(q, or(2003)) = 1. Then or (2003)I2 
and rI20032  — 1 = 23  . 3 . 7 11 . 13. 167. It seems that this is a dead end, since 
there are too many possible values for r. Another simple observation narrows 
the number of possible cases: because 7-1/92 +1, r must be of the form 4k +1 or 
equal to 2, and now we do not have many possibilities: r E {2,13}. The case 
r = 13 is also impossible, because 2003q + 1 2 (mod 13) and rI20034  + 1. 
So, we have found that for any prime factor r of p2  + 1, we have either r = 2 
or qlor(2003), which in turn implies qlr — 1. Because p2  + 1 is even but not 
divisible by 4, and because any odd prime factor of it is congruent to 1 modulo 
q, we must have p2  + 1 —= 2 (mod q). This implies that ql(p — 1)(p + 1). Com-
bining this with the assumption that p < q yields 4+1 and in fact q = p +1. 
It follows that p = 2, contradicting the assumption p > 2. Therefore the only 
solution is p = q = 2 . 

A bit more difficult is the following 2003 USA TST problem. 

Example 7. Find all ordered triples of primes (p, q, r) such that 

plqr  + 1, qlrP + 1,rIpq + 1. 

[Reid Barton] USA TST 2003 

 

Solution. It is quite clear that p, q, r are distinct. Indeed, if for example 
p = q, then the relation plqr + 1 is impossible. We will prove that we cannot 
have p, q, r > 2. Suppose this is the case. The first condition p qr + 1 implies 
p I qtr  1 and so op(q) 12r. If op(q) is odd, it follows that kr — 1, which 
combined with plqr + 1 yields p = 2, which is impossible. Thus, op(q) is either 
2 or 2r. Could we have op(q) = 2r? No, since this would imply that 2rIp — 1 
and so 0 pq + 1 (mod r) 2 (mod r), that is r = 2, false. Therefore, the 
only possibility is op(q) = 2 and so plq2  — 1. We cannot have plq — 1, because 
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plqr +1 and p 2. Thus, plq + 1 and in fact 2p1q + 1. In the same way, we 
find that 2q1r + 1 and 2r1p + 1. This is clearly impossible, just by looking at 
the greatest among p, q, r. So, our assumption is wrong, and one of the three 
primes must equal 2. Suppose without loss of generality that p = 2. Then q 
is odd, q1r2  + 1 and r12q + 1. Similarly, or (2)12q. If qlor (2), then qtr — 1 and 
so q1r2  + 1 — (r2  — 1) = 2, which contradicts the already established result 
that q is odd. Thus, or(2)12 and r13. As a matter of fact, this implies that 
r = 3 and q = 5, yielding the triple (2, 5, 3). It is immediate to verify that this 
triple satisfies all conditions of the problem. Moreover, all solutions are given 
by cyclic permutations of this triple. 

Can you find the least prime factor of the number 225  + 1? Yes, with a 
large amount of work, you will probably find it. But what about the number 
12215 + 1? It has more than 30000 digits, so you will probably be bored before 
finding its least prime factor. But here is a beautiful and short solution, which 
does not need a single division. 

Example 8. Find the least prime factor of the number 12215  + 1. 

  

Solution.  Let p be this prime number. Because p divides (12215  + 1) • 

(12215  — 1) = 12216  — 1, we find that op(12)1216. Exactly as in the solu- 

tion of the first example, we find that op(12) = 216  and so 2161p —1. Therefore 
p > 1 + 216. But it is well-known that 216  + 1 is a prime (and if you do not 
believe it, you can check it!). So, we might try to see if this number divides 

12215  + 1. Let q = 216  + 1. Then 12215  + 1 = 2q-1  • 3Y + 1 = 3Y + 1 

(

(mod q). It remains to see whether 3 = —1. But this is done in the chap-
q 

ter Quadratic reciprocity and the answer is positive, so indeed 3
g, 
 2  +1 = 0 

(mod q) and 216  + 1 is the least prime factor of the number 12215  + 1. 

OK, you must be already tired of this old fashioned idea that any prime factor 
of 22' + 1 is congruent to 1 modulo 271+1. Yet, you might find the energy to 
devote attention to the following interesting problems. 
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Example 9.1 Prove that for any n > 2 the greatest prime factor of 22n  + 1 

is greater than or equal to n 2n+2  + 1. 

Chinese TST 2005 

Solution.  You will not imagine how simple this problem really is. If the start 
±  is right... Indeed, let us write 22n 1  = pkii  p22 	where p1 < • • • < pr  are 

prime numbers. We know that we can find odd positive integers qi  such that 
pi  = 1+211+1qi. Now, reduce the relation 22n  +1 =pi1p22 modulo 22n+2. 

It follows that 1 1 + 2n+1  E kiqi  (mod 22Th+2) and so E kiqi  > 2n+1. But 
i=i 	 i=1 

then gr E ki  > 2n+1. Now everything becomes clear, since 
i=i 

+ 1 > (1 + 2n+1)ki±k2+•••+k, > 2(n-1-1)(ki+k2+•••4-kr) 

2n  
and so k1  + k2  + • • • + kr< 

n +1
. Then (k. > 2(n + 1) and we are done. 

Example 10.1 It is not known whether there are infinitely many primes of 

the form 22n  + 1. Yet, prove that the sum of the reciprocals 
of the proper divisors of 22n  + 1, converges to 0. 

[Paul Erdos] AMM 4590 

Solution.  Note that the sum of the reciprocals of all the divisors of n is 
a(nn),  where o-(n) is the sum of all the divisors of n. It suffices to prove 

(22n+i)  that 0-2 
	converges to 1. Let pit • • • pric' be the prime factorization of 2' 

22n  + 1 and observe that 1 < a(22n+1)  < 	1 	 i 	Because 22n  +1 	' 	< (1—M' • 11 (1—k.  ) 
i=1 	P% 

22n  + 1 > 2n(k1±•±k • )  > 2", r = 0 ( 2i) and so (1_1-m, converges to 1 

( + for n —> oo. From the above inequality, 0 222 	converges to 1 and the con- 
2' +1

1)  con- 
clusion follows. 
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We have seen that the order of a modulo n is a divisor of co(n). Therefore a 
natural question appears: given a positive integer n, can we always find an 
integer a whose order modulo n is exactly (19(n)? We call such a number a a 
primitive root modulo n. The answer to this question turns out to be negative, 
but in some cases primitive roots exist. We will prove here that primitive roots 
mod pn exist whenever p > 2 is a prime number and n is a positive integer. 
The proof is quite long and complicated, but breaking it into smaller pieces 
will make it easier to understand. So, let us start with a lemma due to Gauss: 

Lemma 14.1. For each integer n > 1, E yo(d) = n. 
din 

Proof. One of the (many) proofs goes like this: imagine that you are trying 
to reduce the fractions -n1  , , 177,  in lowest terms. The denominator of any 
new fraction will be a divisor of n and it is clear that for any divisor d of n we 
obtain co (d) fractions with denominator d. By counting in two different ways 
the total number of fractions obtained, we can conclude. ❑ 

Take now p > 2 a prime number and observe that any element of Z/pZ has 
an order which divides p — 1. Consider d a divisor of p — 1 and define f (d) to 
be the number of elements in Z/pZ that have order d. Suppose that x is an 
element of order d. Then 1, x, ... Xd-1  are distinct solutions of the equation 
ud  = 1, an equation which has at most d solutions in the field Z/pZ. Therefore 
1, x, ..., Xd-1  are all solutions of this equation and any element of order d is 
among these elements. Clearly, x2  has order d if and only if gcd(i, d) = 1. 
Thus at most (p(d) elements have order d, which means that f(d) < (p(d) for 
all d. But since any nonzero elements has an order which divides p — 1, we 
deduce that 

f (d) = p — 1 = > yo(d) 
dip-1 	 dip-1 

(we used in the last equality the lemma above). This identity combined with 
the previous inequality shows that f (d) = co(d) for all dlp — 1. We have thus 
proved the following: 
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Theorem 14.2. For any divisor d of p -1 there are exactly c,o(d) elements of 
order d in Z/pZ. 

The above theorem implies the existence of primitive roots modulo any prime 
p (the case p = 2 being obvious). If g is a primitive root mod p, then the p 
elements 0, 1, g, g2, gP-2 are distinct and so they represent a permutation 
of Z/pZ. Let us fix now a prime number p > 2 and a positive integer k and 
show the existence of a primitive root mod pk. First of all, let us observe that 
for any j > 2 and any integer x we have (1 + xp)P3  2  -= 1 + xpi-1  (mod pj). 
Establishing this property is immediate by induction on j and the binomial 
formula. With this preparatory result, we will prove now the following: 

Theorem 14.3. If p is an odd prime, then for any positive integer k there 
exists a primitive root mod pk .  

Proof. Indeed, take g a primitive root mod p. Clearly, g +p is also a primitive 
root mod p. Using again the binomial formula, it is easy to prove that one of 
the two elements g and g + p is not a root of XP-1  - 1 mod p2. This shows 
that there exists y a primitive root mod p for which yP-1  # 1 (mod p2). 
Let yP-1  = 1 + xp. Then by using the previous observation we can write 
yp 
 (p_i) 	(1 	xp)pk-2 

1 + Xpk-1  (mod pk ) and so pk  does not divide 
pk2(p  

-1) 1. Thus the order of y mod pk  is a multiple of p - 1 (because 
y is a primitive root mod p) which divides pk-1(p - 1) but does not divide 
pk-2(p 1). So, y is a primitive root mod pk. 

In order to finish this (long) theoretical part, let us present a very efficient 
criterion for primitive roots modulo pk : 

Theorem 14.4. Each primitive root mod p and p2  is a primitive root modulo 
any power of p. 

Proof. Let us prove first that if g is a primitive root mod p and p2  then it is also 
a primitive root mod p3. Let k be the order of g mod p3. Then k is a divisor of 
p2 (p-1). Because p2  divides gk  -1, k must be a multiple of p(p-1). It remains 
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to prove that k is not p(p — 1). Supposing the contrary, let gp-i = 1 +rp, then 
we know that p3  (1  + rp)P 1. Using again the binomial formula, we deduce 
that p divides r and so p2  divides gp-1 - 1, which contradicts the fact that g 
is a primitive root mod p2. Now, we use induction. Suppose that n > 4 and 
that g is a primitive root mod pn-1. Let k be the order of g mod IP. Because 
pn-1  divides gk  —1, k must be a multiple of pn-2(p — 1). Also, k is a divisor of 
pri-1(p —1) = cp(pn). So, all we have to do is to prove that k is not pn-2  (p — 1). 
Otherwise, by Euler's theorem we can write gP'-3(P-1) = 1 + rpn-2  and from 
the binomial formula it follows that r is a multiple of p and so pn-1  divides 
g/P-3(P-1) —1, contradicting the fact that g has order pn-2  (ft 1) modulo pn-1. 
The theorem is thus proved. 1=1 

It is important to note that the previous results allow us to find all positive 
integers that have primitive roots. First off all, observe that such a number n 
cannot be written in the form n = nln2 with gcd(ni, n2) = 1 and ni, n2 > 2. 

( 	 ) 

Indeed, if gcd(g, n) = 1 then g
yo

2
n) 	

(gca(ni)) 2= 1 (mod ni) and similarly 

g 2 	1 (mod n2). Thus n divides g 
(
2
n) 
 — 1 and g cannot have order co(n). 

Also the fact that g2k-2 1 (mod 2k) for any odd integer g and any k > 3 
(whose the proof is immediate by induction) shows that there are no primitive 
roots mod 2k, for k > 3. This shows that the only candidates are 2,4, pk  and 
2pk  for an odd prime number p. And these numbers have primitive roots. For 
2 and 4 it is obvious, while for powers of odd primes it has been proved above. 
For 2pk  observe that w(2pk) = co(pk), so the odd number among g, g pk  
(where g is a primitive root mod pk) is a primitive root mod 2pk. 

Now, let us solve some problems. However, make sure you correctly remember 
Fermat's little theorem before attempting to solve the following problem. 

Example 11.1 Find all positive integers n such that nlan+1  — a for all a E Z. 

Solution.  Consider such an integer n > 1 and observe first that is must be 
squarefree. Indeed, if p is a prime divisor of n, just choose a = p. Next, write 
n = p1p2...pk for some pairwise distinct prime numbers p1, p2, ...,pk. Fix some 
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1 < i < k and choose a a primitive root modulo pi. Then clearly the condition 
nlart+1 — a implies that n is a multiple of pi — 1. Now, it is very easy to 
determine all such numbers n. Assume that /31 < p2 < • • • < pk and observe 
that /31  = 2 (because /31  — 1 divides n), then /32 — 112 (the same argument), 
thus p2 = 3. Continue in this manner to obtain p3 = 7,p4 = 43. And things 
change after this, because we would find that p5 —1 divides 1806 and it is easy 
to see that this is not possible, because the only divisors d of 1806 such that 
d +1 is a prime are 1, 2, 6, 42, which is not a prime number. Therefore k < 4 
and such numbers are 1, 2, 6, 42,1806. 
A very beautiful and difficult problem comes now. We will see that using the 
previous results on primitive roots we can obtain a quick and elegant solution. 

Example 12. Find all positive integers n such that n2  2n + 1. 

[Laurentiu Panaitopol] IMO 1990 

Solution. It is clear that any solution must be odd and that 1 and 3 are 
solutions, so assume that n > 5. Because 2 is a primitive root mod S and mod 
9 (as you can immediately check), it follows from the above results that 2 is a 
primitive root mod 3k  for all k. In particular, if 3k inn z + 1 then 3k122n — 1 and 
because the order of 2 mod 3k  is 2 3k-1, we deduce that 3k-11n. This shows 
that v3(2n + 1) < v3(n) + 1 for all n. In particular, for any solution n of the 
problem we have 2v3(n) = v3(n2) < v3(2n + 1) < 1 + v3(n), so v3(n) < 1. Let 
us prove that we actually have v3(n) = 1, if n > 1. Let p be the smallest prime 
divisor of 71. Then p122n — 1, so o2(2)12n and op(2)1p — 1. By the definition 
of p we have gcd(2n,p — 1) = 2, so p13 and thus p = 3 and 31n. This shows 
that we can write n = 3a where gcd(3, a) = 1. Now, we would like to prove 
that a = 1 (therefore, the only solution of the problem which is greater than 
1 is n = 3). Assuming the contrary, let q be its smallest prime divisor. Then 
q12n + 1 and q126a — 1. As above, we deduce that oq (2) is a divisor of 6a and 
q-1, and because gcd(a, q-1) = 1, it follows that oq (2)16 and so q163. Because 
gcd(a, 3) = 1, the only possibility is q = 7. But then 712a  +1 = 8a  + 1, which 
is clearly impossible. This shows that a = 1 and n = 3, a contradiction with 
n > 5. Hence 1 and 3 are the only solutions of the problem. 



326 	14. THE SMALLER, THE BETTER 

Finally, a chestnut from the celebrated contest Miklos Schweitzer, which uses 
the previous theoretical results as well as a large dose of creativity. 

[Example 13.1 Let p = 3 (mod 4) be a prime number. Prove that 

p+, 
H 	(x2 + y2) =- (-1)[ s J 

1<x<y< 

(mod p). 

P.Suranyil Miklos Schweitzer Competition 

Solution. Let p = 4k + 3 and take g to be a primitive root modulo p and 
x = g2. Then the squares of the residues mod p are exactly 1, x, x2, x2k ,  so  

the product we need to evaluate is 	H 	(xi + x3) (mod p). Therefore, if 
o<s<a <zk 

P is the desired product, we have 

P • IT (xi — ) -=- H (x2i  — x2i) (mod p). 
0<i<j<2k 	 0<i<j<2k 

Observe that each of the two products is actually a Vandermonde determinant 
and because x2k+1  = 1, the generators of the second determinant are exactly 

x2k x,  x3 , 	x2k-1 1, x2, ..., 	 . Hence the second determinant is obtained from 
the first one by k 	— 1) + • • • + 2 + 1 transpositions of the lines and so 

k(k+1) 	 k(k+1) 	[p+1] P (-1) 2  (mod p). An easy case examination shows that  2 	8 
is even and the conclusion follows. 



PROBLEMS FOR TRAINING 	327 

14.2 Problems for training 

1. Let a, n > 2 be integers such that nlan-1  — 1 and n does not divide any 
of the numbers ax — 1, where x < n — 1 and x — 1. Prove that n is a 
prime number. 

2. Let p be a nonzero polynomial with integral coefficients. Prove that 
there are at most finitely many numbers n for which p(n) and 22n  + 1 
are not relatively prime. 

P + 
1 i 

2 
3. Let p > 3 be a prime. Prove that any positive divisor of 

	

	 is of the 
3 

form 2kp + 1. 

Fermat 

4. Find all positive integers m, n for which nim2• 3n  m3n  + 1. 

Bulgaria 1997 

5. Find the least multiple of 19 all of whose digits are 1. 

Gazeta Matematica 

6. Let q be a prime such that q2  divides at least one Mersenne number 
2P — 1 with p a prime number. Prove that q > 3 • 109. You may take it 
for granted that the only primes q such that q2124-1  — 1 and which are 
smaller than 3 • 109  are 1093 and 3511. 

7. Prove that there exists a function f with integer values such that 2n  119f (n)  —
97 for any positive integer n. 

Vietnamese TST 1997 
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8. Let p be a prime and let q > 5 be a prime factor of 2P + 3P. Prove that 
q > p. 

Laurentiu Panaitopol, Romanian TST 

9. Prove that 3 is a primitive root mod p for any prime p of the form 2' + 1. 

10. Let p be a prime number and let d be a positive divisor of p — 1. Prove 
that there is a positive integer n such that op(n) = d. 

11. Prove that for any prime number p > 3 we have (2;) = 2 (mod p3). 

12. Let m > 1 be an odd number. Find the least n such that 219891m" — 1. 

IMO 1989 Shortlist 

13. Let m, n be two positive integers. Prove that the remainders of the 
numbers ln, 2n, ..., mn modulo m are pairwise distinct if and only if m 
is square-free and n is relatively prime to co(m). 

14. Find all positive integers n with the property that for any positive inte-
gers a, b such that nla2b + 1 we also have nla2  + b. 

Bulgaria 

15. Let a be an integer greater than 1. Prove that the function 

p — 1 
f : {2,3,5, 7, 11,... } —>N, f(p) = op 	(a) 

is unbounded. 

Jon Froemke, Jerrold W Grossman, AMM E 3216 
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16. Let f (n) be the greatest common divisor of the numbers 2n  — 2, 3n  —
3, 4n  — 4, .... Determine f (n) and prove that f (2n) = 2. 

AMM 

17. Let f be a polynomial with integer coefficients such that for some prime 
number p we have f (i) = 0 (mod p) or f (i) = 1 (mod p) for any integer 
i. If f (0) = 0 and f (1) = 1, prove that deg( f) > p — 1. 

IMO 1997 Shortlist 

18. Let f be a polynomial with integer coefficients, having degree p — 1, 
where p > 2 is a prime number. Suppose that for all integers a, b, if a — b 
is not a multiple of p, then f (a) — f (b) has the same property. Prove 
that p divides the leading coefficient of f . 

19. A Carmichael number n satisfies TO' — a for all integers a. Find all 
Carmichael numbers of the form 3pq with p, q prime numbers. 

Romanian TST 1996 

20. Using the existence of Carmichael composite numbers, prove that there 
are infinitely many pseudo-primes, that is composite numbers n such 
that ni2n — 2. 

21. Find all prime numbers p, q such that pql2P + 2q. 

22. Find the sum of the m-th powers of the primitive roots mod p for a given 
prime p and a positive integer m. 
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23. Let N > 2 be an integer and suppose that N —1 = RF, where F = 
Ca'? (q, being distinct primes). Suppose that (R,F) = 1 and 
R < F. If there exists a positive integer a such that aN-1  1 (mod N) 

N-1  

and a 4i — 1 is relatively prime to N for all i, then N is prime. 

Proth, Pocklington, Lehmer Test 

24. Let p be a prime number and m, n be integers greater than 1 such that 
inp(n-1) 1. Prove that gcd(mn-1  1, n) > 1. 

MOSP 2001 

25. Let n be a positive integer, and let An  be the the set of all a such that 
ni(an H- 1), 1 < a < n and a E Z. 

a) Find all n such that An  0. 

b) Find all n such that An1 is even and non-zero. 

c) Is there n such that lAn I = 130? 

Italian TST 2006 

26. Let n be an odd integer and let C(n) be the number of cycles of the 
permutation f of {0,1, ..., n —1} sending i to 2i (mod n) for all i. Prove 
that C(3(2n — 1)) = C(5(2n — 1)) for all odd positive integers rt. 

James Propp, Mathematics Magazine 

27. Let A be a finite set of prime numbers and let a be an integer greater 
than 1. Prove that there are only finitely many positive integers n such 
that all prime factors of an — 1 are in A. 

Iran Olympiad 
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28. Prove that for any prime p there is a prime q that does not divide any 
of the numbers nP — p, with n > 1. 

IMO 2003 

29. Let a be an integer greater than 1. Prove that for infinitely many n the 
greatest prime factor of an — 1 is greater than n loge  n. 

Gabriel Dospinescu 

30. Let p be an odd prime. Prove the existence of a positive integer k < p-1 
which is a primitive root mod p and which is also relatively prime to p-1. 

Richard Stanley, AMM E 2488 

31. Let E > 0. Prove the existence of a constant c such that for all odd 
primes p there exists a primitive root mod p smaller than cpI±E 

Vinogradov 
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15.1 Theory and examples 

Recall that the sequence ({nal),>1  is dense in [0,1] if a is an irrational number, 
a classical theorem of Kronecker. Various applications of this nice result have 
appeared in different contests and will probably make the object of many more 
Olympiad problems. Yet, there are some examples in which this result is inef-
ficient. A simple one is as follows: using Kronecker's theorem, one can prove 
that for any positive integer a that is not a power of 10 there exists a positive 
integer n such that an begins with 2008. The natural question – what fraction 
of numbers between 1 and n have this property (speaking here about large 
values of 7/) – is much more difficult, and to answer it we need some stronger 
tools. This is the reason we now discuss some classical approximation theo-
rems, particularly the very effective Weil criterion and its consequences. The 
proofs of these results are nontrivial and require some heavy duty analysis. 
Yet, the consequences that will be discussed here are almost elementary. Of 
course, one cannot start a topic about approximation theorems without talk-
ing first about Kronecker's theorem. We skip the proof, not only because it is 
very well-known, but because we will prove a much stronger result about the 
sequence ({nal),>1. Instead, we will discuss two beautiful problems, corollar-
ies of this theorem. 

[Example 1.1 Prove that the sequence ( [nV2003] )72>1 contains arbitrarily 
long geometric progressions with arbitrarily large ratio. 

[Radu Gologan] Romanian TST 2003 

Solution.  Let p be any positive integer. We will prove that there are arbitrar-
ily long geometric sequences with ratio p. Given n > 3, we will find a positive 
integer m such that [pkm,/2003] = pk  [m\/2003] for all 1 < k < n. If the ex-
istence of such a number is proved, then the conclusion is immediate. Observe 
that [pk  m V20031 = pk  [mV2003] is equivalent to ]pk  { mV2003}] = 0, or to 

{m-V2003} < —
1

. The existence of a positive integer m with the last property 
Pn 
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is ensured by Kronecker's theorem. 

Here is a problem that is apparently very difficult, but which is again a simple 
consequence of Kronecker's theorem. 

Example 2. Consider a positive integer k and a real number a such that 
log a is irrational. For each n > 1 let xn  be the number formed 
by the first k digits of [an]. Prove that the sequence (xn)n>i 
is not eventually periodical. 

 

[Gabriel Dospinescu] Mathlinks Contest 

and, since p = 1 + [log m J , the claim is proved. 
Now consider the claim false: thus there is some T for which xn+T = xn  for 
any large enough n. Another observation is the following: there is a positive 
integer r such that xr3-,  > 10k-1. Indeed, assuming the contrary, we find that 
for all r > 0 we have xri,  = 10k-1. Using the first observation, it follows that 
k -1+ {log [arT j} < log(1 + 10k-1) for all r. Thus 

log (1 +  101-1 > log [(en - [log Lain > log(arT  - 1) - [log arTi 

arT 
= {rT log a} - log 	 arT i• 

It suffices now to consider a sequence of positive integers (rn) such that 1- -
1 

< 

{rnT log a} (the existence is a direct consequence of Kronecker's theorem) and 
we deduce that 

1 

-i ) n 
1 	

ar

T 
log 1 + 10k 
	

+ + log 	1  > 1 for all n. aT  

Solution. First of all, the number formed with the first k digits of a number m 
is [10k-1±{l'gin}i  The proof of this claim is not difficult. Indeed, let us write 
m = ala2 . ap, with p > k. Then m = al ak • 10" ± ak±i ap, hence 

al 	ak •10P k  < Tit < (al  ... ak  +1) • 10P-k. It follows that al 	ak  = [  m  
10P-k 
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The last inequality is clearly impossible. 
Finally, assume the existence of such an r. It follows that for n > r we have 
XnT = XrT thus 

{log LanTi > log (1 + 101,1_1) 

This shows that 

log (1 +  
101-1 

 ) 5_ log [an"' ] — [log LanTi < nT log a — [log anTi 

= {nT log a} for all n > r. 

In the last inequality, we used the fact that [log [x]  j = [log x j, which is not 
difficult to establish: indeed, if [log x ] = k, then 10k  < x < 10k+1, and thus 
10k  < [xi < 10k+1, which means that [log [x]] =- k. Finally, note that the 
relation log (1 + 10k_1 )< {nT log a} contradicts Kronecker's theorem. This 
finishes the proof. 

We continue with two subtle results, based on Kronecker's lemma. 

Example 3.] For a pair (a, b) of real numbers let F(a, b) denote the sequence 
of general term cn  = [an + b]. Find all pairs (a, b) such that 
F (x , y) = F(a, b) implies (x, y) = (a, b). 

[Roy Streit] AMM E 2726 

Solution. Let us see what happens when F (x , y) = F(a, b). We must have 
[an + bJ = [xn y_1 for all positive integers n. Dividing this equality by n 
and taking the limit, we infer that a = x. Now, if a is rational, the sequence 
of fractional parts of an + b takes only a finite number of values, so if r is 
chosen sufficiently small (but positive) we will have F(a, b r) = F(a, b), so 
no pair (a, b) can be a solution of the problem. On the other hand, we claim 
that any irrational number a is a solution for any real number b. Indeed, 
take xi < x2 and a positive integer n such that na + xi < m < na + 
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for a certain integer rn. The existence of such an n follows immediately from 
Kronecker's theorem. But the last inequality shows that F(a, xi) F(a, x2) 
and so a is a solution. Therefore the answer is: all pairs (a, b) with a irrational. 

Finally, an equivalent condition for the irrationality of a real number: 

Example 4.1 Let r be a real number in (0,1) and let S(r) be the set of 
positive integers n for which the interval (nr, nr + r) contains 
exactly one integer. Prove that r is irrational if and only if 
for all integers M there exists a complete system of residues 
modulo M, contained in S(r). 

[Klark Kimberling] 

Solution. One part of the solution is very easy: if r is rational, let M be its 
denominator. Then clearly if 71 is a multiple of M there is no integer k in the 
desired interval. Now, suppose that r is irrational and take integers m, M such 
that 0 < m < M. By Kronecker's theorem, the integer multiples of :7: form a 
dense set modulo M. So, there exists an integer k such that the image of Tis 
in (m, m+1), that is for a certain integer s we have sM+m < T < sM+m+1. 
It is then clear that if we take n = sM + m we have 71 m (mod M) and 
nr < k < nr + r. This finishes the solution. 

Before getting into the quantitative results stated at the beginning of this 
chapter, we must talk about a surprising result, which turns out to be very 
useful when dealing with real numbers and their properties. Sometimes, it will 
help us reduce a complicated problem concerning real numbers to integers, as 
we will see in one of the examples. But first, let us state and prove this result. 

Example el  Let xi, x2, . , xk be real numbers and let E > 0. There exists 
a positive integer n and integers pi, p2, , pk such that Inxi —
pi < E for all i. 

[Dirichlet] 
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Solution. We need to prove that if we have a finite set of real numbers, we 
can multiply all its elements by a suitable integer such that the elements of 
the new set are as close to integers as we want. 

Let us choose an integer N > —
1 

and partition the interval [0, 1) into N inter-

vals, 

[0, 1) = U Js, J, = 	 
N N ) s=1 

Now, choose n = Nk  +1 and assign to each q in the set {1, 2, ... , n} a sequence 
of k positive integers al, a2, , ak, where a2 = s if and only if fqxil E Js . We 
obtain at most Nk  sequences corresponding to these numbers, and so by the 
pigeonhole principle we can find 1 < u < v < n such that the same sequence 
is assigned to u and v. This means that for all 1 < i < k we have 

Taxi} — {V Xi}l < 
1

< E 
	

(15.1) 

It suffices to pick n = v — u, pi = [vxii — [uxi j. 

And here is how we can use this result in problems where it is more com-
fortable to work with integers. But don't kid yourself, there are not many 
such problems. The one we are going to discuss next has meandered between 
world's Olympiads: proposed at the 1949 Moscow Olympiad, it appeared next 
at the W.L. Putnam Competition in 1973 and later on in an IMO Shortlist, 
proposed by Mongolia. 

Example 6. Let xi, x2, 	, x2n+1  be real numbers with the property: for 
any 1 < i < 2n + 1 one can make two groups of 71 numbers by 
using all the x3 , j i, such that the sum of the numbers in 
each group is the same. Prove that all the numbers must be 
equal. 
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Solution. For integers the solution is well-known and not difficult: it suffices 
to note that in this case all numbers xi  have the same parity, and the use of 
infinite descent solves the problem (either they are all even and in this case we 
divide each number by 2 and obtain a new set with smaller sum of magnitudes 
and the same properties; otherwise, we subtract 1 from each number and then 
divide by 2). Now, assume that they are real numbers, which is definitely a 
more subtle case. First of all, if they are all rational, it suffices to multiply 
by their common denominator and apply the first case. Suppose at least one 
of the numbers is irrational. Consider E > 0, a positive integer m, and some 
integers p1,p2,...,p2,41 such that Imxi  – pil < E for all i. We claim that 
if E > 0 is small enough, then Pi, P2, • • • P2n+1 have the same property as 
xl , X2, . X2n+1. Indeed, take some i and write the given condition as 

E aijmxi = 0 or 	 — pi) = —EaiiPi 
i0i 
	

i0i 

(where au  E {-1, 1}). Then 

 

a z3 – Pi) < 2ne. 

     

1 
Thus if we choose E < 	 

2rn 
, then 	aijpj = 0 and so P1, P2, • • ,P2n-F1 have 

the same property. Because they are all integers, pi, p2, ...,p2n+i must be all 
equal (again, because of the first case). Hence we have proved that for any 

1 
N > 2m there are integers nN,pN such that InNxi – PNI < N 
Because at least one of the numbers x1, x2, • • • , X2n+1 is irrational, it is not 

difficult to prove that the sequence (nN)N>2m  is unbounded. But 2 — 

InNImaxIxi xi', hence maxi j  I ixi xi' = 0 and the problem is solved. 

If you thought the last problem was too classical, here is another one, a little 
bit less known, but with the same flavor: 
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r Example 7.1 Let ai, a2, •••, a2007 be real numbers with the following prop-
erty: no matter how we choose 13 numbers among them, there 
exist 8 numbers among the 2007 which have the same arith-
metic mean as the 13 chosen ones. Prove that they are all 
equal. 

Solution. Note (again) that the problem is quite easy for integers. Indeed, 
the assumption implies that the sum of any 13 numbers is a multiple of 13. 
Let ai , ai be among the 2007 numbers and let x1, x2, ..., x12 be some ak with 
k i and k j. Then ai  4- xi + x2 + • • • + x12 and ai + xi + x2 + • • • + x12 
are multiples of 13, so ai ai  (mod 13). Thus all numbers give the same 
remainder r modulo 13. It suffices to subtract r from all ai , to divide by 
13 in order to obtain a new collection of 2007 integers, with smaller absolute 
values and still satisfying the property given in the statement of the problem. 
Repeating this procedure, we will finally obtain a collection of zeros, which 
means that the initial numbers were all equal. 
Now, let us pass to the case when all numbers are known only to be real. 
The idea is the same as in the previous example: we will approximate, using 
Dirichlet's theorem, all numbers by rational numbers with a common denom-
inator. Explicitly, take some c > 0 and n and pi  some integers (with n > 0) 
such that Inai  < c for all i. Take some indices i1, i2, •••, ii3. We know that 
for some indices j1, j2, j8 we have 

nail  + nai, + • • • + nai„ 	nail  + na32  + • • 	naj, 

	

13 	 8 	 • 

If xi = nai — pi, it follows that 

+ Piz 	' • • + P113 	Pii + Pj2 + • • - pis  

	

13 	 8 

because I xi  < E. Now, observe that if 

P11 +  pi2  + • • • + Pio 	13  1+ Pj2 + • + Pia  

13 	 8 

is nonzero, it is at least equal to 813.  Thus, if we take c < 16143, we know that 
the corresponding pi have the same property as ai. By the first case, we must 

< 2c, 
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therefore have p1 = P2 = • • = P2007. Thus 2e > 	— a31 for all i, j and all 
E <  16113 Clearly, this implies al = a2 = • • • = a2007 and finishes the proof. . 	• 

Now, let us turn to more quantitative results about the set of fractional parts 
of natural multiples of different real numbers. The following criterion, due to 
Weyl, deserves to be discussed because of its beauty and apparent simplicity. 

Theorem 15.1 (Weyl's theorem). Let (an)n>1  be a sequence of real numbers 
from the interval /0,1]. Then the following statements are equivalent: 
a) For any real numbers 0 < a < b < 1, 

1 < 	n, 	E [a, 1)] }  
lim 	  b a; 

n—>oo 

b) For any continuous function f : [0, 1] 	IR, 

n 	 1 

n—>co n
E Pak) = f f (x)dx; 
k=1 

c) For any positive integer r > 1, 

n 
lim -I- 	diirrak = O. 

n—>oo n 
k=1 

In this case we will say that the sequence is equidistributed. 

Proof. We will present just a sketch of the solution, but containing all the 
necessary ingredients. First, we observe that a) says precisely that b) is true 
for the characteristic function of any subinterval of [0,1]. By linearity, this 
remains true for any piecewise constant function. Now, there is a well-known 
and easy to verify property of continuous functions: they can be uniformly 
approximated with piecewise constant functions. That is, given E > 0, we 
can find a piecewise constant function g such that Ig(x) — f (x)1 < e for all 
x E [0, 1]. But then if we write 

f (ak) — f f (x)dx 
1 

< — 
n 	(ak) — g(ak)i+ f 	(x) — g(x)1dx 

k=1 
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1 1 
-
n 
Eg(ak)— f g(x)dx 

0 k=1 

and apply the result in b) for the function g, we easily deduce that b) is 
true for any continuous function. The fact that b) implies c) is immediate. 
More subtle is that b) implies a). Let us consider the subinterval I = [a, b] 
with 0 < a < b < 1. Next, consider two sequences of continuous functions 

fk,gk such that fk is zero on [0, a], [b,1] and 1 on [ —
k 

1
a + 

'
b — —

k 
(being affine 

1 

otherwise), while gk has "the same" properties but is greater than or equal to 
A/ (the characteristic function of I = [a, b]). Therefore 

Ifil 1 	n ai  E [a,  b]}1  E fk( ) < 	  _ 	9k (a3). 
3=1  

But from the hypothesis, 

fk(a3) —> f fk(x)dx = b — a — 
o 

and 
1 

n 
-1 
E gk (a3 ) —> f gk(x)dx = b — a+ —

1
. 

0 3= 

Now, let us take E > 0 and k sufficiently large. The above inequalities show 
that actually for all sufficiently large positive integers n 

IN 1 < i < rt, az E ia, 	b+ a < 2E 

and the conclusion follows. You have already seen how to adapt this proof for 
the case a = 0 or b = 1. Finally, let us prove that c) implies b). Of course, a 
linearity argument allows us to assume that b) is true for any trigonometric 
polynomial. Because any continuous function f : [0,1] R satisfying f(0) = 
f(1) can be uniformly approximated by trigonometric polynomials (this is 
a really nontrivial result due to Weierstrass), we deduce that b) is true for 

1 

1 

k 
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continuous functions f for which f (0) = f (1). Now, given a continuous f : 
[0, 1] —> R , it is immediate that for any E > 0 we can find two continuous 
functions g, h, both having equal values at 0 and 1 and such that 

(x) — g(x)I < h(x) and f h(x)dx E. 
0 

Using the same arguments as those used to prove that b) implies a), one can 
easily see that b) is true for any continuous function. 	 111 

Before presenting the next problem, we need another definition: we say that 
the sequence (an)n>i is uniformly distributed mod 1 if the sequence of frac-
tional parts of an  is equidistributed. We invite the reader to find an elementary 
proof for the following problem in order to appreciate the power of Weyl's cri-
terion. So, here is the classical example. 

Let a be an irrational number. Then the sequence (na)n>i  is 
uniformly distributed mod 1. 

Solution.  Well, after so much work, you deserve a reward: this is a simple 
consequence of Weyl's criterion. Indeed, it suffices to prove that c) is true, 
which reduces to proving that 

for all integers p > 1. But this is just a geometric series!!! A one-line compu-
tation shows that (15.1) is satisfied and thus we obtain the desired result. 

It is probably time to solve the problem mentioned at the very beginning of 
this note: how to compute the density of those numbers n for which 2' begins 
with (for example) 2006. Well, again a reward: this is going to be equally easy 
(of course, you need some rest before looking at some deeper results). 
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Example 9. What is the density of the set of positive integers n for which 
2n begins with 2006? 

 

Solution.  2n begins with 2006 if and only if there is a p > 1 and some digits 
al, a2, , ap  E {0, 1, , 9} such that 2' = 2006a1a2... ap, which is clearly 
equivalent to the existence of p > 1 such that 

2007 • 10P > 	> 2006 • 10P. 

This can be rewritten as 

log 2007 + p > n log 2 > log 2006 + p, 

2007 2006 
implying [n log 2] = p + 3. Hence log 1000 > In log 21 > log 

1000 
 and the 

1 
density of our set is the density of the set t t positive integers n satisfying 

log 2
007 

> {n log 2} > log 
2006

. 
1000 	 1000 

2007 
From Example 8, the last set has density log 

2006 
 and this is the answer to 

our problem. 

We saw a beautiful proof of the fact that if a is irrational, then (na)n>i  is 
uniformly distributed mod 1. Actually, much more is true, but this is also much 
more difficult to prove. The following two examples are important theorems. 
The first is due to Van der Corput and shows how a brilliant combination of 
algebraic manipulations and Weyl's criterion can yield difficult and important 
results. 

[-Example 10. Let (xn) be a sequence of real numbers such that the se-
quences (xn+p  — xn),>i are equidistributed for all p > 1. 
Then (xn) is also equidistributed. 

[Van der Corput] 



346 	15. DENSITY AND REGULAR DISTRIBUTION 

Solution. This is not an Olympiad problem!!! But mathematics is not just 
about Olympiads and from time to time (in fact, from a certain time on) one 
should try to discover what is behind such great results. This is the reason we 
present a proof of this theorem based on a technical lemma of Van der Corput, 
which turned out to be fundamental in studying exponential sums. 

Lemma 15.2 (Van der Corput). For any complex numbers zi, z2, , zn  and 
any h E {1, 2, ... , n}, the following inequality is true (with the convention that 
zi = 0 for any integer i not in {1,2, ...,n}): 

  

2 	 h-1 	 (n-r 

< (n h — 1) [2E(h — r)Re E ZiZi+r) 

r=1 	 i=1 

   

h2  h 
n 

i=1 

    

Proof. The simple observation that 

n+h-1 h-1 

h E zi  
i=i 	i=1 j=0 

allows us to write (via Cauchy Schwarz's inequality): 

    

2 

  

2 	 n+h-1 

< (n h — 1) E 
i=i 

h2  E zi  
i=i 

    

    

   

2 

 

And next? Well, we expand 
h-1 

E zi_, 
i=o 

and see that it is nothing other 

    

than 
h-1 

2 E (h — r)Re 	ZiZi+r 	h 
r=1 	

(n-r 

i=1  i=1 
zi1 2 . 

We will now prove Van der Corput's theorem, by using this lemma and Weyl's 
criterion. 



(n—i 

j=1 

j z+3 
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Of course, the idea is to show that 

Ern — E e2i7rpxk = 0 
n—>oo n 

k=1 

for all p > 1. Fix such a p and take for the moment a positive real number h 
and E E (0,1) (h may depend on E). Setting z3  = e2i"x3, we have 

2i7rp(xi —xi+j) < En. 

2 

1 n + h  — 1  [ 	
h-1 

n2 	h2 	
hn + 2 (h — i)Re 

i=1 

-E zj  
j=1 

Now, observe that 

  

  

Re 
(n—i

zj • Zi+j = Re 
(n—i 

e2i7rp(xi —xj+i) 

j=1 	 j=1 

e2i7rp(xi  —xi+j) 

  

Using Weyl's criterion for the sequences (xn+, — xn)n>i for i = 1,2, ... , h — 1, 
we deduce that for all sufficiently large n we have 

n—i 

i= 

Therefore 
2 

1 n + h  — 1  [
hn + 2En 

n2 	h2  

h-1 

i=1 

n + h — 1 
(1 + E) < 

2(1 + E) 
<  	 < 6'2 

nh 	 h 
2(1  + 6) 

for n large enough. Now, by choosing h > we deduce that for all 
E2 	, 

sufficiently large n we have 

< E. 

Hence Weyl's criterion is satisfied and thus (xn)n>1  is equidistributed. 	❑ 
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This was surely the most difficult result of this chapter, but why not take 
one more step once we are already here? Let us prove the following weaker 
(but as the reader will probably agree, absolutely nontrivial) version of a 
famous theorem of Weyl. It is related to the equidistribution of the sequence 
(f (n)),,>1  where f is a real polynomial having at least one irrational coefficient 
other than the constant term. We will not prove this here, but focus on the 
following result. 

If f is a polynomial with real coefficients and irrational lead- 
ing coefficient, then the sequence (f (n)),,>1 is equidistributed. 

[Weyl] 

Solution.  You have probably noticed that this is an immediate consequence of 
Van der Corput's theorem (but just imagine the amount of work done to arrive 
at this conclusion!!!): the proof by induction is immediate. Indeed, if f has 
degree 1, then the conclusion is clear (see example 5). Now, if the result holds 
for polynomials of degree at most k, it suffices (by Van der Corput's theorem) 
to prove that for all positive integers p, the sequence ( f (n + p) — f (n)),>1 is 
equidistributed. But this is exactly the induction hypothesis applied to the 
polynomial f (X + p) — f (X) (whose leading coefficient is clearly irrational). 
The proof by induction finishes here. 

The solution of the following problem, which is a consequence of Weyl's crite-
rion, is due to Marian Tetiva: 

Example 12-1.1 If a is an irrational number and P is a nonconstant polyno-
mial with integer coefficients, then there are infinitely many 
pairs (m, n) of integers such that P(m) = Lnai 

[H. A. ShahAli] 

Solution.  Of course, we can assume that a > 0. If a < 1, no heavy ma- 
chinery is required: all we need is to note that for all integers in the interval 
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(

P(m) P(m)+1) has length greater than 1, thus it contains an integer nm. a 	a 
It is clear that Lnm  • a] = P(m), so we have infinitely many solutions (at 
least one for each m). The difficult part is when a > 1. Let us consider 

= as  1 . By a well-known result of Beaty, the sets A = { Lnai n > 1} and 
B = {Ln0_1 n > 1} give a partition of the set of positive integers. A second 
of observation shows that it is enough to prove the statement for polynomials 
P whose leading coefficient is positive. Thus starting from a certain point mo, 
P(m) is a positive integer, thus belonging to A or to B. Suppose that the 
equation P(m) = Lna _I has finitely many solutions, that is for all sufficiently 
large m, P(m) E B. Hence for some N we have the existence of a sequence 
of positive integers (nm)m>.N such that P(m) = Ln,13_1. This clearly implies 

[PQ )]  = nm 	 0 1, that is the fractional part of P(m)  is in (1 — 1 '  1) for all 0 
sufficiently large m. Or, hP clearly satisfies the conditions of Weyl's criterion, 

so the sequence of fractional parts of P(i3m)  is dense in [0,1], which is impos-

sible, because all but finitely many terms are in (1 — 16, 1). This finishes the 

proof of the case a > 1 and ends the solution. 
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15.2 Problems for training 

( 1. Evaluate sup min I p — q01 . 
n>1 MEN p+q=n 

Putnam Competition 

2. Find all integers a with the property that for infinitely many positive 
integers n, 

2n2  

[ [n • 
= [7/A/1 + a. 

Radu Gologan 

3. Prove that by using different terms of the sequence [n2  x/2006 J one can 
construct geometric sequences of any length. 

4. Let x be an irrational number and let f (t) = mina* {1—t}). Prove that 
given any e > 0 one can find a positive integer n such that f (n2  x) < E. 

Iran 2004 

5. Suppose that A = {ni, n2, ... } is a set of positive integers such that the 
sequence (cos nk)k>i  is convergent. Prove that A has zero density. 

Marian Tetiva 

6. Prove that for every k one can find distinct positive integers ni , n2, . • • , nk 

such that [nif21 , Ln2f21 , • • . , Lnk4 and Lni01 , [7/20] , • • • , [nk 
are both geometrical sequences. 

After a Romanian TST problem 
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7. Does the sequence sin(n2) + sin(n3) converge? 

8. A flea moves in the positive direction of an axis, starting from the origin. 
It can only jump over distances equal to 	and V2005. Prove that 
there exists an no  such that the flea will be able to arrive in any interval 
[n, n + 1] for each n > no. 

Romanian Contest, 2005 

9. Let z1, z2, 	, zn  be arbitrary complex numbers. Prove that for any 
E > 0 there are infinitely many positive integers n such that 

+ V Izi ± 	• • + 4,1 > rflaXILZ1111Z21) • • 	I Znif 

10. Prove that the sequence consisting of the first digit of 2Th  + 3' is not 
periodical. 

Tuymaada Olympiad 

11. Suppose that f is a real, continuous, and periodical function such that 

(

E if (kk)I) 
k=1 	n>1 

positive integers k. Give a necessary and sufficient condition ensuring 

n  I(  the existence of a constant c> 0 such that E  fk) > clnn for all n. 
k=1 

Gabriel Dospinescu 

12. Let f be a polynomial with integral coefficients and let a be an ir-
rational number. Can all numbers f(k), k = 1,2, ... be in the set 
A = { Lnaj I n > 11? Is it true that any set of positive integers with 
positive density contains an infinite arithmetical sequence? 

the sequence is bounded. Prove that f(k) = 0 for all 
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13. Let a, b be positive real numbers such that {na} + {rib} < 1 for all n. 
Prove that at least one of them is an integer. 

14. Let a, b, c be positive real numbers. Prove that the sets 

A = {[nai I n > 1}, B -= {[nb_I I n > 11, C = {[nc] I n > 1} 

cannot form a partition of the set of positive integers. 

Putnam Competition 

15. Let x > 1 be a real number and an  = Lxn]. Can the number S = 
0.ala2a3... be rational? The expansion is formed by writing down the 
decimal digits of ai, a2, ... in turn. 

Mo Song-Qing, AMM 6540 

16. Let xi , x2, ... be a sequence of numbers in [0,1) such that at least one 
of its sequential limit points is irrational. For 0 < a < b < 1, let 
Nn(a, b) be the number of n-tuples (al, a2, ..., an) E {±1}Th  such that 

a,b)(  
aixi + a2x2 + • • + anxn  E [a,b). Prove that Nn 

2 	converges to b — a. 

Andrew Odlyzko, AMM 6542 

17. Let a be a nonzero rational number and b an irrational number. Prove 
that the sequence nb [na] is uniformly distributed mod 1. 

L.Kuipers 
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16.1 Theory and examples 

Problems about the sum of the digits of a positive integer often occur in 
mathematical contests because of their difficulty and lack of standard ways 
to tackle them. This is why a synthesis of the most frequent techniques used 
in such problems is useful. We have selected several representative problems 
to illustrate how the main results and techniques work and why they are so 
important. 
We will only work in base 10 and will denote the decimal sum of the digits of 
the positive integer x by s(x). The following "formula" can be easily checked: 

s(n) = n — 	
10k  J 

 
(16.1) 

k>1  

From (16.1) we can deduce immediately some well-known results about s(n), 
such as s(n) --== n (mod 9) and s(m + n) < s(m) + s(n). Unfortunately, (16.1) 
is a clumsy formula, which can hardly be used in applications. On the other 
hand, there are several more or less known results about the sum of the digits, 
results which may offer simple ways to attack harder problems. 
The easiest of these techniques is probably just the careful analysis of the 
structure of the numbers and their digits. This can work surprisingly well, as 
we will see in the following examples. 

[Example 1..] Prove that among any 79 consecutive numbers, we can choose 
at least one whose sum of digits is a multiple of 13. 

Baltic Contest 1997 

Solution. [Adrian Zahariuc] Note that among the first 40 numbers, there are 
exactly four multiples of 10. Also, it is clear that the next to last digit of one 
of them is at least 6. Let x be this number. Clearly, x, x +1,..., x + 39 are 



356 	16. THE DIGIT SUM OF A POSITIVE INTEGER 

among our numbers, so s(x), s(x) + 1,...,s(x) + 12 occur as sums of digits in 
some of our numbers. One of these sums is a multiple of 13 and we are done. 

We will continue with two harder problems, which still do not require any 
special result or technique. 

I Example 2. Find the greatest N for which there are N consecutive posi-
tive integers such that the sum of digits of the k-th number is 
divisible by k, for k = 1, 2, ..., N. 

Tournament of Towns 2000 

Solution.  [Adrian Zahariuc] The answer, which is not trivial at all, is 21. 
The main idea is that among s(n + 2), s(n + 12) and s(n + 22) there are two 
consecutive numbers, which is impossible since all of them should be even. 
Indeed, we carry over at a + 10 only when the next to last digit of a is 9, 
but this situation can occur at most once in our case. So, for N > 21, we 
have no solution. For N = 21, we can choose N +1, N + N + 21, where 
N = 291 10111  — 12. For i = 1 we have nothing to prove. For 2 < i < 11, 
s(N + i) = 2 + 9 + 0 + 9(11! — 1) + i — 2 = i + 9 11! while for 12 < i < 21, 
s(N + i) = 2 + 9 + 1 + (i — 12) = i, so our numbers have the desired property. 

!Example 3.] How many positive integers 7/ < 102005  can be written as the 
sum of two positive integers with the same sum of digits? 

[Adrian Zahariuc] 

Solution.  Answer: 102005  — 9023. At first glance, it is seemingly impossible 
to find the exact number of positive integers with this property. In fact, 
the following is true: a positive integer cannot be written as the sum of two 
numbers with the same sum of digits if and only if all of its digits except for 
the first are 9 and the sum of its digits is odd. 
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Let n be such a number. Suppose there are positive integers a and b such that 
n = a + b and s(a) = s(b). The main fact is that when we add a + b = n, there 
are no carry overs. This is clear enough. It follows that s(n) = s(a) + s(b) = 
2s(a), which is impossible since s(n) is odd. 
Now we will prove that any number n which is not one of the numbers above, 
can be written as the sum of two positive integers with the same sum of digits. 
We will start with the following: 

Lemma 16.1. There is a < n such that s(a) s(n — a) (mod 2). 

Proof. If s(n) is even, take a = 0. If s(n) is odd, then n must have a digit 
which is not the first one and is not equal to 9, otherwise it would have one of 
the forbidden forms mentioned in the beginning of the solution. Let c be this 
digit and let p be its position (from right to left). Choose a = 10P-1(c + 1). 
In the addition a + (n — a) = n there is exactly one carry over, so 

s(a) + s(n — a) = 9 + s(n) 0 mod 2 s(a) s(n — a) mod 2 

which proves our claim. 	 ❑ 

Back to the original problem. All we have to do now is take one-by-one a 
"unit" from a number and give it to the other until the two numbers have the 
same sum of digits. This will happen because they have the same parity. So, 
let us do this rigorously. Set 

   

n — a = bib2 • • • bk• a = aia2 • lc, 

Let I be the set of those 1 < i < k for which a, + bi is odd. The lemma shows 
that the number of elements of I is even, so it can be divided into two sets 
with the same number of elements, say I1  and /2. For i = 1, 2, ..., k define 
A, = `L' -0 if i ¢ /, '4+214+1  if i E /1  or as+2bi-1  if i E /2 and B, = a, + bi  - Ai. 
It is clear that the numbers 

A = A1A2•••Ak• 	B = B1B2.••Bk 
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have the properties s(A) = s(B) and A + B = n. The proof is complete. 

We have previously seen that s(n) n (mod 9). This is probably the most 
well-known property of the function s and it has a series of remarkable ap-
plications. Sometimes it is combined with simple inequalities such as s(n) < 
9([log n] + 1). Some immediate applications are the following: 

Example 4. Find all n for which one can find a and b such that 

s(a) = s(b) = s(a + b) = n. 

[Vasile Zidaru, Mircea Lascu] 

Solution.  We have a b=a+b -  n (mod 9), so 9 divides n. If n = 9k, we 
can take a = b = 10k  —1 and we are done, since s(10k  —1) = s(2.10k  —2) = 9k. 

[Example 5J Find all the possible values of the sum of the digits of a perfect 
square. 

Iberoamerican Olympiad 1995 

Solution.  What does the sum of the digits have to do with perfect squares? 
Apparently, nothing, but perfect squares do have something to do with re-
mainders mod 9. In fact, it is easy to prove that the only possible values of 
a perfect square mod 9 are 0, 1, 4 and 7. So, we deduce that the sum of the 
digits of a perfect square must be congruent to 0, 1, 4, or 7 mod 9. To prove 
that all such numbers work, we will use a small and very common (but worth 
remembering!) trick: use numbers that consist almost only of 9-s. We have 
the following identities: 

99.99 2  = 99...99 8 00...00 1 	s(99...99 2) = 9n 
n 	n-1 	n-1 
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99912  -=- 99...99 82 00...00 81 = s(99..9912) = 9n +1 
n-1 n-2 n-2 n-1 

99...99 22  = 99...99 84 00...00 64 s (99..99 22) = 9n + 4 
n-1 n-2 n-2 n-1 

99942  = 99...99 88 00...00 36 8(99..99 42) = 9n + 7 
n-1 n-2 n-2 n-1 

and since s(0) = 0, s(1) = 1, s(4) = 4 and s(16) = 7 the proof is complete. 

Example 6±.] Compute s (s(s (44444444))). 

IMO 1975 

Solution.  Using the inequality s(n) < 9([log n] + 1) several times we have 

8(44444444) < 9( [log 44444444] + 1) < 9 • 20000 = 180000; 

s(s(44444444)) < 9(Llogs(44444444)] + 1) < 9(log 180000 + 1) < 63, 

so s(s(s(44444444))) < 14 (indeed, among the numbers from 1 to 63, the max-
imum value of the sum of digits is 14). On the other hand, s(s(s(n))) 
s(s(n)) s(n) n (mod 9) and since 

44444444 74444 = 7 734481 7(mod9), 

the only possible answer is 7. 
Finally, we present two beautiful problems which appeared in the Russian 
Olympiad and, later, in Kvant. 

lExample 7. Prove that for any N there is an n > N such that 8(3n) > 
s(3n+1). 
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Solution.  Suppose by way of contradiction that there is an N > 2 such that 
3(3'41) - s(3n) > 0 for all n > N. But, for n > 2, s(3n+1) s(3n) 0 

(mod 9), so S(3n+1) — On) > 9 for all n > N. It follows that 

E (s (3k+1) — s (3k)) 9(n - N) s(3n+1) > 9(n - N) 
k=N+1 

for all n > N +1. But 8(371+1) < 9( [log 3n+1] + 1), so 9n - 9N < 9 + 9(n + 
1) log 3, for all n > N + 1. This is obviously a contradiction. 

[Example 8.1 Find all positive integers k for which there exists a positive 

constant ck such that s((kNN))  > ck for all positive integers N. 
For any such k, find the best ck. 

[I. N. Bernstein] 

Solution.  It is not difficult to observe that any k of the form 2' • 5q is a 
solution of the problem. Indeed, in that case we have (by using the properties 
presented in the beginning of the chapter): 

s(N) = s(109-PqN) < s(2q • 5r)s(kN) = —1  s(kN) 

where clearly ck = ,(29.5,)  is the best constant (we have equality for N = 
2q • 5'). 
Now, assume that k = 2' • 5q • Q with Q > 1 relatively prime to 10. Let m 
(p(Q) and write 10m - 1 = QR for some integer R. If Rn  = R(1 + 10m + • • • + 
10m(n-1)) then 10' -1 = QR, and so s(Q(Rn  +1)) = s(10"+Q -1) = s(Q) 
and s(Rn  + 1) > (n - 1)s(R) (note than the condition Q > 1, which is the 
same as R < 10m -1, is essential for this last inequality, because it guarantees 
that R +1 has at most m digits and thus when adding R +1 and 10m • R, 
we obtain the digits of R followed by the digits of R + 1; if we proceed in the 
same manner for each addition, we see that Rn  + 1 has among its digits at 
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least n-1 copies of the sequence of digits of R). By taking n sufficiently large, 
we conclude that for any € > 0 there exists N = 1?„,, +1 such that 

s(kN)  < s(2r • 59)s(Q)  < 6  
s(N) 	(n — 1)s(R) 

This shows that the numbers found in the first part of the solution are the 
only solutions of the problem. 

If so far we have studied some remarkable properties of the function s, which 
were quite well-known, it is time to present some problems and results which 
are less familiar, but interesting and hard. The first result is the following: 

Lemma 16.2. If 1 < x < 10n, then s(x(lOn — 1)) = 9n. 

Proof The idea is very simple: all we have to do is write x = aia2...a with 
a3  0 (we can ignore the trailing O's of x) and note that 

x(lOn — 1) = aia2...a3_1(a3  — 1)99..99(9 — 	— a3 _1)(10 — a3), 
n-3 

which obviously has the sum of digits equal to 9n. 	 ❑ 

The previous result is by no means hard, but we will see that it can be the 
key in many situations. A first application is: 

Example 9.1 Evaluate s(9 • 99 • 9999 • ... • 99...99). 
2" 

USAMO 1992 



362 	16. THE DIGIT SUM OF A POSITIVE INTEGER 

Solution.  The problem is trivial if we know the previous result. We have 
. 

N = 9 • 99 • 9999 • ... • 99..99 < 101+2
+. .+2n-1 

< 102"  - 1 

2"-1  

so s(99...99 N) = 9 • 2n. 
2' 

However, there are very hard applications of this apparently unimportant re- 
sult, such as the following problem. 

Example 10. Prove that for each n there is a positive integer with n nonzero 
digits, that is divisible by the sum of its digits. 

IMO 1998 Shortlist 

Solution.  Just to assure our readers that this problem did not appear on 
the IMO Shortlist out of nowhere, such numbers are called Niven numbers 
and they are an important research source in number theory. Now, let us 
solve it. We will see that constructing such a number is difficult. First, we 
will dispose of the case n = 3k, when we can take the number 11.11 (it can 

3k 

be easily proved by induction that 3k+21103k  — 1). From the idea that we 
should search numbers with many equal digits and the last result, we decide 
that the required number p should be of the form aa...aa b • (lot  — 1) , with 

a..aa b < 10t  — 1. This number has s t 1 digits and its sum of digits is 

9t. Therefore, we require s t = n — 1 and 9tlaa...aa b • (10t  — 1). We now 

use the fact that if t is a power of 3, then 9t110t  — 1. So, let us take t = 3k 
where k is chosen such that 3k  < n < 3k+1. If we also take into account the 
condition aa...aa b < 10 — 1 it is natural to pick p = 11.11 2(103k  — 1) when 

n-3" —1 
n < 2 • 3k  and p = 22...22(102'3k  — 1) otherwise. 

2.3" 
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We continue our investigations of finding suitable techniques for problems in-
volving sum of digits with a very beautiful result, which has several interesting 
and difficult consequences. 

Lemma 16.3. Any multiple of 99...99 has sum of its digits at least 9k. 
k 

Proof. We will use the extremal principle. Suppose by way of contradiction 
that the statement is false, and take M to be the smallest multiple of a such 
that s(M) < 9k, where a = 99...99. Clearly, M > 10k, hence M = apap_i...ao, 

with p > k and ap  0. Take N = M —10P—ka, which is a multiple less than 
M of a. We will prove that s(N) < 9k. Observe that 

N = M —10P +10" = (ap-1)•10P+ap_110P-1+• • •+(ap_k+1)10" +- • •+ao, 

so that we can write 

s(N) < ap  — 1 + ap_i + • • • + (ap_k + 1) + • • • + ao -=- s(M) < 9k. 

In this way, we contradict the minimality of M and the proof is completed. 

We will show three applications of this fact, which might seem simple, but 
seemingly unsolvable without it. But before that, let us insist a little bit on a 
very similar (yet more difficult) problem proposed by Radu Todor for the 1993 
IMO: if b > 1 and a is a multiple of bn —1, then a has at least n nonzero digits 
when expressed in base b. The solution uses the same idea, but the details 
are not obvious, so we will present a full solution. Arguing by contradiction, 
assume that there exists A, a multiple of bn —1 with less than n nonzero digits 
in base b, and among all these numbers consider that number A with minimal 
number of nonzero digits in base b and with minimal sum of digits in base b. 
Suppose that a has exactly s nonzero digits (everything is in base b) and let 
A = al  bnl + a2bn2  + • • • + as  bns with ni > n2 > • > ns. We claim that s = n. 
First of all, we will prove that any two numbers among nl , n2, ..., ris  are not 
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congruent mod n. It will follow that s < n. Indeed, if ni 	n3  (mod n) let 
0 < r < n — 1 be the common value of 74 and ni modulo n. The number 
B = A — aibn — ajbn3 + + a3 )bnni-Er is clearly a multiple of bn — 1. If 
ai + < b then B has s — 1 nonzero digits, which contradicts the minimality 
of s. So b < ai  < 2b. If q =- a, + — b, then 

B 	bnn1-Fr-F1 qbnni -Fr 
+ aibnl + • • • + 

+a+11  + • • + 	+ a3±1bn3+1  + • • • + asbns. 

Therefore the sum of digits of B in base b is al + a2 + • • • +as + 1  + q— (a, +a3) < 
al + a2 + • • • + a,. This contradiction shows that ni, n2, •••, ns  give distinct 
remainders ri, r2, when divided by n. Finally, suppose that s < 7/ and 
consider the number C = aibr1  + • • • +60". Clearly, C is a multiple of bn —1. 
But C < bn  — 1! This shows that s = n and finishes the solution. 

Example 1 • Prove that for every k, we have 

s(n!)  
lim  

(ln(ln(n)))k 
= co. 

Solution. Due to the simple fact that 101-1°gn-I — 1 < n 	1011'gni — lin!, we 
have s(n!) > [log n J , from which our conclusion follows. 

rExample 12.i Let S be the set of positive integers whose decimal represen-
tation contains at most 1988 ones and the rest zeros. Prove 
that there is a positive integer which does not divide any 
element of S. 

Tournament of Towns 1988 

Solution. Again, the solution follows directly from our result. We can choose 
the number 101989  — 1, whose multiples have sum of digits greater than 1988. 
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Example 13. Prove that for each k > 0, there is an infinite arithmetical 
progression with a common difference relatively prime to 10, 
such that all its terms have the sum of digits greater than k. 

 

IMO 1999 Shortlist 

Solution.  Let us remind you that this is the last problem from IMO 1999 
Shortlist, so it is one of the hardest. The official solution seems to confirm 
this. But, due to the above lemma we can chose the sequence an  = n(10' —1), 
where m > k and we are done. 

Now, as a final proof of the utility of these two results, we will present a hard 
problem from the USAMO. 

11  Example 14.1 Let n be a fixed positive integer. Denote by f(n) the smallest 
k for which one can find a set X of n positive integers with 
the property 

s 	 k 
xEY 

for all nonempty subsets Y of X. Prove that 

Ci log n < f(n) < C2 log n 

for some constants C1 and C2. 

[Titu Andreescu, Gabriel Dospinescu] USAMO 2005 

Solution.  We will prove that 

+  
[log(n + 1)] < f(n) < 9 log 

[n(n 
 2 
 1) 
  + 1i , 

which is enough to establish our claim. Let 1 be the smallest integer such that 

n 
101  — 1 >

(n + 1) 
 

2 
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Consider the set X = {j(101  — 1) :1 < j < n}. By the previous inequality 
and our first lemma, it follows that 

s E x 9/ 
xEY 

for all nonempty subsets Y of X, so f (n) < 9/, and the upper bound is proved. 
Now, let m be the greatest integer such that n > 10' — 1. We will use the 
following well-known lemma: 

Lemma 16.4. Any set M = fai,a2,...,aml has a nonempty subset whose 
element sum is divisible by m. 

Proof. Consider the sums al, al +az, • • • , al + a2 + • • • ± an,. If one of then is a 
multiple of m, them we are done. Otherwise, there are two of them congruent 
mod m, say the i-th and the j-th. Then, 	+ a2+2 + • • • + a3  and we are 
done. 	 ❑ 

From the lemma, it follows that any n-element set X has a subset Y whose 
element sum is divisible by 10' — 1. By our second lemma, it follows that 

s 
 (

Ex > m f (n) > m, 
xEY 

and the proof is complete. 

The last solved problem is one we consider to be very hard, and which uses 
different techniques than the ones we have mentioned so far. 

Example 15. Let a and b be positive integers such that s(an) = s(bn) for 
all n. Prove that log bis an integer. 

[Adrian Zahariuc, Gabriel Dospinescu] 
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Solution.  We start with an observation. If gcd(max{a, b}, 10) = 1, then the 
problem becomes trivial. Indeed, suppose that a = max{a, b}. Then, by 
Euler's theorem, al 109'(a) - 1, so there is an n such that an = 10`P(a) - 1, and 
since numbers consisting only of 9-s have a digit sum greater than all previous 
numbers, it follows that an = bn, so a = b. Let us now solve the harder 
problem. For any k > 1 there is an nk such that 10k  < ank < 10k  + a - 1. It 
follows that s(ank) is bounded, so s(bnk) is bounded. On the other hand, 

10- 
b  
-
a 

< bnk <10-  -
a 

+ b, 

so, for sufficiently large k, the first p nonzero digits of a  are exactly the same 
as the first p digits of bnk. This means that the sum of the first p digits of 
-61  is bounded, which could only happen when this fraction has finitely many a 
decimals. Analogously, we can prove the same result about 6. Let a = 2x5Ym 
and b = 2z56mi, where gcd(m, 10) = gcd(rni, 10) = 1. It follows that mlm' 
and m'im, so m = m'. Now, we can write the hypothesis as 

s(2z5umn2c-x5c-y) = s(2x5Ymn2c_x5c_) = s(mn) 

for all c > max{x, y}. Now, if p max {z +c-x,u+c- y} - min {z + c - 
x , u + c - y} , we find that there is a k E {2, 5} such that s(mn) = s(mkP n) 
for all positive integer n. It follows that 

s(mn) = s(kPmn) = s(k2Pmn) = s(k3Pmn) = • • • 

Let t = aP, so log t E R - Q  unless p = 0. Now, we will use the following: 

Lemma 16.5. If log t E R - Q, then for any sequence of digits, there is a 
positive integer n such that trim starts with the selected sequence of digits. 

Proof. If we prove that {{log 	E Z+} is dense in (0,1), then we are done. 
But log trim = n log t + m and by Kronecker's theorem {{n log t}In E Z+} is 
dense in (0,1), so the proof of the lemma is complete. 	 ❑ 

The lemma implies the very important result that s(tnm) is unbounded for 
p 0, which is a contradiction. Hence p = 0 and z+c-x=u+c- y, so 
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a = 10x—zb. The main proof is complete. This problem can be nicely extended 
to any base. The proof of the general case is quite similar, although there are 
some very important differences. 

The aforementioned methods are just a starting point in solving such problems 
since the spectrum of problems involving the sum of the digits is very large. 
The techniques are even more useful when they are applied creatively. 
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16.2 Problems for training 

1. We start with a perfect number (which is equal to the sum of its divisors, 
except itself) different from 6 and calculate its sum of digits. Then, we 
calculate the sum of digits of the new number and so on. Prove that we 
will eventually get 1. 

2. Prove that for any positive integer n there are infinitely many numbers 
m not containing any zero, such that s(n) = s(mn). 

Russian Olympiad 1970 

3. Prove that among any 39 consecutive positive integers there is one whose 
digit sum is divisible by 11. 

Russian Olympiad 1961 

4. Prove that 

E s(n)   = ln 10 
n(n + 1) 9 . 

>1 

0. Shallit, AMM 

5. Are there positive integers n such that s(n) = 1000 and s(n2) = 1000000? 

Russian Olympiad 1985 

6. Prove that there are infinitely many positive integers n such that 

s(n) + s(n2) = s(n3). 

Gabriel Dospinescu 
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7. If s(n) = 100 and s(44n) = 800, find s(3n). 

Russia 1999 

8. Let a and b be positive integers. Prove that the sequence saan + b]) 
contains a constant subsequence. 

Laurentiu Panaitopol, Romanian TST 2002 

9. Find explicitly a Niven number with 100 digits. 

St. Petersburg 1990 

10. Are there arbitrarily long arithmetic sequences whose terms have the 
same digit sum? What about infinite arithmetic sequences? 

11. Let a be a positive integer such that s(an + n) = 1 + s(n) for any 
sufficiently large n. Prove that a is a power of 10. 

Gabriel Dospinescu 

12. Are there 19 positive integers with the same digit sum, which add up to 
1999? 

Rusia 1999 

13. Call a positive integer m special if it can be written in the form n + s(n) 
for a certain positive integer n. Prove that there are infinitely many 
positive integers that are not special, but among any two consecutive 
numbers, at least one is special. 

Kvant 
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14. Find all x such that s(x) = s(2x) = s(3x) = • • • = s(x2). 

Kurschak Competition 1989 

15. Let a, b, c, d be prime numbers such that 2 < a < c and a b. Suppose 
that for sufficiently large n, the numbers an+ b and cn+d have the same 
digit sum in any base between 2 and a — 1. Prove that a = c and b = d. 

Gabriel Dospinescu 

16. Let (an)n>i  be a sequence such that s(an) > n. Prove that for any n 
the following inequality holds 

1 	1 1 
— + — + • • • + — < 3.2. 
al a2 	an 

Can we replace 3.2 by 3? 

Laurentiu Panaitopol 

17. Prove that one can find ni < n2 < • • • < n50 such that 

nl + s(ni) = n2  + s(n2) = • • • = n5o + s(n5o)• 

Poland 1999 

18. Let S be a set of positive integers such that for any a E — Q, there is 
a positive integer n such that Lan] E S. Prove that S contains numbers 
with arbitrarily large digit sum. 

Gabriel Dospinescu 

19. Find the smallest positive integer which can be expressed at the same 
time as the sum of 2002 numbers with the same digit sum and as the 
sum of 2003 numbers with the same digit sum. 
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20. Are there polynomials p E Z[X] such that 

lim s(p(n)) = 00? 
n—>oo 

21. Prove that there exists a constant c > 0 such that for all n we have 
s(r) > clnn. 

22. Prove that there are arbitrarily long sequences of consecutive numbers 
which do not contain any Niven numbers. 

Mathlinks Contest 

23. Define f (n) = n + s(n). A number m is called special if there is a k such 
that f (k) = m. Prove that there are infinitely many special numbers of 
the form 10n + b if and only if b — 1 is special. 

Christopher D. Long 

24. Let k be a positive integer. Prove that there is a positive integer m such 
that the equation n + s(n) = m has exactly k solutions. 

Mihai Manea, Romanian TST 2003 

25. Let x7, be a strictly increasing sequence of positive integers such that 
v2(xn) — v5(x,i) has the limit oo or —oo. Prove that s(x„,) tends to oo. 

Bruno Langlois 

26. Is there an increasing arithmetic sequence with 10000 terms such that 
the digit sum of its terms forms again an increasing arithmetic sequence? 

Tournament of the Towns 
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27. Prove that the sum of digits of 9n is at least 18 for n > 1. 

AMM 

28. Prove that there exists a constant C such that for all N, the number of 
Niven numbers smaller than N is at most C 	 

(ln x)2/3  

29. Is there an infinite arithmetic progression containing no Niven numbers? 

Gabriel Dospinescu 
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17.1 Theory and examples 

"Olympiad problems can be solved without using concepts from analysis (or 
linear algebra)" is a sentence often heard when talking about problems given 
at various mathematics competitions. This is true, but the essence of some of 
these problems lies in analysis, and this is the reason that such problems are 
always the highlight of a contest. Their elementary solutions are very tricky 
and sometimes extremely difficult to design, while when using analysis they 
can fall apart rather quickly. Well, of course, "quickly" only if you see the 
right sequence (or function) that hides behind each such problem. Practically, 
in this chapter our aim is to exhibit convergent integer sequences. Clearly, 
these sequences must eventually become constant, and from here the problem 
becomes much easier. The difficulty lies in finding those sequences. Some-
times this is not so challenging, but most of the time it turns out to be a 
very difficult task. We develop skills in "hunting" for these sequences first by 
solving some easier questions, and after that we tackle the real problem. 

As usual, we begin with a classical and beautiful problem, which has many 
applications and extensions. 

Example 1 d Let f, g E Z[X] be two nonconstant polynomials such that 
f(n)Ig(n) for infinitely many n. Prove that f divides g in 
((2[X]. 

Solution. Indeed, we need to look at the remainder of g when divided by 
f in Q[Xl. Let us write g = f • q r, were q, r are polynomials in Q[X] 
with deg r < deg f. Now, multiplying by the common denominator of all 
coefficients of the polynomials q and r, the hypothesis becomes: there exist 
two infinite integer sequences (an)n>i, (bn)n>i and a positive integer N such 

that bn = N f 
r(an) 

 (we could have some problems with the zeros of f, but they 
(an) 

are only finitely many, so for 71 large enough, an  is not a zero of f). Because 
r(an) 

deg r < deg f, it follows that f (an)  —> 0, thus (bn)n>1 is a sequence of integers 
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that converges to 0. This implies that this sequence will eventually become 
the zero sequence. Well, this is the same as r(an) = 0 from a certain point 
no, which is practically the same as r = 0 (do not forget that any nonzero 
polynomial has only finitely many zeros). The problem is solved. 

The next problem is a special case of a much more general and classical result: 
if f is a polynomial with integer coefficients, k is an integer greater than 1, 
and .0 (n) E Q for all n, then there exists a polynomial g E Q[X] such that 
f (x) = gk (x). We will not discuss here this general result (the reader will find 
a proof in the chapter Arithmetic Properties of Polynomials). 

Let a, b, c be integers with a 	0 such that an2  + bn + c is 
a perfect square for any positive integer n. Prove that there 
exist integers x and y such that a = x2, b = 2xy, c = y2. 

Solution.  Let us begin by writing an2  bn + c = xri  for a certain sequence 
(xn)n>1  of nonnegative integers. We would expect that xn  — nVa, converges. 
And yes, it does, but it is not a sequence of integers, so its convergence is more 
or less useless. In fact, we need another sequence. The easiest way is to work 
with (x,,,+i — Xn)n>1)  since this sequence certainly converges to -Va (you have 
already noticed why it was not useless to find that xn  — nfci, is convergent; 
we used this to establish the convergence of (xn+i — xn)n>1). This time, the 
sequence consists of integers, so it is eventually constant. Hence we can find a 
positive integer M such that xn±i = x,n  + .va for all n > M. Thus a must be 
a perfect square, that is a = x2  for some integer x. A simple induction shows 
that xn  = xm + (n — M)x for n > M and so (xM — Mx + nx)2  = x2n2  + bn + c 
for all n > M. Identifying the coefficients finishes the solution, since we can 
take y = xm — Mx. 

Even this very particular case is interesting. Indeed, here is a very nice appli-
cation of the previous problem: 
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Example 3. Prove that there cannot exist three polynomials P, Q, R with 
integer coefficients, of degree 2, and such that for all integers 
x, y there exists an integer z such that P(x) + Q(y) = R(z). 

 

Tuymaada Olympiad 

Solution.  Using the above result, the problem becomes straightforward. In-
deed, suppose that P(X) = aX2  + bX + c,Q(X) = dX2  + eX + f and 
R(X) = mX2  + nX + p are such polynomials. Fix two integers x, y. Then 
the equation mz2  + nz + p — P(x) — Q(y) = 0 has an integer solution, so the 
discriminant is a perfect square. It means that m(4P(x)+4Q(y)-4p)+n2  is a 
perfect square and this for all integers x, y. Now, for a fixed y, the polynomial 
of second degree 4mP(X) + m(4Q(y) — 4p) + n2  transforms all integers into 
perfect squares. By the previous problem, it is the square of a polynomial of 
first degree. In particular, its discriminant is zero. Because y is arbitrary, it 
follows that Q is constant, which is not possible because deg(Q) = 2. 

Another easy example is the following problem, in which finding the right 
convergent sequence of integers in not difficult at all. But, attention must be 
paid to details! 

L Example 4.1 Let al, a2, 	, ak be positive real numbers such that at least 
one of them is not an integer. Prove that there exit infinitely 
many positive integers n such that n and [aim] + La2n + • • • + 
l_akni are relatively prime. 

[Gabriel Dospinescu] 

Solution.  The solution to such a problem needs to be indirect. So, let us as-
sume that there exists a number M such that n and [am n] + La2n]  +• • • + Lakni 
are not relatively prime for all n > M. Now, what are the most efficient num-
bers n to be used? They are the prime numbers, since if n is prime and it 
is not relatively prime with Lain.] + [a2n] + • • • + [akn] , then it must divide 
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Lain] + La2n] + • • • + [akni. This suggests considering the sequence of prime 
numbers (pn)n>1. Since this sequence is infinite, there is N such that pn  > M 
for all n > N. According to our assumption, this implies that for all n > N 
there exist a positive integer xn  such that Laipni [a2pn j +• •+ [akpn j = xnPn• 
And now, you have already guessed what is the convergent sequence! Yes, it 

[aoni 	+ [a2Prii + • • • + [akPni  is (xn)n>N. This is clear, since 	 converges to 
pn 

al + a2 + • • • + ak. Thus we can find P such that xn  = al + a2 + • • • + ak for all 
n > P. But this is the same as { alpn} {a2pn} + • • • + { akpn} = 0. This says 
that aipn  are integers for all i = 1, 2, ..., k and n > P and so ai  are integers for 
all i, contradicting the hypothesis. 

Step by step, we start to build some experience in "guessing" the sequences. 
It is then time to solve some more difficult problems. The next one may seem 
obvious after reading its solution. In fact, it is just that type of problem whose 
solution is very short, but difficult to find. 

Let a and b be integers such that a • 2n  + b is a perfect square 
for all positive integers n. Prove that a = 0. 

Polish TST 

Solution.  Suppose that a 0. Then a > 0, otherwise for large values of n 
the number a • 2n  + b is negative. From the hypothesis, there exists a sequence 
of positive integers (xn)n>1 such that xri  = \fa • 2n + b for all n. A direct 
computation shows that lim (2xn  — xn+2) = 0. This implies the existence of 

n—>co 
a positive integer N such that 2xn  = xn+2 for all n > P. But 2xn  = xn+2 is 
equivalent to b = 0. Then a and 2a are both perfect squares, which is impos-
sible for a 0. This shows that our assumption is wrong, and so a = 0. 

Schur proved that if f is a non constant polynomial with integer coefficients, 
then the set of primes dividing at least one of the numbers f (1), f (2), . . . is 
infinite. The following problem is an extension of this result. 
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Example 6. Suppose that f is a polynomial with integer coefficients and 
that (an) is a strictly increasing sequence of positive integers 
such that an  < f (n) for all n. Then the set of prime numbers 
dividing at least one term of the sequence (an) is infinite. 

 

Solution.  The idea is very nice: for any finite set of prime numbers pl , 
and any k > 0, we have 

,kai 

1  

k(aN 
< 00. 

' • • 
,, N 

Indeed, it suffices to observe that we actually have 

1 	
Pi nkai 

	

PN 	
k ki II 

cti,a25•••,ceN>0 2-1 	• • • N 	j=1 i>0 Pi 	j=1 3 

1 
On the other hand, by taking k = 	we have 

2 deg( f) 

1 
	 =oo 
(.f (n))k  n>1 

Thus, if the conclusion of the problem is not true, we can find pl, 	such 
that any term of the sequence is of the form pia' ...pkir and thus 

kai 	„ka N < DD. 
n>1 n 	oa2,•••,aN>0 P1 	...PN 

On the other hand, 
1 

•  
>1 n 

ak 	f (n))k  = C°'  

a contradiction. 

The same idea is used in the following problem. 

1 

ak  

1 
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Example  7. Let a and b be integers greater than 1. Prove that there is 
a multiple of a which contains all digits 0, 1, , b — 1 when 
written in base b. 

 

Adapted after a Putnam Competition problem 

Solution.  Let us suppose the contrary. Then any multiple of a misses at least 
one digit when written in base b. Since the sum of inverses of all multiples of 

1 	1 
a diverges (because 1 + —

2 
+ —

3 
+ • • • = co), it suffices to show that the sum of 

inverses of all positive integers missing at least one digit in base b is conver-
gent, and we will reach a contradiction. But of course, it suffices to prove it 
for a fixed (but arbitrary) digit j. For any n > 1, there are at most (b — 1)n  
numbers which have n digits in base b, all different from j. Thus, since each 
one of them is at least equal to bn-1, the sum of inverses of numbers that miss 

n  ( 	
b 	' 

the digit j when written in base b is at most equal to Eb b 1 	which 

converges. The conclusion follows. 

The following example generalizes an old Kvant problem. 

Example 8.1 Find all polynomials f with real coefficients such that if n is 
a positive integer which is written in base 10 only with ones, 
then f(n) has the same property. 

[Titu Andreescu, Gabriel Dospinescu] Putnam 2007 

Solution.  Let f be such a polynomial and observe that from the hypothesis 
it follows that there exists a sequence (an,),,>1 of positive integers such that 
f  1091)  = ur9n-1  . But this sequence (an)n>1  cannot be really arbitrary: 
actually we can find precious information from an asymptotic study. Indeed, 
suppose that deg(f) = d > 1. Then there exists a nonzero number A such 
that f(x) ti Aid  for large values of x. Therefore f (10n9—  6,4 1)  A lOnd. Thus  • 

10an Th.  lOnd. This shows that the sequence (an  — nd)n>i converges to a 
limit 1 such that A = 9d-1  10/ . Because this sequence consists of integers, it 

n>1 
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becomes eventually equal to the constant sequence 1. Thus from a certain point 
f  ( i.on9-1)  = 1.13 	9+ —1 	lcr9—  we have 	 If xn  = 	1  we deduce that the equation 

f (x)  _ (9x+1)9d.101  -1 	 (9x+i)d-io'-1  has infinitely many solutions, so f (X) = 	 9 
Thus this is the general term of these polynomials (not including here obvious 
constant solutions), being clear that all such polynomials satisfy the condi-
tions of the problem. 

We return to classical mathematics and discuss a beautiful problem that ap-
peared in the Tournament of the Towns in 1982, in a Russian Team Selection 
Test in 1997, and also in the Bulgarian Olympiad in 2003. Its beauty explains 
why the problem was so popular among the exam writers. 

Example 9. Let f be a monic polynomial with integer coefficients such that 
for any positive integer n the equation f(x) = 2n has at least 
one positive integer solution. Prove that deg(f) = 1. 

Solution.  The problem states that there exists a sequence of positive integers 
(xn)n>1 such that f (xn) = 2n. Let us suppose that deg(f) = k > 1. Then, for 
large values of x, f (x) behaves like Xk  . So, trying to find the right convergent 
sequence, we could try first to "think big": we have xn = r, that is for 
large n, xn  behaves like 2T.. Then, a good possible convergent sequence could 
be xn+k - 2xn. Now, the hard part: proving that this sequence is indeed 

convergent. First, we will show that Xn-Fk converges to 2. This is easy, since 
xn 

the relation f (xn+k) = 2k f (xn) implies 

f (Xn+k) (Xn+k)
k  

= 2k f(xn) 
 

Xn-Fk 	xn J 	xn 

and since lim 1(k )  = 1 and lim xn  = co, we find that indeed lim x 	"+'` = 2. 
x--•00 x 	 n—>oo 

We see that this will help us a lot. Indeed, write f (x) = Xk 	aixi • 
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Then f (xn+k) = 2k  f (xn,) can be also written as 

k-1 

a,(2kxin  — Xin+k) 

Xn+k — 2xn  = 	  k—i 
(2X )iXrik—±ik-1  

i=0 

• 	Xn±k  But from the fact that urn 	 = 2, it follows that the right-hand side of 
n—>oo xn  

the above relation is also convergent. Hence (xn+k — 2xn)n>i converges and so 
there exist M, N such that for all n > M we have Xn-Fk = 2xn+N . But now the 
solution is almost over, since the last result combined with f (xn+k) = 2k  f (xn) 
yields f(2xn + N) = 2k  f (x,i ) for n > M, that is f (2x + N) = 2k  f (x). So, an 
arithmetical property of the polynomial turned into an algebraic one by using 
analysis. This algebraic property helps us to finish the solution. Indeed, we 
see that if z is a complex zero of f, then 2z + N, 4z + 3N, 8z + 7N,... are 
all zeros of f . Since f is nonzero, this sequence must be finite and this can 
happen only for z = —N. Because —N is the only zero of f, we deduce that 
f(x) = (x + N)k  . But since the equation f(x) = 22k+1  has positive integer 

roots, we find that 2-k-  E Z, which implies k = 1, a contradiction. Thus, our 
assumption was wrong and deg( f) = 1. 

The following problem generalizes the problem above. 

Example  16.1  Find all complex polynomials f with the following property: 
there exists an integer a greater than 1 such that for all suffi-
ciently large positive integer n, the equation f(x) = an2  has 
at least one solution in the set of positive integers. 

[Gabriel Dospinescu] Mathlinks Contest 

Solution.  From the beginning we exclude the constant polynomials, so let f 
be a solution of degree d > 1. Let (x,),,>no  be a sequence of positive integers 
such that f(xn) = an2  for some integer a greater than 1. Now, observe that 
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we can choose A such that the polynomial g(X) = f (x + A) has no term of 
degree d -1. Define yn  = xn  - A and observe that g(yn) = an2 . Now, what 
really interests us is the asymptotic behavior of the sequence yn. This boils 
down to finding the behavior of the solution of the equation g(y) = z when 
z is very large. In order to do this, put g(y) = Byd  + Cy' + • • • with B > 0 
(the fact that B > 0 is obvious because g(x) remains positive for arbitrarily 
large values of x). Now, suppose that C 0. The choice of A ensures that 
e < d - 2. Therefore, if we define z = Ud  and Byd  = vd, E = and finally 

m = d - e, then we have ud  = '0(1+ EV-771  o(v')). Thus 

u = v(1 + Ey' + o(v-m))/ = v (1 —
E

v-m + o(v-m)) 

= v + —Evl-'m.  + o(vi-m). 

This shows that u 	v, and combining this observation with the previous 
result gives v = u - -Ed til-m 0(It i—m). Coming back to our notations, we 

infer that My = z ja - 	+ o(z- fi) where p = m -1. Finally, this can be 

written in the form y = Fz d + Gz-a + o(z') (the definitions of F, G and a 
are obvious from the last formula). Coming back to the relation g(yn) = an2  

n2 

we deduce that yn  = Fad + Ga-an2  + o(a-"
2
). Therefore 

Yd+n 	
2n-Fd 	2n+d—an2  \ ) = Fa d

n2 
a 	+ o / a 	. 

+d 2n yn  This shows that if we define zn  = Yn+d - a 	then zn  = o(1). On the 
other hand, by definition of yn  we obtain that an+1 = zn  + A(1 - a2n+2+d) is 
an integer. Therefore, the relation 

Zn+1 a2  zn = an±i — a2  an  A(a2  - 1) 

and the fact that zn  = o(1) shows that an±i - a2an  is eventually constant, 
equal to A(1 - a2). Thus for sufficiently large n we have zn±i = a2zn, so we 
have proved the existence of a constant K such that zn  = Ka2n for sufficiently 
large n. Because a > 1 and zn  = o(1), it follows that K = 0 and thus zn  = 0 
for sufficiently large n. But the assumption C # 0 implies that G 0 and 
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2 ,  by one of the previous relations we also have zn 	_Ga2n+d—anwhich is 
not true if zn  = 0 from a certain point on. This contradiction shows that 
f (X) = B (X — A)d  for some rational numbers A, B (because f takes rational 
values for infinitely many rational values of the variable, it is equal to its 
Lagrange interpolation polynomial, thus it has integer coefficients). Let B = 9 
and A = s. Then p(sxn  — r)d= qsdan2.  By taking n a multiple of d greater 
than no we obtain the existence of integers pi , qi  such that p= pl, q = 4. Thus 

n2 

Pi (sxn — r) = 	, which shows that ant is a d-th power for all sufficiently 
large n. This implies the existence of an integer b such that a = bd. Now, 
by taking pi, qi, s > 0 (we can do that, without loss of generality), we deduce 
that for some ni (which we will identify with no  from now on, by eventually 

r  
2 

in  enlarging no) we have sxn = 	qiSb
Let  a = gcd(s, pi) and write s = 

2  au, pi = av with gcd(u, v) = 1. Then auxn = 
r  qi uvr thus v 10'2  and so 

2 
for all n > no, auxn  = r+ 

qibn0 
 ubn

2_ n
o . By taking n = no we deduce that ulr. 

Because uls, it follows that u = 1 and so sxn  -= r+ql, 	. Note that gcd(v, qi) = 
2 

1 because v In., so vlbno. Let bno
2 
 = my. Thus sxn  = r + mqibn2 —no By taking 

2 
again n = no, we obtain that mqi  —r (mod s), so r(1 — bn2 —no) 0 (mod s) 
and so bn2—n° 1 (mod s) for all n > no. Applying this relation to n + 1 and 
making the division in the group of invertible residues mod s, we infer that 
b2n+1  = 1 (mod s) for all sufficiently large n. Repeating this procedure, we 
deduce that b2  —= 1 (mod s) and so b 1 (mod s). This implies my = bng 1 
(mod s) and since r —mqi  (mod s) and gcd(s, v) = 1, we finally obtain the 
necessary condition ry 	(mod s). Now, let us show that the conditions 
gcd(pi, qi) = gcd(r, s) = 1 and pi  = sv, gcd(s, v) = 1, ry 	(mod s) are 

sufficient for the polynomial f (X) = ( 1 .(X — Is )) to be a solution of the 

problem. Indeed, using the Chinese Remainder Theorem, we can choose b 
such that b 0 (mod v) and b 1 (mod s). Thus vIry + q1bn2  and also 
slry + qibn . Because gcd(s, v) = 1 it follows that there exists a sequence xn  
of positive integers such that ry + q1bn2  = syxn. Thus f (xn) = bdn2  and the 
problem is finally solved. 

The idea behind the following problem is so beautiful that any reader who 
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attempts to solve it will feel generously rewarded by discovering this mathe-
matical gem either by herself or himself, or in the solution provided. 

[Example 11.] Let 7r(n) be the number of prime numbers not exceeding n. 
Prove that there exist infinitely many n such that 7r(n)In. 

[S. Golomb] AMM 

Solution. Let us prove the following result, which is the key to the problem. 

Lemma 17.1 

that lim —
an 

n—>oo n 
particular, an  

. For any increasing sequence of positive integers (ari )n>i such 

= 0, the sequence 
n 

contains all positive integers. In 
an n>1 

divides n for infinitely many n. 

Proof. Even if it seems unbelievable, this is true. Moreover, the proof is ex-
tremely short. Let m be a positive integer. Consider the set 

A=(n>l amn  
ll 	mn 

1 
—m} • 

ma n 
This set contains 1 and it is bounded, since lim 	= 0. Thus it has 

n—>00 mn 
amk 

a maximal element k. If 	 = —
1 	

—
n 

, then m is in the sequence 
mk 	 an) n>1 

Otherwise, we have am(k+i) > amk > k +1, which shows that k +1 is also in 
the set, in contradiction with the maximality of k. The lemma is proved. 0 

Thus, all we need to show now is that lim 
71-(n)= 

 0. Fortunately, this is well 
n—>co n 

known and not difficult to prove. There are easier proofs than the following 
one, but we prefer to deduce it from a famous and beautiful result of Eras: 

p < 4n-i. This was proved in chapter Look at the Exponent, but really 
p<72 
we expect you to know how to prove it (it is one of those marvelous proofs 
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that cannot be forgotten). Now, the fact that lim 
7r(n)= 

 0 follows easily. 
n—>co n 

Indeed, fix k > 1. We have for all large n the inequality 

(n — 1) log 4 > j log p > (7r(n) — 7r(k)) log k, 
k<p<n 

which shows that 
(n — 1) log 4 

7r(n) < 7r(k) + 	. 
log k 

7r(n) 
This proves that lim 	 = 0. The problem is finally solved. 

n—>oc n 

A somewhat tricky, but less technical problem follows now. A special case of 
it was proposed by the USA for IMO 1990: 

Example 12.1 Let f be a polynomial with rational coefficients, of degree at 
least 2, and let (an)n>i be a sequence of rational numbers 
such that f (an+1) = an  for all n. Prove that this sequence is 
periodic. 

[Bjorn Poonen] AMM 10369 

Solution. First of all, it is clear that the sequence is bounded. Indeed, because 
deg( f) > 2 there exists M such that If (x)1 > lxi if Ix1 > M. By taking M suffi-
ciently large one can also assume that M > lai  1. Then an immediate induction 
shows that lanl < M for all n. We will now prove that for some positive integer 
N we have Nan  e Z for all n. Indeed, let al = 9 for some integers p, q and let 
k be a positive integer such that k f = f s Xs + • • • + fiX + fo E Z[X]. Define 
N = qh. Then Nal = pfs E Z, and clearly if Nan  E Z then Nan+i is a ratio-
nal zero of the monic polynomial with integer coefficients kN3  (f (Nx  ) — an), 

f, 
so it is an integer. This shows that (Nan)n>i  is a bounded sequence of in- 
tegers, therefore it takes only a finite number of values. Suppose that the 
sequence (an)n>i takes at most m different values. Consider (m + 1)-tuples 
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(64, 	ai+m) for positive integers i. There are at most mni+1  such (m+1)- 
tuples that can be formed and in each such (m + 1)-tuple there exists a value 
taken at least twice. Therefore there exists a pattern that is repeated infinitely 
many times, which means that there exists k such that for all positive integers 
n there exists j > n for which a3  = a3+k. But applying fr to this last relation 
and taking into account that fr(an+r) = an  shows that an  = an±k for all n. 
That is, the sequence is periodical. 

A fine concoction of number theory and analysis is used in the solution of the 
next (very) difficult problem. We will see one of the thousands of unexpected 
applications of Pell's equation: 

[Example 13.] Find all polynomials p and q with integer coefficients such 

that p(X)2  = (X2  + 6X + 10)q(X)2  — 1. 

Vietnamese TST 2002 

Solution. One easy step is to notice that X2  + 6X + 10 = (X + 3)2  + 1, so 
by taking f (X) = p(X — 3) and g(X) = q(X — 3) the problem "reduces" to 
solving the equation (X2  + 1)f (X)2  = g(X)2  + 1 in polynomials with integer 
coefficients. Of course, we may assume that the leading coefficients of f and g 
are positive and also that both polynomials are nonconstant. Therefore there 
exists an M such that f (n) > 2, g (n) > 2 for all n > M. As it is well known, 
the solutions in positive integers to the Pell equation x2  + 1 = 2y2  are (xn, yn) 
where 

(1 .0\ 2n-1 )(1 — 0)2n-1 	 (1 + 42n-1 	\)2n-1

2  
xn  = 	

2 Yn — 	 • 

Observe that g2 (xn) + 1 = 2(ynf(xn))2. There exist two sequences of positive 
integers (an)n>m and (bn)n>m such that g(xn) = xar, and yn f(xn) = ybn . Let 
k = deg(g) and m = deg(f). Because the sequence 

xn 	
k 

2
g(xn)  

xnk 	(1 + 0)2n-1 



g(X) = 
2 

(x + Vx2 + 1)k + (X VX2 + i)k 
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2x.,
271-1) clearly converges to a nonzero limit, so does the sequence (1±

)
k( 	and 

therefore the sequence (1 + 0)2an-1—k(2n-1) converges to a nonzero limit. 
This sequence having integer terms, it becomes constant from a certain point. 
Hence there exists no > M and an integer u such that 2an  - 1- k(2n - 1) = u 

x  ) 	xk(1±.Au±(  1) k (i  
' for all n > no. Thus g - 	= 	  2 	 holds for all x of the  

form (1+ 0)2n-1. Because this equality between two rational functions holds 
for infinitely many values of the argument, it follows that it is actually true for 
all x. By looking at the leading coefficient in both sides of the equality (after 
multiplication by X k ) we deduce that (1+ -\/)"-' is rational, which cannot hold 
unless u = 0. Thus 

The expression in the right-hand side of the last equality is a polynomial with 
integer coefficients only for odd values of k. This also gives the expression of 

f: 

2 N/X2  + 1 

The solutions of the original problem are easily deduced from f and g by a 
translation. 

The previous example deserves a little digression. Actually, one can find all 
polynomials with real coefficients that satisfy (X2  + 1)f(X)2  = g(X)2  + 1. 
Indeed, it is clear that f and g are relatively prime. By differentiation, the 
last relation can be written as (X2  + 1)f(X)f (X) + X f 2(X) = g(X)g'(X). 
Thus f divides gg', and by Gauss's lemma we deduce that fig'. The relation 
(X2  + 1)f2(X) = g(X)2  + 1 also shows that deg(f) = deg(g') and so there 
exists a constant k such that f (X) = kg' (X). Therefore k2(X2  + 1)g'(X)2  = 
g(X)2  + 1. By identifying the leading coefficient of g in the two sides, we im-

mediately find that k2  = n2. This shows that ig:g(()()2 = i±x2 . By changing 
g and -g we may assume that g'(X) > 0 for sufficiently large x and thus for 
such values of the variable we have ,gi(x)   - 	. This shows that the 

V/9(x)2+1 	✓x2+1 

f (X) = 
(X +  -VX2  +1)k  + (-X + VX2  +1)k  
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function In 9(x)+V9(x)2+1  

is constant in a neighborhood of infinity. This 
(x+,/x2+1),,  

allows us to find g in such a neighborhood and thus to find g on the whole 
real line. 

It is time now for the last problem, which is, as usual, very hard. We do not 
exaggerate when we say that the following problem is exceptionally difficult. 

Example 14. Let a and b be integers greater than 1 such that an – 1 bn – 1 
for every positive integer n. Prove that b is a natural power 
of a. 

 

[Marius Cavachi] AMM 

Solution. This time we will be able to find the right convergent sequence 
only after examining a few recursive sequences. Let us see. So, initially we are 

( given that there exists a sequence of positive integers (xn1) 
 )n>i such that xn(1) 

 =- 
n bn — 1 

. Then, 41) 	—
b 	

for large values of n. So, we could expect that 
an – 1 	 a 

( the sequence (xn
2) 
 )n>l, 42)  = bx$,1)  – axS,111, to be convergent. Unfortunately, 

bn+1  (a – 1) – 0/11+1  (b – 1) a – b 
(an – 1)(0+1  - 1) 

which is not necessarily convergent. But... if we look again at this sequence, 

we see that for large values of n it grows like ( —b  , so much slower. And 
a2  

this is the good idea: repeat this procedure until the final sequence behaves 

like a  k-I- b 1 , where k is chosen such that ak  < b < ak+1. Thus the final ( 

sequence will converge to 0. Again, the hard part has just begun, since we 
have to prove that if we define xS.,i,+1)  = bx, )  – aix()+1  then lim x ik+1)  = 0. 

n—>oo 

This is not easy at all. The idea is to compute xn(3)  and after that to prove 
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(i the following statement: for any i > 1 the sequence (x ) 
 )rt>1 has the form 

cibn 	 + • • • + clan  + co 
(an+i-1  — 1)(an+i-2  — 1) ... (an — 1) 

for some constants co, ci, 	, ci. Proving this is not so hard, the hard part 
was to think of it. How can we prove the statement other than by induc-
tion? And induction turns out to be quite easy. Supposing that the state-
ment is true for i, then the corresponding statement for i 1 follows from 

4+1)  -= bxW — aix(i)±1  directly (note that in order to compute the difference, 
we just have to multiply the numerator cibn ci_  a(i-1)n c an + co by 
b and an+i  — 1. Then, we proceed in the same way with the second fraction 
and the term bn±lan+i  will vanish). So, we have found a formula which shows 

that as soon as ai  > b we have lim x,i)  = 0. So, lim x ilc+1)  = 0. Another 
n—>oo 	 n—>oo 

step of the solution is to take the minimal index j such that lim 4)  = 0. 
n—>oo 

Clearly, j > 1 and the recursive relation x i,+1)  = bx,•:;)  — aix( )+1  shows that 

4j)  E Z for all n and i. Thus, there exists an M such that whenever n > M 
we have xn(i)  = 0. This is the same as bxSij 1)  = aixn(3±.  11)  for all n > M, which 

n—M  implies x2-11  = 	) XmCi  ') for all n > M. Let us suppose that b is not ( 
ai 

a multiple of a. Because 
( ) n—M 

Xm(i-1)  E Z for all n > M, we must have 
a3 

u-1) xm(i-1)  = 0 and so xn 	= 0 for n > M, which means lim x j-1)  = 0. But 
n—>oo 

this contradicts the minimality of j. Thus we must have alb. Let us write 
b = ca. Then, the relation an —11bn  — 1 implies an — lIcn — 1. And now we are 
finally done. Why? We have just seen that an — 11cn — 1 for all n > 1. But 
our previous argument applied to c instead of b shows that alc. Thus, c = ad 
and we deduce again that ald. Since this process cannot be infinite, b must be 
a power of a. 

It is worth saying that an even stronger result holds: it is enough to suppose 
that an — 1  Ibn 1 for infinitely many n. But this is a much more difficult 
problem and it follows from a 2003 result of Bugeaud, Corvaja and Zannier: 
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If integers a, b > 1 are multiplicatively independent in Q* (that is logo  b cl Q 
or an bm for n, m 0), then for any 6 > 0 there exists no = no(a, b, E) such 
that gcd(an — 1, bn — 1) < 2" for all n > no. Unfortunately, the proof is too 
advanced to be presented here. 
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17.2 Problems for training 

1. Let (an)n>1  be an increasing sequence of positive integers such that 
an  lai + a2 + • • • + an_i for all n > 2002. Prove that there exists no such 
that an  = al + a2 + • • • + an_i for all n > no. 

Tournament of the Towns 2002 

2. Let f E Z[X] be a polynomial of degree k such that /f (n) E Z for all 
n. Prove that there exist integers a and b such that f (x) = (ax + b)k .  

3. Find all arithmetical sequences (an)n>i of positive integers (an)n>1  such 
that al + a2 	• + an is a perfect square for all n > 1. 

Laurentiu Panaitopol, Romanian Olympiad 1991 

4. Prove that any infinite arithmetical sequence contains infinitely many 
terms that are not perfect powers. 

5. Let a, b, c > 1 be positive integers such that for any positive integer n 
there exists a positive integer k such that ak  bk  = 2cn. Prove that 
a -=- b. 

6. Let p be a polynomial with integer coefficients such that there exists a 
sequence of pairwise distinct positive integers (an)n>i such that p(ai) = 
0, p(a2) = al, p(a3) = a2, .... Find the degree of this polynomial. 

Tournament of the Towns 2003 

7. Find all pairs (a, b) of positive integers such that an + b is triangular if 
and only if n is triangular. 

After a Putnam Competition problem 
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8. Let a and b be positive integers such that for any 71, the decimal repre-
sentation of a + bn contains a sequence of consecutive digits which form 
the decimal representation of n (for example, if a = 600, b = 35, n = 16 
we have 600 + 16 • 35 = 1160). Prove that b is a power of 10. 

Tournament of the Towns 2002 

9. Let a and b be integers greater than 1. Prove that for any given k > 0 
there are infinitely many numbers n such that co(an + b) < kn, where (i9 

is the Euler totient function. 

Gabriel Dospinescu 

10. Let A, B be two finite sets of positive real numbers such that 

{

EXn171EN}C{EXTh 171ENT}. 

xEA 	 xEB 

Prove that there exists a k ER such that A= {xi' 1 x E B}. 

Gabriel Dospinescu 

11. Suppose that a is a positive real number such that all numbers 1', 2a, 3a, . . . 
are integers. Prove that a is also integer. 

Putnam Competition 

12. Find all a, b, c such that a • 4n  + b • 6n + c • 9n  is a perfect square for all 
sufficiently large n. 

Vesselin Dimitrov 

nvthanh1994
Insert Text
422-Putnam and beyond
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13. Let f and g be two real polynomials of degree 2 such that for any real 
number x, if f (x) is integer, then so is g(x). Prove that there are integers 
m, n such that g(x) = m f (x) + n for all x. 

Bulgarian Olympiad 

14. Let b be an integer greater than 4 and define the number 

in base b. Prove that xn 
and only if b = 10. 

xn  -,--- 11 	22 . .. 2 5 ....„—.,....,--, 
n-1 	n 

is a perfect square for all sufficiently large n if 

Laureniiu Panaitopol, IMO 2004 Shortlist 

15. Let A be a set of positive integers containing at least one number among 
any 2006 consecutive positive integers, and let f be a nonconstant poly-
nomial with integer coefficients. Prove that for sufficiently large n there 
are at least On In n different primes dividing the number ri f (k). 

1<k<n 
kEA 

Gabriel Dospinescu 

16. Prove that in any increasing sequence (an)n>1  of positive integers satis-
fying an  < 100n for all rt, one can find infinitely many terms containing 
at least 1986 consecutive l's. 

Kvant 

17. Find all triplets (a, b, c) of integers such that a • 2n + b is a divisor of 
cn + 1 for any positive integer n. 

Gabriel Dospinescu, Mathematical Reflections 
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18. Let f be a complex polynomial such that for all positive integers n, the 
equation f (x) = n has at least one rational solution. Prove that f has 
degree at most 1. 

Mathlinks Contest 

19. Let f be a polynomial with rational coefficients such that f(2n) is a 
perfect square for all positive integers n. Prove that there exists a poly-
nomial g with rational coefficients such that f = g2 . 

Gabriel Dospinescu 

20. Suppose that b1, b2, , bm, are rational numbers and bo, b_1, b_2, ... are 
real numbers such that the series binzm + • • • + biz + b0 + _z1 622  
converges outside some circle and takes integral values for infinitely many 
integers z. Prove that b0 is rational and bi  = 0 for all i < 0. 

Skolem 

21. a) Let b1, b2, 	bm, and b0, b_ 1, b_ 2, ... be real numbers such that the 
± • • • ± biz  ± bo  _bv 	bz-22 	is  series f (z) = brnen + 

not everywhere divergent and represents integers for all sufficiently large 
integers z. Prove that f (z) is a polynomial. 
b) Deduce that a polynomial f with the properties that f(Z) C Z and 
f (n) is a k-th power of an integer for all sufficiently large integers n is 
the k-th power of a polynomial with rational coefficients. 

22. a) Find all increasing functions defined on the set of positive integers, 
with real values and such that f (ab) = f (a) f (b) for all a and b. 
b) The same questions if we assume only that f (ab) = f (a) f (b) for all 
relatively prime positive integers a and b. 

Paul ErdOs 
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23. Let f, g be two polynomials with real coefficients such that f (Q) = g (Q) 
Prove that there exist rational numbers a, b such that f (X) = g (aX b). 

Miklos Schweitzer Competition 

24. Let al, a2, 	an  and b1, b2, 	bm  be positive integers such that any inte- 
ger x satisfies at least one congruence x az  (mod bi) for some i. Prove 
that there exists a nonempty subset I of {1, 2, ..., n} such that EzE/ b 
is an integer. 

M. Zhang 

25. Suppose that f, g are two nonconstant rational functions such that if 
f (zo) is integer for some complex number zo then so is g(zo). Show 
that there exists a polynomial with rational coefficients P such that 
g(z) = P(f (z)). (This is for the die-hards!) 

Gary Gundersen, Steve Osborn, AMM 6410 
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18.1 Theory and examples 

For a prime p, define the function (—
a

P
) : Z —> {-1,1} by (—

a

P
) = 1 if the 

( equation x2  = a has at least one solution in Z/pZ and a)  = —1 otherwise. 
P 

In the first case, we say that a is a quadratic residue modulo p; otherwise we 
say that it is a quadratic non-residue modulo p. This function is called Legen-
dre's symbol and plays a fundamental role in number theory. We will unfold 
some easy properties of Legendre's symbol first, in order to prove a highly non-
trivial result, Gauss's famous quadratic reciprocity law. First, let us present a 

( useful theoretical (but not very practical) way of computing a)  due to Euler. 
P 

Theorem 18.1. The following identity is true provided p a: 

In particular, we have 

(a 
—) a 2 

= (-1)2V. 

(mod p). 

Proof. We will prove this result and many other simple facts concerning quadratic 

residues in what follows. First, let us assume that (—a  = 1, and let x be a 
P 

solution to the equation x2  = a in Z/pZ. Using Fermat's little theorem, we 

( find that a Y = xP-1  = 1 (mod p). Thus the equality —a  = a Y (mod p) 
P 

holds for all quadratic residues a modulo p. In addition, for any quadratic 
residue we have a Y = 1 (mod p). Now, we will prove that there are exactly 
p — 1 
	 quadratic residues in Z/pZ \ {0}. This will enable us to conclude that 

2 
quadratic residues are precisely the zeros of the polynomial X

p-1 
2 -1 and also 

that non quadratic residues are exactly the zeros of the polynomial X 2  + 1 
(from Fermat's little theorem). Note that Fermat's little theorem implies that 
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the polynomial XP-1  - 1 = (X 
p 2 1

- 1)(X y
2 1 

+ 1) has exactly p - 1 zeros in 
the field Z/pZ. But in a field, the number of different zeros of a polynomial 

cannot exceed its degree. Thus each of the polynomials X 
p  2

-1 and XY +1 

has at most 
p 

2 
 1 zeros in Z/pZ. These two observations show that in fact 

- 
each of these polynomials has exactly 

p 
2 
 1 zeros in Z/pZ. Let us observe 

next that there are at least 
p 

2 
 1 quadratic residues modulo p. Indeed, all 

numbers i2  (mod p) with 1 < i < P
2  1 

 are quadratic residues and they are 

- 
all different (modulo p). This shows that there are exactly 

p 
2 
 1 quadratic 

residues in Z/pZ \ {0} and also proves Euler's criterion. 	 ❑ 

Euler's criterion is a very useful result. Indeed, it allows a very quick proof of 

the fact that (-
a

) : Z 	{-1, 1} is a group morphism. Indeed, 

(ab  
—p ) (ab) 2  = a 2 	= (-) (-) 

P P 
(mod p). 

The relation (—
ab = a 	b ) 	

P 	
P shows that while studying Legendre's sym- 

bol, it suffices to focus on the prime numbers only. Also, the same Euler's 

criterion implies that (-
a
) = (-

b
) whenever a b (mod p). 

It is now time to discuss Gauss's celebrated quadratic reciprocity law. First 
of all, we will prove a lemma (also due to Gauss). 

Lemma 18.2. Let p be an odd prime and let a E Z such that gcd(a, p) = 1. De-
fine the least residue of a (mod n) as the integer a' such that a a' (mod n) 
and -3 < a' < Let a j be the least residue of aj (mod p) and I be the 

number of integers 1 < j < P21  for which aj < 0. Then (7)) = (-1)1. 
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Proof The proof is not difficult at all. Observe that the numbers la3 I for 
1 < j < r = P21  are a permutation of the numbers 1,2, ..., r. Indeed, we have 
1 < la31 < r and la31 laid (otherwise, we have either pla(j + k) or pla(j — k) 
which is impossible because gcd(a, p) = 1 and 0 < j + k < p). Therefore 
a1a2 • • • ar = (-1)1 lailla21• • • larl = (-1)1r!. By the definition of a3  we also 
have a1a2 • • ar  arr! (mod p) and so ar (-1)/  (mod p). Using Euler's 

criterion, we deduce that ((,) = (-1)/ . 	 ❑ 

Using Gauss's lemma, the reader will enjoy the proof of the following classical 
results. 

Theorem 18.3. The identity (-
2
) = (-1) P28 8  holds for any odd prime p. 

p 

Proof. Let us take a = 2 in Gauss's lemma and observe that 1 = P21  [4] . 
Indeed, we have a3  = 2j if 1 < j < Hi and a3  = 2j — p if Hi] < j < P21. 

Now, the conclusion follows, because 1 = P21  [land P
2
-8 

1 
have the same 4 

parity, as you can easily check. 
El 

But perhaps the most striking consequence of Gauss's lemma is the famous: 

Theorem 18.4 (Quadratic reciprocity law). For all distinct odd primes p and 
q, the following identity holds: 

(11 (
P
g) = ( — 1)Y 

Proof The proof is a little bit more involved than that of the previous result. 
Consider R the rectangle defined by 0 < x < 2 and 0 < y < 2 , and let 

= (-1)/  and (1) = (-1)m, where 1, m are defined as in Gauss's lemma. 

Observe that 1 is the number of lattice points (x, y) such that 0 < x < z and 
< px — qy < 0. These inequalities force y < P+21  and because y is an 
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integer, it follows that y < 2. Therefore 1 is the number of lattice points in 
R that satisfy —1 < px — qy < 0 and similarly m is the number of lattice 
points in R that satisfy —5 < qy — px < 0. Using Gauss's lemma, it is enough 

to prove that (P-14(q-1) 	(1 + m) is even. Because (73  1)1q 1)  is the number 

of lattice points in R, (P-1)4(q-1) 	(1 + m) is the number of lattice points 
in R that satisfy px — qy < —1 or qy — px < — 22  These points determine 
two regions in R, which are clearly disjoint. Moreover, they have the same 
number of lattice points because x =- 21 x', y = P+2 1  y' gives a one-to-one 
correspondence between the lattice points in the two regions. This shows that 
(P-1) q-1)  (1 + m) is even and finishes the proof of this celebrated theorem. 

Using this powerful arsenal, we are now able to solve some interesting prob-
lems. Most of them are merely direct applications of the above results, but 
we think that they are still worthy, not necessarily because they appeared in 
various contests. 

Example 1. Prove that the number 2n.  + 1 does not have prime divisors of 
the form 8k — 1. 

 

Vietnamese TST 2004 

Solution.  For the sake of contradiction, assume that p is a prime of the form 
8k — 1 that divides 2' + 1. Of course, if n is even, the contradiction is imme-
diate, since in this case we have —1 (23)2  (mod p) and so —1 = (-1)Y 

1. Now, assume that n is odd. Then —2 (2n±1 )2  (mod p) and 

( 2) 

	

= 1. This can be also written in the form —
1 	2 

1, or 
P 	 P 	P ”2 i  

(-1)2=4- 	= 1. But if p is of the form 8k — 1 the latter cannot hold and 
this is the contradiction that solves the problem. 
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Using the same idea and a bit more work, we obtain the following result. 

Example 2.] Prove that for any positive integer n, the number 23n  + 1 has 
at least n prime divisors of the form 8k + 3. 

[Gabriel Dospinescu] 

Solution. Using the result of the previous problem, we deduce that 2n  + 1 
does not have prime divisors of the form 8k + 7. We will prove that if n is 
odd, then it has no prime divisors of the form 8k + 5 either. Indeed, let p be a 
prime divisor of 2n  +1. Then 2"1  —1 (mod p) and so —2 (2

n+1 
 )2  (mod p) . 

Using the same argument as the one in the previous problem, we deduce that 
p 

8  
2  — 1 	

2 
p — 1 

is even, which cannot happen if p is of the form 8k + 5. 

Now, let us solve the proposed problem. We assume n > 2 (otherwise the 
verification is trivial). The essential observation is the identity 

23n  + 1 = (2 + 1)(22  — 2 + 1)(22.3  — 23  + 1) 	(22.3n  — 23n 1  + 1) 

Now, we prove that for all 1 < i < j < n-1, gcd(22•3' —23' +1, 22•33  —233  +1) = 
3. Indeed, assume that p is a prime number dividing gcd(22•3' — 23' + 1, 22.33 —
23' + 1) We then have p1232+' + 1. Thus, 

2 	(23'41)33-i-1  = (-1)33-'-1  -= —1 (mod p), 

implying 
0 = 22'33  — 233  + 1 1 — (-1) + 1 = 3 (mod p) 

This cannot happen unless p = 3. But since 

v3(gcd(223" — 23' + 1, 22.33  — 233  + 1)) = 1, 

as you can immediately check, it follows that 

gcd(22.32  — 23' + 1, 22.33  — 233  + 1) = 3 
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and the claim is proved. It remains to show that each of the numbers 22'3' —
23' + 1, with 1 < i < n — 1 has at least a prime divisor of the form 8k + 3, 
different from 3. From the previous remarks, it will follow that 23" + 1 has 
at least n — 1 distinct prime divisors of the form 8k + 3, and since it is also 
divisible by 3, the solution will be complete. Fix i E {1, 2, ... , n — 1} and 
observe that any prime factor of 22'3' — 23' +1 is also a prime factor of 23' + 1. 
Thus, from the first remark, this factor must be of one of the forms 8k + 1 or 
8k + 3. Because v3(22°3' — 23' + 1) = 1, all prime divisors of 22•3' — 23' + 1 
except for 3 are of the form 8k + 1, so 22'3' — 23' + 1 -=- 8 (mod 8), which is 
clearly impossible. Thus at least a prime divisor of 22.3" — 23' + 1 is different 
from 3 and is of the form 8k+3. The claim is proved and the conclusion follows. 

We have seen a beautiful proof of the following result in the chapter Geom-
etry and Numbers. But there is another way to solve it, probably more 
natural and which turns out to be very useful in some other problems, too: 

Example 3. Let n be a positive integer such that the equation X2 -Exy-Ey2  = 
n has a solution in rational numbers. Prove that this equation 
also has a solution in integers. 

Komal 

Solution.  This looks quite familiar, especially after the discussion in chapter 
Primes and Squares. Indeed, let us start with a natural question: which 
primes can we expressed in the form x2  + xy + y2  for some integers x, y? 
Suppose p is such a prime number. Then 4p = (2x + y)2  + 3y2. This shows 
that (2x + y)2  = —3y2  (mod p). Now, if p # 3 then y 0 (mod p) because 
otherwise x 0 (mod p) and so p21p, clearly false. The last relation implies 

therefore that () = 1. Using the quadratic reciprocity law, we easily infer 

that this is equivalent to (5) = 1 and this happens precisely when p 	1 
(mod 3). Therefore the primes that can be expressed as x2  + xy + y2  are 3 and 
p 1 (mod 3). We are not done yet, because we need to prove that all such 
primes can be written like that. For 3, there is no problem, but this is not 
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the case with arbitrary p 1 (mod 3). Take such a prime number p. From 

the above arguments we know that (=11, = 1, which means that there exists 

a such that a2  = —3 (mod p). Now, recall Thue's lemma proved in chapter 
Primes and Squares: there exist integers 0 < x, y < 05 not both zero such 
that a2x2  y2  (mod p). Therefore pl3x2 + y2. Because 0 < 3x2  + y2  < 4p, we 
deduce that 3x2  + y2  is one of the numbers p, 2p, 3p. If it is p, then we obtain 
p = (y — x)2  + (y — x) • 2x + (2 • x)2. If it is 3p then y must be a multiple of 
3, say y = 3z and then p = x2  + 3z2, thus we get the previous case. Finally, 
suppose that 2p = x2  + 3y2. Then clearly x, y have the same parity. But then 
x2  + 3y2  is a multiple of 4, contradiction, because 2p is not divisible by 4. 
Thus this case is excluded and the proof of the first part is finished. 
Now, we can attack the problem. Suppose that the equation x2  + xy + y2  = n 
has rational solutions, that is the equation a2  + ab + b2  = c2n has integer 
solutions with gcd(a, b, c) = 1. Take p a prime divisor of n and assume that 
vp(n) is odd. We claim that p 	3 or p 	1 (mod 3). If not then pl a and 
plb by the previous arguments, thus we can simplify by p2  both members of 
the equation. Repeating this operation, we deduce in the end that plc, which 
contradicts the fact that gcd(a, b, c) = 1. Thus all prime divisors of the form 
3k + 2 of n appear with even exponent. As we have already seen, all prime 
divisors of n not of the form 3k + 2 are of the form u2  + uv + v2. Thus, all we 
need to prove now is that the product of two numbers of the form u2  + uv + v2  
is of the same form. But this is not difficult, because if f = cm-  then 

(u2  + uv + v2)(w2  + wt + t2) = (u — ev)(u — € 2  v) (w — et) (w — E2t) 

that is (A — €B)(A — €2B) for A = uw — vt,B = ut + vw + vt and we are 
done. If you did find the above solution cumbersome, you are right! At first 
glance, the following problem seems trivial. It is actually very tricky, because 
brute force takes us nowhere. Yet, in the framework of the above results, this 
should not be so difficult. 

Example 4d Find a number n between 100 and 1997 such that On + 2. 

APMO 1997 
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Solution.  We will fail if we try to search for odd numbers (actually, this result 
was proved in the topic Look at the Exponent! and is due to Schinzel). So 
let us search for even numbers. The first attempt is to chose n = 2p, for some 
prime p. Unfortunately, this choice is ruled out by Fermat's little theorem. So 
let us set n = 2pq, for some different primes p and q. We need pql22Pq-1  + 1 

and so we must have (-
-2

) = = 1. Also, using Fermat's little theo-

rem, p122q-1  + 1 and ql22P-1  + 1. A simple case analysis shows that q = 3, 5, 7 
are not good choices, so let us try q = 11. We find p = 43 and so it suffices 
to show that pq122N-1  + 1 for q = 11 and p = 43. This is not very hard: we 
have p122q-1  + 1, implying p12P(2q-1) + 1  = 22pq-p 1. Then p122P" + 2P-1  
and using Fermat's theorem (pl2P-1  - 1) we get p122P" + 1 and an analogous 
reasoning shows that q122P" + 1, finishing the proof. 

Are we wrong to present the following example? It apparently has no connec-
tion with quadratic reciprocity, but let us take a closer look. 

75ca.m---57 Let f, g : N* N* be functions with the properties: 

i) g is surjective; 
ii) 2f(n)2 = n2 + g \ 2 m for all positive integers n; 

iii) f (n) - n < 2004 \Fri for all n. 
Prove that f has infinitely many fixed points. 

[Gabriel Dospinescu] Moldova TST 2005 

Solution.  Let pn  be the sequence of prime numbers of the form 8k + 3 (the 
fact that there are infinitely many such numbers is a trivial consequence of 
Dirichlet's theorem, but we invite the reader to find an elementary proof). It 
is clear that for all n we have 

	

C2 / 
) 	= 

Pn 

Using the condition i) we can find xn, such that g(xn) = pn, for all n. It 
follows that 2f (xn)2  = xn2  +pn2 , which yields 2 f (xn)2  xn2  (mod pa). Because 



exist sequences of positive integers an, bn  such that xn  = anpn  and f (xn) = 
bnpn  for all n. Clearly, ii) implies the relation 2b?, = an + 1. Finally, using the 
property If (n) – n1 < 2004Iii we have 

( 2 

pn 
) 	 Pni f (xn). Thus there = –1, the last congruence shows that pn  Ix, and 

f (xn) 

xn  

That is 
Va2  + 1 

lim 	n  
n–>oo 	an  

bn  
— – 1 
an 

= 

2004 
.Vxn  
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The last relation implies lim an  =- 1. Therefore, starting from a certain point, 
n—too 

we have an  = 1 = bn, that is f (Pn) = Pn  and the conclusion follows. 

We continue with a difficult classical result that often proves very useful. It 
characterizes the numbers that are quadratic residues modulo all sufficiently 
large prime numbers. Of course, perfect squares are such numbers, but how to 
prove that they are the only ones? Actually, this result has been extensively 
generalized, but all proofs are based on class field theory, a difficult series of 
theorems in algebraic number theory, that are far beyond the scope of this 
elementary book. 

( Suppose that a is a non-square positive integer. Then –
a 

= 
P 

–1 for infinitely many prime numbers p. 

Solution.  One may assume that a is square-free. Let us write a = 2'qi q2 • • • qn, 
where q, are different odd primes and e E {0,1}. Let us assume first that n > 1 
(that is a 2) and consider some odd distinct primes ri, r2, ... , rk, each of 
them different from qi, q2, . . . , qn. We will show that there is a prime p, differ-

ent from r1, r2, ... , rk, such that –
a 

(= –1. Let s be a quadratic non-residue 
P 

modulo qn. 
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Using the Chinese remainder theorem, we can find a positive integer b such 
that 

b-1 (mod ri), 1 < i < k 
b = 1 (mod 8), 
b-1 (mod qi), 1 < i < n 
b s (mod qn). 

Now, write b = /31 • p2 • • • pm, with pi  odd primes, not necessarily distinct. 
Using the quadratic reciprocity law, it follows that 

rn 	

2 ( 

P

2 	 Pi -1 	 6 2-1 1(-1) 8  = (-1) 8  = 1 
i
) = 

 i=i 

and 

nz m (,) 11( 3.)v 5_y. ( pi)  ( 	(b) (b 

qi) 
j=1 

for all i e {1, 2, ... ,n}. Hence 

e 
n m 

(pi) = n (19 )1 rin (g=i19  i=1 	j=1 

= Fr
n  

z 

 

qi ) 	qn 	

( 

) 	qn ) 	'- 1 

(We used the following observations in the above equalities: for any odd num-
bers b1, 	, bm, if b = bib2 • • bm  then the numbers 

bi -1 b2  — 1 

8 	8 

E  bi ;1 	b  —  1 

2 i=1 

i=1 

and 
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are even. We leave to the reader this easy exercise, which can be handled by 
induction for instance.) 

( Thus, there exists i E {1, 2, ... , m} such that —
a 

= —1. Because b -_,- 1 
pi 

(mod rz), 1 < i < k, we also have pi  E {1, 2, ... } \ {ri , r2, ... , rk} and the 
claim is proved. 
The only case left is a = 2. But this is very simple, since it suffices to use 

p 

8 

2 — 1  
Dirichlet's theorem to find infinitely many primes p such that 	 is odd. 

As in other units, we will now focus on some special cases. This time it is 
a problem almost trivial with the above framework but seemingly impossible 
to solve otherwise (we say this because there is a beautiful, but very difficult, 
solution using analytical tools, which we will not present here). 

Example 7. Suppose that al, a2, . . a2004 are nonnegative integers such 
that ay + a2+ • • • + a2004  is a perfect square for all positive in-
tegers n. What is the least number of such integers that must 
equal 0? 

[Gabriel Dospinescu] Mathlinks Contest 

Solution.  Suppose that al, a2, ... , ak are positive integers such that ay.  +a2+ 
• • • +ark' is a perfect square for all n. We will show that k is a perfect square. In 

( order to prove this, we will use the above result and show that —
k 

= 1 for all 
P 

sufficiently large primes p. This is not a difficult task. Indeed, consider a prime 
p, greater than any prime divisor of aia2 ... ak. Using Fermat's little theorem, 
p-1 	p-1 	 p-1 ___ 7 	 p-1 	p-1 	 p-1 • al  + a2  + • • • + ak  = ic (mod p), and since al  + a2  + • • • + ak  is a 

( perfect square, it follows that 
k ) 

 = 1. Thus k is a perfect square. And now 
P 

the problem becomes trivial, since we must find the greatest perfect square 
less than 2004. A quick computation shows that this is 442  = 1936 and so the 
desired minimal number is 68. 
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Here is another nice application of this idea. It is adapted after a problem 
given at the Saint Petersburg Olympiad. Actually, much more is true: Con-
sider f a monic polynomial with integer coefficients, irreducible over Q and 
having degree greater than 1. Then there are infinitely many prime numbers 
p such that f has no root modulo p. For a proof of this result using (the 
difficult) Chebotarev's theorem and an elementary theorem of Jordan, as well 
as for many other aspects of this problem, the reader can consult Serre's beau-
tiful paper On a theorem of Jordan, Bull.A.M.S 40 (2003). 

Suppose that f E Z[X] is a second degree polynomial such 
that for any prime p there is at least one integer n for which 
pl f (n). Prove that f has rational zeros. 

Solution.  Let f (x) = ax2  + bx + c be this polynomial. It suffices to prove that 
b2  — 4ac is a perfect square. This boils down to proving that it is a quadratic 
residue modulo any sufficiently large prime. Pick a prime number p and an 
integer n such that pl f (n). Then 

b2  — 4ac (2an b)2  (mod p) 

and so 
(b2  — 4ac)  

= 1. 

This shows that our claim is true and finishes the solution. 

Some of the properties of Legendre's symbol can also be found in the following 
problem. 

Example 9.] Let p be an odd prime and let 

f (x) = 
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a) Prove that f is divisible by X — 1 but not by (X — 1)2  if 
and only if p 3 (mod 4); 

b) Prove that if p 5 (mod 8) then f is divisible by (X — 1)2  
and not by (X — 1)3. 

[CalM Popescu] Romanian TST 2004 

Solution. The first question is not difficult at all. Observe that 

p-1 

f (1) = 	(
P 
 = 0 

— 
by the simple fact that there are exactly P 2 1 quadratic residues modulo p 

— 
and P 2 1 quadratic non-residues in {1, 2, p — 1}. Also, 

f(i) = (i _ 1) () = Ei  

	

p-1 	. p-1 

i=1 	 i=1 

because f (1) = 0. The same idea of summing up in reversed order allows us 
to write: 

p-1  
Ei 

z  

i) (P i) 
P i=i 	 i=i 

P-1  
p-1  

— 
( 

	 — (-1) 2
p=1. 

 f'(1) 
i=i 

(we used again the fact that f (1) = 0). 
Hence for p 	1 (mod 4) we must also have 1(1) = 0. In this case f is 
divisible by (X — 1)2. On the other hand, if p 3 (mod 4), then 

p-1 

p-1 	. 

f'(1) = 	i 
P 

p-1 

i=1 

P(P — 1)  1 (mod 2) 
2 



p-1 	 p-1  

(2i — 1)2 
(2i — 1)  t (2i — 1) 

i=1 	 i=1 

(mod 8). 
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and so f is divisible by X — 1 but not by (X — 1)2. 
The second question is much more technical, even though it uses the same 
main idea. Observe that 

p-1 	 p-1 	p-1 
f"(1) = E(i2  — 3i + 2) (—) — E i2 (_

i
) — — 

P i=i 	 i=i 	 (P 

z 

(once again we used the fact that f (1) = 0). Observe that the condition p 5 
(mod 8) implies, by a), that f is divisible by (X — 1)2, so actually 

p-1 
f"(1) = 	i2 (:) 

Let us break this sum into two pieces and treat each of them independently. 
We have 

p-i 	 p-1  
2 	 2 2  

	

02 	= 4 C) Ei (_ E(2  
i=1 	 i=1 

Note that 

	

P-1 	P-1  
2 	 2 	 2 	„2 E  i2 (pi  ) >2, i2 =Ei _F 1 (mod 2), 

i=i 	i=i 	i=i 	8  

SO 
p-1  

E(202  (2i) +4 (mod 8) 
i=1 

(actually, using the fact that (-
2
) = (-1), we obtain that its value is 

—4). On the other hand, 
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If we prove that the last quantity is a multiple of 8, then the problem will be 
solved. But note that f (1) = 0 implies 

P-1 	 p-1 

o = E (2i) +.\__, (2i _1) 

i=i P 	 P i=i 	)  

Also, 

(ft 	

(p  — 1 P-1 	 P-2 3 	 2 
2 

r:  — 1 + E 
i=i 	 i=i (13)  — 1  ± Ei=i( 	 

p-3 	 p-1 

+ 	(2i + 1 	
2 (2i — 1) 

P 	 P i=i 	J 	i=i 

Therefore 	(2i  —  1) = 0 and the problem is finally solved. 
P 

There are more than 100 different proofs of the quadratic reciprocity law, 
each of them having a truly beautiful underlying idea. We decided not to 
present the proof using Gauss sums, which is probably the shortest one, as it 
needs some preparations concerning finite fields and their extensions. Instead, 
we present the following proof, which greatly simplifies the approach of V.A. 
Lebesgue. 

Example 10.1 Let p and q be distinct odd primes. Prove that the equation 

x21 x22 ± x32 x42 ± 	xp2 = 

has qP-1  + q
p1  

2  solutions in (Z/qZ)P. Deduce a new proof of 
the quadratic reciprocity law. 

[Wouter Castryck] 
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Solution.  For an odd number n let us define Nn, the number of solutions of 
the equation xi — 4 + x3 — xi + + xn2  = 1 in (Z/qZ)n. By replacing xi  with 
xi + x2 we obtain an equation with the same number of solutions: 

Xj. 	— • • • + Xn2  — 1 = — 2X1X2. 

There exist two kinds of solutions of this last equation: those in which xi 0 
and those in which x1 = 0. The first case is very easy, because for any choice 
of x1 	0 and any choice of x3, ..., xn  there is precisely one x2  such that 
(xi, x2, 	xn) is a solution. Thus the first case gives qn 2 (q  — 1) solutions of 
the equation. The second case is even easier, because the equation reduces to 
the corresponding one for n — 2, so this second case gives qNn_2 new solutions 
(the factor q  comes from the fact that any solution of 

2 
X3 — X4 + • • • Xn

2  -= 

gives q  solutions of 

+ — • • • + Xn2  — 1 = —2X1X2) 

x2 being arbitrary). Therefore 

Nn  = qn-2(q — 1) + On-2 

and an immediate induction shows that .Nn = qn-1  + gn21 . The first part of 
the problem is now clear. 

It is pretty clear that Np  can be written as 

Np= 	(1+ (61-)) • (1+ 	2 )) • • • (1 + 
ai±a2-1-•••-1-ap=1 

because the equation x2  = a has 1 + (P) solutions in Z/pZ by definition of 

Legendre's symbol. On the other hand, imagine that we develop each product 
in the previous sum and collect terms. There will be a contribution of qP-1 
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coming from 1 (because there are qP-1  solutions of the equation al + a2 + • • • + 
ap  = 1) and another contribution coming from the last product, namely 

(  (-1)Y 	E 	(alai • • ap).  

q ai+.••+ap=1 

All other contributions are zero because EX  (P) = 0. Thus 

N = qP-  + 
ai+.••-fap=1 

Now, those p-tuples (al, az, ap) with al + a2 + • • • + ap  = 1 and not all ai  
equal to p-1  can be collected in groups of size p and so, modulo p, the last 

quantity equals 1 + (( 1)q 	(Pq 	P ), which reduces to 1 + (-1)x 2
1.921 

• (2) 

(everything is taken mod p). On the other hand, the explicit value of NP  ob- 

tained in the first part shows that NP  is congruent to 1+ (p1) modulo p. Thus 

the two quantities must be equal modulo p, and since their values are -1 or 1 
they are actually equal, which implies the quadratic reciprocity law. 

Finally, a difficult problem. 

Find all positive integers n such that 2' - 1I3" - 1. 

[J. L. Selfridge] AMM 

Solution.  We will prove that n = 1 is the only solution to the problem. Sup-
pose that n > 1 is a solution. Then 2n  — 1 cannot be a multiple of 3, hence 
n is odd. Therefore, 2' = 8 (mod 12). Because any odd prime different from 
3 is of one of the forms 12k ± 1 or 12k ± 5 and since 2n  — 1 = 7 (mod 12), 
it follows that 2n  — 1 has at least a prime divisor of the form 12k ± 5, call it 

(

p. We must have 
3 

= 1 (since 3n  1 (mod p) and n is odd) and using 
P 

the quadratic reciprocity law, we finally obtain (3) = (-1) 2  . On the other 

((-1)Y)  E 	 
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hand, (12 ) = (—
±2

) = —(±1). Consequently, —(±1) = (-1)Y = +1, which 
3 	3 

is the desired contradiction. Therefore the only solution is n = 1. 
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18.2 Problems for training 

1. Let p = 2 (mod 3) be a prime number Prove that the equation xli).  + 
4 + • • • + 	+ 1 = (xi + x2 + • • 	xn)2  has no integer solutions. 

Laurentiu Panaitopol, Gazeta Matematica 

2. Let xi  = 7 and xn±i = 2xn2  — 1, for n > 1. Prove that 2003 does not 
divide any term of the sequence. 

Valentin Vornicu, Mathlinks Contest 

3. Prove that for any odd prime p, the least positive quadratic non-residue 
modulo p is smaller than 1 + 

4. Prove that the number 3Th + 2 does not have prime divisors of the form 
24k + 13. 

Laurentiu Panaitopol, Gazeta Matematica 

5. Let k = 22n  + 1 for some positive integer n. Prove that k is a prime if 

and only if k is a factor of 3—T- 1  + 1. 

Taiwanese Olympiad 1997 

6. What is the number of solutions to the equation a2  + b2  = 1 in Z/pZ x 
Z/pZ? What about the equation a2  — b2  = 1? 

7. Find all prime numbers q such that 19931(q — 1) 4  + 1. 

Serban Nacu, Gazeta Matematica 
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8. Let p —1 (mod 8) be a prime number and let m, n be positive integers 
such that .VP > 771. Prove that Vfo > + 

Radu Gologan 

9. Let a and b be integers relatively prime to an odd prime p. Prove that 

p-1 	. 
+ bi) — (a 

z=1 

(az
2 

 

10. Let p be a prime of the form 8k + 7. Evaluate the following sum 

	

2 	1 

	

L p 	2] 

 . 

k=1 

Calin Popescu, AMM 

11. Let A be the set of prime numbers dividing at least one of the numbers 
2n2+1  — 3n. Prove that both A and N\ A are infinite. 

Gabriel Dospinescu 

12. Let p be a prime number. Prove that the following statements are equiv-
alent: 

i) there is a positive integer n such that pin2  — n + 3; 

ii) there is a positive integer m such that plm2  — in + 25. 

Polish Olympiad 

13. Let p be a prime of the form 4k + 1. Evaluate 

2kp2]  2  [k,:j 

—1 L 
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14. Suppose that p is an odd prime and that A and B are two different 
non-empty subsets of {1, 2, ... ,p — 1} for which 

i) A U B = {1,2,...,p — 1}; 

ii) If a, b are both in A or both in B, then ab (mod p) E A; 

iii) If a E A, b E B, then ab E B. 

Find all such subsets A and B. 

Indian Olympiad 

15. Let m, n be integers greater than 1 with n odd. Suppose that n is a 
quadratic residue mod p for any sufficiently large prime number p —= —1 
(mod 2'). Prove that n is a perfect square. 

Ron Evans, AMM E 2627 

16. Let a, b, c be positive integers such that b2  — 4ac is not a perfect square. 
Prove that for any n > 1 there are n consecutive positive integers, none 
of which can be written in the form (ax2  + bxy + cy2 )z for some integers 
x, y, z with z > 0. 

Gabriel Dospinescu 

17. Prove that if n is a positive integer such that the equation x3-3xy2d-y3  = 
n has an integer solution (x, y), then it has at least three such solutions. 

IMO 1982 

18. Suppose that for a certain prime p a polynomial with integral coefficients 
f (x) = ax2  + bx + c takes values at 2p —1 consecutive integers which are 
all perfect squares. Prove that plb2  — 4ac. 

IMO Shortlist 
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19. Suppose that 0(57" — 1) = 5' — 1 for a pair (m, n) of positive integers. 
Here 0 is Euler's totient function. Prove that gcd(m, n) > 1. 

Taiwanese TST 

20. Let a and b be positive integers such that a > 1 and a 	b (mod 2). 
Prove that 2a  — 1 is not a divisor of 3b  — 1. 

J.L.Selfridge, AMM E 3012 

+3)n+1  i 21. Let m, n be positive integers such that A = (m 
3m 

	is an integer. Prove 
that A is odd. 

Bulgaria 1998 

22. Prove that the numbers 3n  + 1 have no divisor of the form 12k + 11. 

Fermat 

23. Let p 	—1 (mod 8) be a prime number Prove that there exists an 
integer x such that x2; 2  is the square of an integer. 

24. Let p = 4k +3 be a prime number. Find the number of different residues 
mod p of (x2  + y2)2  where gcd(x,p) = gcd(y,p) = 1. 

Bulgarian TST 2007 

25. Let p be a prime of the form 4k + 1 such that p2 I2P — 2. Prove that the 
greatest prime divisor q of 2P — 1 satisfies the inequality 2q > (6p)P. 

Gabriel Dospinescu 
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26. Find all positive integers a, b, c, d such that a + b d2  = 4abc. 

Vietnamese TST 

27. Let p be a prime number of the form 4k + 1. Prove that 

p-1 
4 	 2 	1 

E [Vip] = P 	12 
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19.1 Theory and examples 

Why are integrals pertinent for solving inequalities? When we say integral, 
we say in fact area which is a measurable concept, a comparable one. That is 
why there are plenty of inequalities which can be solved with integrals, some 
of them with a completely elementary statement. They seem elementary, but 
sometimes finding elementary solutions for them is a real challenge. Instead, 
there are beautiful and short solutions using integrals. The hard part is to 
find the integral that hides behind the elementary form of the inequality (and 
to be honest, the idea of using integrals to solve elementary inequalities is 
practically nonexistent in Olympiad books). Recall some basic properties. 

• For all integrable functions f, g : [a, b] 	R and all real numbers a,13, 

fa b(af(x)+/3g(x))dx = a f f (x)dx + /3 f b g(x) (linearity of integrals). 
a 	 a 

• For all integrable functions f, g : [a, b] --+ R such that f < g we have 

b 
f (x)dx < f g(x)dx (monotonicity for integrals). 

a 

• For all integrable function f : [a, b] 	R we have 

b 
f 2  (X)dX > O. 

Also, the well-known elementary inequalities of Cauchy-Schwarz, Chebyshev, 
Minkowski, Holder, Jensen, and Young have corresponding integral inequal-
ities, which are derived immediately from the algebraic inequalities (indeed, 
one just has to apply the corresponding inequalities for the numbers 

f (a + —k  (b — a)) , g (a + Tik  (b — a)) , . . . where k E {1,2,...,n}  

and to use the fact that 

b 

fa 

fa 
f (x)dx = liM a+ Ti (b — a)) I. 
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It seems at first glance that this is not a very intricate and difficult theory. 
Totally false! We will see how powerful this theory of integration is, and 
especially how hard it is to look beneath the elementary surface of a problem. 
To convince yourself of the strength of the integral, take a look at the following 
beautiful proof of the AM-GM inequality using integrals. This proof was found 
by H. Alzer and published in the American Mathematical Monthly. 

Example 1. Prove that for any al , a2 , 	, an  > 0 we have the inequality 

  

al  + az ' • • + an  > .Va1a2  • • • an. n 

Solution.  Let us suppose that al  < a2  < • • • < an  and let 

+ a2 + • • • + an  
A = 	 , G= 	• an. 

Of course, we can find an index k E {1, 2, ... , n — 1} such that ak < G < ak-o.• 
Then it is immediate to see that 

A 	G  1 	1 	1 n 	raj  1 	1 
— — 1 — 	f 	_ 	dt + —

n j 	Gj 	 t 
z-1 ai 	 i=k+1 

	ldt 

and the last quantity is clearly nonnegative, since each integral is nonnegative. 
Truly wonderful, is not it? This is also confirmed by the following problem, 
an absolute classic whose solution by induction can be a real nightmare. 

rExample 2:1 Let al, at, , an  be real numbers. Prove that 

ctiai 
	 > O. 

= 1 
i+ 

3 = 1 

Polish Mathematical Olympiad 
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Solution. Now we will see how easy this problem is if we manage to handle 
integrals. Note that 

= f aza jti+j-1  dt. 
+ 	o 

We have translated the inequality into the language of integrals. The inequal-
ity 

ajai > 0  

is equivalent to 

E f l  aiajti+j —ldt > 0, 
i,j=i ° 

or, using the linearity of the integrals, to 

n 

E ajai ti+j-1  dt > 0. 
Jo 	i,j=i 

This suggests finding an integrable function f such that 

n 
f 2 (t) 	-a 3-ti+j-1dt. 

i,j=1 

This is not difficult, because the formula 

2 n 

aixi) = E .a-x.x- z 3 	3 a  
i=1 	 i,j=1 

solves the task. We just have to take 

f (x) 

a2.a 

and we are done. 
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We continue the series of direct applications of classical integral inequalities 
with a problem which may also present serious difficulties if not attacked 
appropriately. 

rExample 3. Let t > 0 and define the sequence (x,i )n>i by 

  

1+ t +•••+ tn  
xn =- 	  

n + 1 

Prove that 
X1 < -Vx2 < a x3 < 1 1 < • • • 

[Walther Janous] Crux Mathematicorum 

Solution. It is clear that we have 

t —
1 	t  

1 ,A
f 

undo = xn  = 	 
1 

1 — t jt  
undu 

Using the first of these forms for t> 1 and the second for t < 1 the inequality 
to be proved (clear for t = 1) reduces to the more general inequality 

k 	1 
b 

 fk (X)dX 
< k+1 

b — a a  
1  fb f k±i(x)dx 

b — a a  

for all k > 1 and any nonnegative integrable function f : [a, b] -4 R. And yes, 
this is a consequence of the Power Mean Inequality for integral functions. 

The following problem has a long and quite complicated proof by induction. 
Yet using integrals it becomes trivial. 

lExample 421 Prove that for any positive real numbers x, y and any positive 
integers m, n 

(n — 1)(m — 1)(xm±n ym+n) (M,  n — 1)(xmyn  + xThym) 

> mn(xm+n- ly  ym+n—lx). 
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Solution. We transform the inequality as follows: 

+n-1 	m+n- 	 ym)(xn yn) <=> mn(x — y)(xrn 
— Y 	1) > (m + n — 1)(xm — 

xm+n-1 
Y

m+n-1 xm ym xn yn 

(m + n — 1)(x — y) > m(x — y) n(x — y) 

(we have assumed that x > y). The last relations can immediately be trans-
lated with integrals in the form 

x 

(x — y) f tm+n-2  dt ? f _ 	tm-1  dt f to-1  dt. 

And this follows from the integral form of Chebyshev inequality. 

A nice blending of the arithmetic and geometric inequalities as well as integral 
calculus allows us to give a beautiful short proof of the following inequality. 

Example 5.1 Let xi, x2, .. , xk be positive real numbers with xix2 • • • xn  < 1 
and m, n positive real numbers such that n < km. Prove that 

	

m(x7 + x2 + • • • + 	— k) > n(xl 7141  . . . xikn — 1). 

IMO Shortlist 1985 

Solution. Applying the AM-GM inequality, we find that 

m(x7 + + Xrki — k) > m(k V (xlx2 xk)n — k). 

	

P = ,c/xi x2 	< 1. 

mkPn — mk > nPrnk  — n, 

which is the same as 

Let 

We have to prove that 

Pn -1 Pmk -1  
n — mk 
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This follows immediately from the fact that 

Ps — 1 p 
xln P 	

xtdt 
 

is decreasing as a function of positive x (for P < 1). 

We have seen a rapid but difficult proof for the following problem, using the 
Cauchy-Schwarz inequality. Well, the problem originated by playing around 
with integral inequalities, and the following solution will show how one can 
create difficult problems starting from trivial ones. 

Prove that for any positive real numbers a, b, c such that a + 
b + c = 1 we have 

(ab + bc + ca) 	 
(1)2  + b

+ 
 c2  + c

+ 
 a2  + a) 

>
4 

[Gabriel Dospinescu] 

Solution.  As in the previous problem, the most important aspect is to trans-

late the expressionb2 + 
b 

+ 
c2  + c 

+ a
2 
 + a in the integral language. Fortu-

nately, this isn't difficult, since it is just 

a  

Jo  (x + b)2  (x + c)2  (x + a)2 ) 

Now, using the Cauchy-Schwarz inequality, we infer that (do not forget about 
a + b + c = 1): 

a 	b 	c 	ab c 
(x+b)2+  (x+c)2+  (x+a)2—x+b + 

	+ 
x+c x+a 

	

Using the same inequality again, we compare 	
a 
 + 	

b 	c 
+ 	 with 

x+b x+c a+x 
1 

x + ab + be + ca
. Consequently, 

 

a 	b 	c 	 1 
	+ 	+ 	> 	  
(x + b)2  (x + c)2  (x + a)2  — (x + ab + be + ca)2  ' 

dx. 

) 2  
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and we can integrate this to find that 

a 	b 	c 	 1 

b2  + b 
+ 

c2  + c a2  + a 	(ab bc ca)(ab bc ca + 1) •  

Now, all we have to do is to notice that 

ab be + ca + 1 < 
4 
— 

— 3 

It seems a difficult challenge to find and prove a generalization of this inequality 
to n variables. 

There is an important similarity between the following problem and example 
2, yet here it is much more difficult to see the relation with integral calculus. 

Example 771 Let n > 2 and let S be the set of all sequences (al, a2, . , an) C 

[0, 00) which satisfy 

n 
1 — 

aia >0. 
• i + j — 

n n ,± i  a  E  
Find the maximum value of the expression E 	+ over 

i=1 j=1 

all sequences from S. 

[Gabriel Dospinescu] 

Solution. Consider the function f : R R, f (x) = al + azx + • • • + a x 
Let us observe that 

n n E, 	 E  
ai 

j 
i=1 j=1 i 
	

i=1 n  

a  • 	 1 ) 
f (x)dx 

+ ° 
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1 
= I 	f (x) E aixz-1) dx = f x f 2  (x)dx. 

1 
So, if we denote M = E i+j , we infer (using the hypothesis) that 

1<i,j<n 

fl 

x f 2(x)dx < M. 

On the other hand, we have the identity 

n n 
x--. x--■ ai +

a3 
	9 

 al + ..4- 	
j_ 	

± 
an 	al + 

	
+ an 

i-1- j 	' 2 	n + 1 1 	n+1 1 	2n 
i=1 j=1 

=2 I (x + x2  + • • • + xn) f (x)dx. 

Now, the problem becomes easy, since we must find the maximal value of 

1 2 J (x + x2  + • • • + xn)f(x)dx 
0 

where 

f
1 

o x f 2(x)dx < M. 

The Cauchy-Schwarz inequality for integrals is the way to go: 

fo1  
( + X2  ± • • • ± xn)f(x)dx 

= 

 (

1    	2 

fVXf 2(X) VX(1 ± X ± • • • ± Xn-1)2dX) 

= I xf 2(x)dx f (1 + x + • • • +xn-1)2dx < M2. 
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n n ai  + a 
This shows that 	i± 	 < 2M and now the conclusion easily follows: 

i=1 j=1 

the maximal value is 2 E 	1
2+j

, attained for ai = a2 = • • • = an  = 1. 
1<i,j<n 

We already said that grouping terms was a mathematical crime. It is time 
to say it again. We present a new method of solving inequalities involving 
fractions. The next examples show that bunching could be a great pain. 

[Example 8.1 Let a, b, c be positive real numbers. Prove that 

1 	1 	1 	3 	1 	1 	1 
+ + + 	 

3a 3b 3c a+b+c -  2a+b 2b+a 2b+c 

1 	1 	1 
+

2c+b 2c+a 2a+c 

[Gabriel Dospinescu] 

Solution. Of course, the reader has noticed that this is stronger than Popovi-
ciu's inequality, so it seems that classical methods will have no chance. And 
what if we say that this is Schur's inequality revisited? Indeed, let us write 
Schur's inequality in the form: 

X3 + y3 + Z3 3xyz > x2y +y2  x+y2  z+z2y + z2x + x2  z 

where x = ta" —  y = tb- A , z = tc-1 and integrate the inequality as t ranges 
between 0 and 1. And surprise... since what we get is exactly the desired 
inequality. 

In the same category, here is another application of this idea. 

Prove that for any positive real numbers a, b, c the following 
inequality holds: 

1 	1 	1 	(  1 	1 	1 
———+2 
3a

+ 
 3b

+ 
 3c 	2a + b

+ 
2b+c 2c+a 
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1 	1 	1 
> 3 	 

(a+2b
+ 

b+2c
+ 

c+2a) .  

[Gabriel Dospinescu] 

Solution. If the previous problem could be solved using bunching (or not? 
anyway, we haven't tried), this one is surely impossible to solve in this manner. 
With the experience from the previous problem, we see that the problem asks 
us in fact to prove that 

x3 + y3 + z3 2(x2y y2z z2x) > 3(xy2 yz2 zx2) 

for any positive real numbers x, y, z. 
Let us assume that x = min(x, y, z) and write y = x m, z = x n for some 
nonnegative real numbers m, n. Simple computations show that the inequality 
is equivalent to 

2x(m2  — mn + n2) + (n — m)3  + m3  > (n — m)m2. 

Therefore, it suffices to prove that 

(n — m)3  + M3  > (n — m)m2 , 

n — m ), 

At the start of this topic we said that there is a deep relation between integrals 
and areas, but in the sequel we seemed to neglect the last concept. We ask the 
reader to accept our apologies and bring to their attention two mathematical 
gems, in which they will surely have the occasion to play around with areas. 
If only this was easy to see... In fact, these problems are discrete forms of 
Young and Steffensen inequalities for integrals. 

[Example 10. Let al > a2 > • • • > an±i = 0 and let b1, b2, . , bn  E [0,1]. 
Prove that if 

k 
 =[

Eb2+1, 
i=i 

which is the same as t3  +1 > t for all t> —1 (via the substitution t = 
m 

which is immediate. 
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then 

aibi < E a 
i=1 
	i=1 

St. Petersburg Olympiad, 1996 

Solution.  The very experienced reader will have already seen a resemblance 
to Steffensen's inequality: for any continuous functions f , g : [a, b] R such 
that f is decreasing and 0 < g < 1 we have 

fa 
a+k 

f (x)dx > f b f(x)g(x)dx, 

where 

k = 	g(x)dx. 
a 

So, probably an argument using areas (this is how we avoid integrals and argue 
with their discrete forms, areas!!!) could lead to a neat solution. Let us con- 
sider a coordinate system XOY and let us draw the rectangles R1, R2, . • • , Rn 

such that the vertices of Ri are the points (i — 1,0), (i, 0), (i — 1, 	(i, ai) 
(we need n rectangles of heights al, a2, 	, an, and horizontal sides 1, so as to 

view 	ai  as a sum of areas) and the rectangles Si, S2, . , Sn, where the ver- 
i=1 

i—i 
tices of Si  are the points ( 

j=i 
b3, 0) , bi, ai) , (E bi, ai) 

j=1 

(where = 0). We have made this choice because we need two sets 
j=1 

of pairwise disjoint rectangles with the same heights and areas al, a2, • , an 
and albs, a2b2, ••• anbn  respectively, so that we can compare the areas of the 
unions of the rectangles in the two sets. Thus, we have to show that the set 
of rectangles Si , 82, Sn  can be covered by the rectangles R1, R2, • • • Rk+1. 

This is quite obvious, by drawing a picture, but let us make it rigorous. Since 
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the width of the union of 81, 	, Sn  is E b, < k + 1 (and the width of 
3=1 

R1, R2, 	, Rk+i is k+1), it is enough to prove this for any horizontal line. But 
if we consider a horizontal line y = p and an index r such that ar  > p > ar+1, 
then the corresponding width for the set R1, R2, • • , Rk+1 is p, which is at least 
b1 + b2  + • • • + bp, the width for Si, 82, , Sn. And the problem is solved. And 
now the second problem, given this time in a Balkan Mathematical Olympiad. 

Example 11.1 Let (xn)n>0 be an increasing sequence of nonnegative integers 
such that for all k E N the number of indices i E N for which 
xi  < k is yk < Do. Prove that for all m, n E N, 

n 

j=0 

y3  > (m + 1)(n + 1). 

Balkan Mathematical Olympiad 1999 

Solution.  Again, the experienced reader will see immediately a similarity with 
Young's inequality: for any strictly increasing one-to-one map f : [0, A] 
[0, B] and any a E (0, A), b E (0, B) we have the inequality 

1. 
a 

f (x)dx + f f -1(x)dx ab. 

Indeed, it suffices to take the given sequence (xn)n>0 as the one-to-one in- 
creasing function in Young's inequality and the sequence (Yn)Th>0  as the in- 

	

m 	 m 

verse of f . Just view 	x, and 	y3  as the corresponding integrals, and 

	

z=0 	3=o 
the similarity will be obvious. Thus, probably a geometrical solution is hiding 
behind some rectangles again. Indeed, consider the vertical rectangles with 
width 1 and heights xo, xi, , xin  and the rectangles with width 1 and heights 

yo, Yi, • • • , yn. Then in a similar way one can prove that the set of these rect-
angles covers the rectangle of sides m + 1 and n + 1. Thus the sum of their 
areas is at least the area of this rectangle. 
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It will be difficult to solve the following problems using integrals, since the 
idea is very well hidden. Yet there is such a solution, and it is more than 
beautiful. 

Prove that for any al, a2, . , an  and b1, b2, . , bn  > 0 the 
following inequality holds 

Poland, 1999 

Solution. Let us define the functions fi , g, : [0, oo) 	R, 

t E 	, 	, 
fi(x)  = 

r 	[0 ad 
0, t > ai 

Also, let us define 

and gi (x) = 
1, x E [0, bib 
0, x > bi. 

n 

f (x) = 	fi(x), g(x) = 

	

i=1 
	

i=1 

co 
Now, let us compute I f (x)g(x)dx. We see that 

	

fp ' 
f (x)g(x)dx = 	i<,j<nEi fi(x)gi  (x)) dx 

0 

— 
 E

foo 

fi(x)gi(x)dx = 
1<i,j<n ° 

A similar computation shows that 

<i,j <n 

min(ai, bi). 

00 

f 2  (x)dx = E min(ai, 
<i,j<n 
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and cc 
g2(x)dx = E min(bi, bj). 

1<i,j<n 

Since 

focc  f2(x)dx + J g2  (x)dx = foc‹)  ( f 2  (x) + g2  (x))dx > 2 foc- f (x)g(x)dx, 

we find that 

i min(ai, ai) + > min(bi, bi) > 2 	min(ai, kJ ). 
1<i,j<n 	 1<i,j<n 	 1<i,j<n 

Now, remember that 2 min(x, y) = x + y — Ix — yl and the last inequality 
becomes 

lai ail + E Ibi — bjI < 2 E iai — bjl 
1<i,j<n 	 1<i,j<n 	 1<i,j<n 

and since 

1<i,j<n 

the problem is solved. 

ai —a3I=2 	— 
1<i<j<n 

Using the same idea, here is a difficult problem, whose elementary solution is 
awful and which has a three-line solution. Of course, this is easy to find for 
the author of the problem, but in a contest things change! 

Example 13. Let al, a2, 	, an  > 0 and let x1, x2, 	, xn  be real numbers 
such that 

E aixi = 0. 
i=i 

a) Prove that the inequality 	xixilai — aj  < 0 holds; 
1<i<j<n 



THEORY AND EXAMPLES 441 

b) Prove that we have equality in the above inequality if 
and only if there exist a partition A1, A2, 	, Ak of the set 
{1,2, 	, n} such that for all i E {1,2, ... , k} we have 

E x, = 0 and ail  = a32  if j1, j2 E 

jEA. 

[Gabriel Dospinescu] Mathlinks Contest 

Solution.  Let AA be the characteristic function of an arbitrary set A. Let us 
consider the function 

n 

f : [0 , co) —> R, 

Now, let us compute 

f 2  (x)dx = x x Lc()  A[0,a21(x)A[0,a,j(x)dx 
1<i,j<n 

 

>2,  xixj min(ai, aj)• 
1<i,j<n 

xix j  min(ai, aj) > 0. 
1<i,j<n 

min(ai aj) = 	
+ aj — ai  — aj  I 

,  
2 

and 

1<z,j<n 

we conclude that 

xixj(ai + aj) -= 
n 	n 

ai  xi  = 0, 

xixi I ai — ai I <0. 
1<i<j<n 

xi [0,ad • 
i=1 

Then 

Since 
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Let us suppose that we have equality. We find that 

f oo 

f 2  (x)dx = 0 

and so f (x) = 0 almost anywhere. Now, let b1, b2, 	, bk the distinct numbers 
that appear among al, a2, 	, an  > 0 and let Ai  = 	E {1, 2, 	, 	a3  = 
Then A1, A2, 	, Ak is a partition of the set {1, 2, 	, n} and we also have 

( 

E x3) A[0,bi] = 0 
z=1  JEAi  

almost anywhere, from which we easily conclude that 

E x3  = 0 for alli E {1,2,...,k}.  
zeit, 

The conclusion follows. 

Because we have proved the nice inequality 

xi xi min(ai, a3 ) > 0 
1<i,j<n 

for all x1, x2, 	, xn, al, a2, 	, an  > 0 let us take a further step and give the 
magnificent proof found by Ravi Boppana for one of the most difficult inequal-
ities ever given in a contest. The solution is based on the above result. 

Example 14. Prove the following inequality 

  

k 

min(ajai, bibi) < 
i<i,j<n 	 1<i,j<n 

min(ai b3, 
i) 

for all nonnegative real numbers al , 	, an  and b1, .. • , bn• 

[G. Zbaganu] USAMO 1999 
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max(ai, bi) 
Solution. Let us define the numbers ri  = 	 1 and xi = sgn(ai  — bi ) 

min(ai, bi) 
(if, by any chance, one of ai , bi = 0, we can simply put ri = 0). The crucial 
observation is the following identity: 

min ( a, b3 , a3  bz) — min ( a, ai  , bib3 ) = xi x3  min (ri , r3 ). 

Proving this relation can be achieved by distinguishing four cases, but let us 
observe that actually we may assume that a, > b, and a3  > b3 , which leaves us 
with only two cases. The first one is when at least one of the two inequalities 
a, > bi  and a3  > b3  becomes an equality. This case is trivial, so let us assume 
the contrary. Then 

xi x j  min(ri, ri) = bibi  min (—
bi 	bi 

1  a 	
1 = bibi min c-12- a=7 	1 

' b3 
ai  

= min(aibi, aibi) — bi bj  = min(aib3, bi) — min(aia , bibi). 

Now, we can write 

min(aib3, 
1<i,j<n 

the last inequality being the main ingredient of the preceding problem. 

Finally, a problem, which is a consequence of this last hard inequality. Con- 
sider this a hint and try to solve it, since otherwise the problem is really hard. 

Example 15. I Let xi, x2, 	, xn  be some positive real numbers such that 

— XiXil = 

1<i,j<n 

Prove that 	x = n. 
i=1 

Ixi — xil. 
<i,j<n 

min(aia3, 	= E xix j  min(ri , rj) > 0, 
i<i,j<n 	 i,j 

[Gabriel Dospinescu] 
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Solution.  Consider bi  = 1 in the inequality from example 14. We obtain: 

min(xi, xj) > E min(1, xixi). 
1<i,j<n 	 1<i,j<n 

u+ v — lu—v1 
Now, use the formula min(u,v) = 	

2 	
and rewrite the above in- 

equality in the form 

2 

2n E xi  — E xi  - 	n2  + 	xi — E - xixi i. 
i=1 	1<i,j<n 	 i=1 	1<i,j<n 

Taking into account that 

E - xixi i = 
1<i,j<n 

we obtain 

1<i,j<n 

Xi - Xi , 

2n xi > n2  + n  
i=1 
	 i=1 

which can be rewritten as (En  X — n)2  < 0 Therefore Ein=i  Xi  = n. 

) 2  
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19.2 Problems for training 

1. Let a, b, n be positive integers with a < b. Prove that 

	

In   +• • + — 
(bn, +1 	1 	1 	1 

< In —
a

. 
an + 1) an + 1 an +2 2 	bn  

2. Prove that for any a > 0 and any positive integer n the inequality 

(n + 1)a±1  — 1 la ± 2a ± 	na < 

holds. Also, for a E (-1, 0) we have the reversed inequality. 

3. Prove that for any real number x 

2k-1 n E x2k  (n + 1) x 	. 
k=0 	 k=1 

Harris Kwong, College Math. Journal 

4. For any positive real number x and all positive integers n we have: 

(271) Con) (21n) (22n) 
2n,)  

x 	
I  + 	 . 

x +1 x + 2 	x + 2n> 0  

Kornai 

5. Let n E N, xo = 0, xi  > 0(i = 1,2, ..., n), 	xi  = 1. Prove that1 

n 

E 	+ xo  + x1 + • • • 

xi  

 + 	+ • • • ± xn i=, 

a + 1 

< 

China 1996 
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6. Let f be a continuous and monotonically increasing function f : [0,1] 
R such that f (0) = 0 and f (1) = 1. Prove that 

9 10 f ()± \-, f 1()<  99 
— 10 .  

k=1 k=1 

St. Petersburg 1991 

7. Prove that the function f : [0,1) —+ R defined by 

f(x)=log2(1—x)+x+x2 -Ex4 +x8 +"• 

is bounded. 

8. Let 0 = x1 < 	< X2n+1 = 1 be some real numbers. Prove that if 
xj+1  — xi  < h for all 1 < i < 2n then 

	

1 — h 	
2n
, 	1 

2  
+ h 

2 
	< Ex2i(x2i+i x2i_i) < 	• 

i=1 

Turkish TST 1996 

9. Prove that for any real numbers al, a2, .. • , an 

n 	2 

i+ j_iaja3  > 
ij 

 

i) • 
i,3=1 	 i=1 

10. Let k E N, al, a2, 	, 	E R with ar,H_i = al. Prove that 

k-1 

k-  j-1  
n

k 
a a — 	k-2 (E al) 

	

1<i<n 	 i=1 
1<j<k 

Hassan A. Shah Ali, Crux Mathematicorum 
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11. Prove that for any positive real numbers a, b, c such that a + b + c = 1 
we have: 

a 	 1  
(1+ 	(1+-1)c (1+) >1+ 

a 	b 	c 	ab+bc+ca 

Marius and Sorin Radulescu 

12. Prove that we can find a constant c such that for any x > 1 and any 
positive integer n we have 

n 	
kx 	1 

	

(k 2  + x)2 	2 
k=1 

IMC 1996 

13. Prove that for all al, a2, .. • , an, b1, b2, • • • , bn  > 0 the inequality holds 

(

E min(ai, ai)) ( E min(bi, bi)) > ( E min(ai, bi)) . 
1< i,j<n 	 1<i,j<n 	 1<i,j<n 

Don Zagier 

14. Consider vectors al, a2, 	an  and b1, b2, 	bm  in 
line through the origin, let the projection of the 
A1, A2, ..., An  and B1, B2, ..., Bm. Suppose that 

the plane, and for every 
vectors onto the line be 
we always have 

IAII + IA21+ • • • + lAn1 	+ IB21+ • • • + 

Prove that 

fall + la21+ •-• 	 + 1b21+ • 	+ 

Here, Ivi is the length of the vector v. 

< 
x 
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15. Prove that for any x1 > x2 > • • • > xn  > 0 we have 

22 
Xi+1 ± • • • + Xn  

< 7r E xi. 
i=i 

Adapted after an IMC 2000 problem 

16. Let co be Euler's totient function, with cp(1) = 1. Prove that 

1 	(p(k) 	k  
1 — — < E 	ln 

2n 	2k2 
	

<1. 
 

k=1 

Gabriel Dospinescu 

17. Let ri,r2, 	, rn  be some positive numbers which add up to 1 and 
x1, x2, 	, xn  some positive real numbers. Also let 

A = E rixi  and G = H xi  
i=i 

a) Let us denote 

tdt  
I (x, a) = focc  (1  t)(x  at)2  

Prove that 

ri(xi  — A)2 / (xi, A), 
i=1 

and hence deduce the arithmetic-geometric inequality. 

b) Suppose that xi  < 2 and define A', G' to be the corresponding means 
for 1 — xi. Prove that 4 > §. 

n 

In 

Oral Examination ENS 
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18. Prove that for any positive real numbers xi, x2, 	,x,, such that 

n
1  

E1 + x, 2 

we have the inequality 

1<i,j<n 

1 	n2  
	 > 
x, + x3 	2 

Gabriel Dospinescu 

19. Let xi, x2, 	xn  and yi , y2, ..., yr, be positive real numbers such that for 
all positive t there are at most c  pairs (i, j) satisfying x, + y3  > t. Prove 
that 

(xi + X2 + • • • + xn) (Y1 + Y2 + • • • + yn) < max (x, + Yi)• 
1<i,j<n 

Gabriel Dospinescu 

20. Let al, a2, ..., an  be positive real numbers and let S = al + a2 + • • • + an 
be their sum. Prove that 

— • 	
1 	n(n — 2) 

+ 	> 	
1 1 

n i_i 
E 

a, 	S 	S + a, — ai 
i.i 

Gabriel Dospinescu 

21. Let m, n be positive integers and let x j,3  E [0, 1] for i = 1,2, ...., m and 

j = 1,2,....,n. 

Prove that 
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22. Find the best constant k such that for any n and any nonnegative real 
numbers xi, ...xn  we have 

(x1 + 2x2 + • • • + nxn)(x? + • • • + xn2 ) > k(xi + • • +xn)3. 

23. Prove that for any a1, a2, 	, an  > 0 we have the following inequality 

a•a • 3  < 

1<i,j <n 
i + 

2 
i • 

i=1 

 

Hilbert's inequality 

24. Prove that for any real numbers x1,...,xn  we have 

72 •(4+4+• • •+xn2 )(xi+44+94+• • •+n2xn2 ) > (xi +x2+• • •+xn)4. 

Carleson's inequality 

25. Prove that for any real numbers al , a2 , ..., an  we have: 

ai  • ai 	> 0.  
1 	— — 







THEORY AND EXAMPLES 453 

20.1 Theory and examples 

It is very difficult to imagine a completely trivial mathematical statement 
which has absolutely nontrivial applications. And if there is such a candidate, 
then surely the pigeonhole principle will be the winner: what could be easier 
than the observation that if we put more than n objects in n boxes, there will 
be a box containing at least two objects? Yet, this observation, combined with 
some trivial variations, turn out to be a completely revolutionary idea in math-
ematics. Quantitative results such as Siegel's lemma, or the fact that the class 
group of a number field is finite, are fundamental results in number theory, 
and are all consequences of this principle. There is also an enormous quantity 
of difficult Ramsey-type (and other) results in combinatorics, all based on this 
little observation. The purpose of this chapter is to present some of these 
applications of the pigeonhole principle, most of them elementary. 

Let us begin with some combinatorial statements in which the use of the pi-
geonhole principle is more or less clear. But the reader must pay attention, 
because what is easy to state is not necessarily easy to write! This is why even 
the easiest problems of this chapter will have some subtle parts, and the reader 
should not expect straightforward applications of the pigeonhole principle. 

Example 1. Let A1, A2, ..., A50 subsets of a finite set A such that any subset 
has more than half of the number of elements of A. Prove that 
there exists a subset of A with at most 5 elements that has 
nonempty intersection with each of the 50 subsets. 

Great Britain 1976 

Solution.  Let A = {al, a2, an} and define f (i) to be the number the subsets 
among A1, A2, ..., A50 that contain a2. Then clearly 

f(1) + f(2) + • • • + f(n) = 1A1 + 1A21 + • • + IA501 > 25n. 

Thus there exists an i such that f (i) > 26, which implies the existence of an ax  
in at least 26 subsets, let them be A25, A26, ..., A50. Working with the remain- 
ing 24 subsets only and using the same argument we deduce the existence of 
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an element ay  which belongs to at least 13 subsets among A1, A2, ..., A24, let 
them be Al2, A13, ..., A24. Similarly, there exists a, which belongs to at least 6 
subsets among A1, ..., A11, let them be A6, A7, ..., A11 and if we continue this 
process we define similarly at, and ay. It is clear that the set of ax, ay, az, a„, a, 
satisfies all conditions of the problem. 

The strange statement of the following problem should not mislead the reader: 
after all, we have said that all problems of this chapter are based on the 
pigeonhole principle, but we haven't said where this idea hides. After reading 
the solution, the reader will surely say: but it was obvious! Yes, it is obvious, 
but only if we proceed correctly... 

Example 2. Let A = {1, ..., 100} and let A1, A2, ..., A, be subsets of A, each 
with 4 elements, any two of them having at most 2 elements in 
common. Prove that if 171 > 40425 then there exist 49 subsets 
among the chosen ones such that their union is A, but the 
union of any 48 subsets (among the 49) is not A. 

  

[Gabriel Dospinescu] 

Solution. Let us consider the collection of all two-element subsets of each 
A1, A2, ..., A,. We obtain a collection of 6m two-element subsets of A. But 
the number of distinct subsets of cardinal 2 in A is 4950. Thus, by the pigeon-
hole principle, there exist distinct elements x, y E A which belong to at least 
49 subsets. Let these subsets be A1, A2, ..., A49. Then the conditions of the 
problem imply that the union of these subsets has 2 + 49 x 2 = 100 elements, 
so the union is A. However, the union of any 48 subsets among these 49 has 
at most 2 + 2 x 48 = 98 elements, so it is different of A. 

The following example is, in a certain sense, typical for problems involving 
estimations of trigonometric sums. Its presence as the last problem in an in-
ternational contest for undergraduate students shows that it is more difficult 
than it looks, even though the solution is again a pure application of the pi-
geonhole principle. 
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rExample 3.; Let A be a subset of Zn  with at most 11 771  elements. Prove that 

	

there exists a nonzero integer r such that > e 
zn ST> 	. 

sEA 

IMC 1999 

(e a;•—,7 a l 	e 	ak t Solution.  Let A = {al, a2, ak} and define g(t) -= ) 

for 0 < t < n — 1. If we divide the unit circle into 6 equal arcs then 
these k-tuples are divided into 6k  classes. Because n > 6k, there are two 
k-tuples in the same class, that is there exist t1 < t2 such that g(ti) and 
g(t2) are in the same class. Observe now that if we consider r = t2 — ti then 

Re (e cos 
(27ra, t2—ti) )  

> cos (L). Therefore If(r)1 > Re(f(r)) > IAI  3 	 — 2 

and the problem is solved. 

Sometimes, even the completely obvious observation that an infinite sequence 
taking only a finite number of values must have (at least) two equal terms (ac-
tually, an infinite constant subsequence) can be really useful. This is shown by 
the following extension of a difficult problem given in a Romanian TST in 1996: 

Example 4.1 Let xi, x2, ..., xk be real numbers such that A = {cos(n7rxi) + 
cos(n7rx2) + • • • + cos(n7rxk)In E N*} is finite. Prove that x, 
are all rational numbers. 

[Vasile Pop] 

Solution.  The beautiful idea is that if the sequence an  = cos(n7rxi)+cos(n7rx2)+ 
• • • + cos(n7rxk) takes a finite number of distinct values, then so does the se-
quence in Rk defined by un  = (an, a2n, akn). Thus there exist m < n such 
that an  = am, a2n = a2m, akn = akm. Let us analyze these relations more 
closely. We know that cos(nx) is a polynomial of degree n with integer coef-
ficients in cos(x). If A, = cos(n7rx,) and B2 = cos(m7rx,) then the previous 
relations combined with this observation, show that Al + AZ  + • • • + 24.3k  = 

Bi + B2 + • • • + Bz for all j = 1,2, . . . , k. Using Newton's formula, we deduce 
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that the polynomials having zeros A1, A2 , ..., Ak and B1, B2, ..., Bk are equal. 
Thus there exists a permutation a of 1,2, ..., n such that Ai, = Bo.(i). Thus 
cos(n7rxi) = cos(m7rx,(,) ), which means that nxi —mx,(,) is a rational number 
for all i. This easily implies that all xi, are rational numbers. 

The same idea can be used with success when dealing with remainders of re-
cursive sequences modulo certain positive integers. This kind of problem has 
become quite classical, being present in lots of mathematical competitions . 

Consider the sequence (an)n>1 defined by al = a2 = a3 = 1 
and an+3 = an+lan,+2 + an. Prove that any positive integer 
has a multiple which is a term of this sequence. 

[Titu Andreescu, Dorel Mihet] Revista Matematica Timi§oara 

Solution. Consider a positive integer N and let the first term of the extended 
sequence to be a0 = 0. Now, look at the sequence of triples (an, an+1, an+2) re-
duced mod N. This sequence takes at most N3  distinct values because there 
are N possible remainders mod N. Thus we can find two positive integers 
i < j such that a, = a3  (mod N), ai+1  a3+1 (mod N) and (4+2 = a3+2 
(mod N). Using the recursive relation, we deduce that the sequence becomes 
periodic mod N with period j — i. Indeed, it follows immediately from the 
recursive relation that ak ak.+3_, (mod N) for all k > i, and using the fact 
that an  = an,±3 — an±lan+2  we can proceed backwards with an inductive argu-
ment to prove that ak ak±i_, (mod N) for all k < i. In particular, it follows 
that ai_i  is a multiple of N, so N divides at least one term of the sequence. 

A classical application of the pigeonhole principle is to prove that for any col-
oring of the lattice points in a plane with a finite number of colors, there are 
rectangles having all vertices of the same color. We advise the reader who does 
not know this problem to solve it first and then to proceed to the following 
similar problem. 
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I Example 6. i Let m, n be positive integers and let A be a set of lattice points 
in the plane such that any open disc of radius m contains at 
least one point of A. Prove that no matter how we color the 
points in A with n colors there exist four points of the same 
color in A which are vertices of a rectangle. 

Romanian TST 1996 

Solution.  Consider first a huge square of side-length a (to be determined 
later) and having sides parallel to the coordinate axes. Divide it into smaller 
squares of side-length 2m and inscribe a circle in each such smaller square. 

We find at least [4a;2 ] circles of radius m inside this huge square, and thus at 

least as many points of A. But these points lie on a — 1 vertical lines. By the 
pigeonhole principle, there exists a vertical line containing at least n +1 points 
of A if a is suitably chosen (for instance, any multiple of 4nm2). Again by the 
pigeonhole principle, two of these points have the same color. This shows that 
in any such huge square there exists a vertical line and two points on it that 
have the same color. Because there are finitely many positions of these pairs 
of points on a segment of finite length and because we can put infinitely many 
huge squares consecutively on the Ox axis, there will be two squares in which 
the points of the same color and on the same vertical line have identical posi-
tions and same color. These points will determine a monochromatic rectangle. 

It is time to consider some more involved problems in which the use of the 
pigeonhole principle is far from obvious. Several articles in the American 
Mathematical Monthly were dedicated to the following problem, which shows 
that it is not surprising that only a few students solved it when it was pro-
posed for the Putnam Competition (in a weaker form than the example below): 

Example 7. Let Sa  be the set of numbers of the form Lna _I for some positive 
integer n. Prove that if a, b, c are positive real numbers, then 
the three sets Sa, Sb, Sa  cannot be pairwise disjoint. 
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Solution.  Let us pick an integer N and consider the triples ({ "c1:,} , 	, { }) 
for i = 0,1, ..., N3. These points lie in the unit cube [0,1]3  so by the pigeon- 
hole principle there are two points lying in a cube of side-length N , that is 

there exist i > j such that for some integers m, n, p we have — 'a < a 

  

N' b 
 —

n < 	 N. This can be written as Ii — j — mal < 1 

1, I i — j — nbl < 1 and Ii — j — pcI < 1. Therefore all numbers [ma], [nb_1, 
are equal to i — j or i — j — 1, which shows that some two of them are equal, 
and so two of the sets Sa, Sb, Sc  intersect. 

We continue with a very beautiful problem from an Iranian Olympiad, where 
there are some traps in applying the pigeonhole principle. 

Example 8. Let m be a positive integer and n = 2m+1. Consider fi ,  f2, f n  
[0, 1] 	[0, 1] to be increasing functions such that f,(0) = 0 and 

fi (x) — fi (y)I < — yl for all 1 i < n and all x, y E [0,1]. 
Prove that there exist 1 < i < j < n such that Ifi (x)— f3  (x) < 

m+ 1 1  for all x E [0, IT 

 

Iran 2001 

Solution.  This time, everything is clear: the solution of this problem should 
use the pigeonhole principle. But how? Looking at the graph of such functions, 
we observe that the points of a regular subdivision of [0,1] play a special role 
in their behavior. Therefore, let us concentrate more on these points, so let us 
associate to each function fi  an (m + 1)-tuple (al 	a2 (i), ..., arn+1 (i)), where 
ai(i) is the smallest integer k such that fi(±m 	e [7:+1, t'1].  In this way, 
we can control the behavior of the function f, very well at all points of the 

regular distribution (0, 77,1+1 , m+1, ..., 1). Because A is increasing, it is clear 

that ai±i(i) > ai(i). Also, the inequality A (ni  ++11) A (741 ) 5_ ni1+1  assures 

us that a3+1(i) < a3  (i) + 1. Furthermore, note that 

1 	 1 
0<f,(m+1)=f,(

m+1
)f 	

1  
,(0)<m + 1, 
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so al  (i) = 0 for all i. Therefore there are at most 2' such sequences that can 
be associated with 11, 12, ..., fn. By the pigeonhole principle, two functions 
fi, fi  with i < j must be associated with the same (m + 1)-tuple. This shows 
that we can find some integers tic', bn.,±1 and two indices i < j such that 
fi(mk+1 ) and fi( mk+i ) are both in [nib14_1, Mn 	for all k = 0, 1, m + 1. 

Now we are almost done, because we have found our candidates i, j. What 
remains to be verified is straightforward. Indeed, consider x E [0, 1] and k an 

[mk±i 7  :‘,++11.1.  integer to be such that x E 	 j We know that 0 < bk+1 — bk < 1 by 
the previous observations. Now, we have two cases. First let bk+1 = bk, so 

(k +1) bk + 1 	1 	k 	 1 
fz(x) m+1 -m+i -  m+1+ firri+1) fi(x)± m+1' 

and by a similar argument we also obtain f3 (x) < fe(x) + n.,±1. So, assume 
that bk+1 = bk + 1. Then 

fi(x) < fi  (m  k+ 1) + x 	 
m + 1 — 

< x  + 
m + 1 ' 

k 	bk — k +1 

f3(x)  > f  (  k +1) 

3  771+1 
+X 	 

r11+1 	m +1' 
k +1 

> x + bk 	— k  

from where fi(x) — fi(x) < m±0.. Analogously we obtain fi(x) — fi(x) < m1+1, 
which shows that in both cases I fi(x) — f3 (x)I < m1+1. 

In the same category of difficult (or very difficult) problems can be included 
the next example, too. Here it is absolutely not obvious how to use the pigeon-
hole principle. The solution presented here was given by Gheorghe Eckstein: 

Example 9.1 49 students take a test consisting of 3 problems, marked from 
0 to 7. Show that there are two students A and B such that 
A scores at least as many as B for each problem. 

while 

IMO 1988 Shortlist 



460 	20. PIGEONHOLE PRINCIPLE REVISITED 

Solution. Let us consider the set of triples (a, b, c) where each component 
can be 0,1, ...7. We define an order on these triples by saying that (a, b, c) is 
greater than or equal to (x, y, z) if a > x, b > y, and c > z. A similar order 
is defined for pairs (a, b). We need to prove that among any 49 triples there 
are two that are comparable. Supposing the contrary, it is clear that such a 
set A of triples cannot contain two triples with the same first two coordinates. 
Now, consider the following chains: 

(1) (0,0) < (0,1) < (0,2) < (0, 3) < (0,4) < (0,5) < (0,6) < (0, 7) < (1, 7) 

< (2, 7) < (3, 7) < (4, < (5, 7) < (6, 7) < (7, 7) 

(2) (1, 0) < (1,1) < (1, 2) < (1, 3) < (1, 4) < (1, 5) < (1, 6) < (2, 6) < (3, 6) 

< (4, 6) < (5,6) < (6,  6) < (7,  6) 

(3) (2, 0) < (2, 1) < (2, 2) < (2, 3) < (2, 4) < (2, 5) < (3, 5) < (4, 5) < (5, 5) 

< (6,5) < (7,5) 

(4) (3,0) < (3,1) < (3,2) < (3,3) < (3,4) < (4,4) < (5,4) < (6,4) < (7,4). 

Note that no such chain can contain more than 8 pairs of the first two co-
ordinates of some triples in A (otherwise there are two with the same last 
coordinate among them and so they are comparable). On the other hand, 
there are 48 pairs (a, b) with 0 < a, b < 7 covered by these four chains. There-
fore there are 64 - 48 = 16 remaining pairs of two elements which are not 
covered by the chains. Each such pair corresponds to at most one element 
of A. Therefore A has at most 4 x 8 16 = 48 elements, a contradiction. 
Note that the above construction shows that the property fails with only 48 
students. 

A highly nontrivial example of how the pigeonhole principle can be used in 
combinatorial problems is the following example. The solution was given by 
Andrei Jorza. 

Example 10.1 The 2' rows of a 2" x n table are filled with all the different 
n-tuples of 1 and -1. After that, some numbers are replaced 
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by zeros. Prove that there exists a nonempty set of rows such 
that their sum is the zero vector. 

Tournament of the Towns 1996 

Solution.  Take any numbering L1, L2, ..., L2n of the rows before the replace-
ment of some numbers by 0, in such a way that L1 is the vector with all 
coordinates equal to 1 and Len is the vector (-1, —1, ..., —1). Define f(L) to 
be the new line, obtained by (possibly) replacing some numbers by 0. For any 
row L that now contains some zeros, let g(L) be the corresponding row in the 
initial table, obtained by the following rule: any 1 in L becomes the value —1 
in g(L) and any 0 or —1 in L becomes a 1 in g(L). Now, define the following 
sequence: x0 = (0,0, ..., 0), x1 = f (Li) and xr±i = xr f (g(xr))• We claim 
that all terms of this sequence have all coordinates equal to 0 or 1. This is 
clear if n = 1. Assuming that it holds for xi., observe that the only places 
in which the value —1 can appear in f(g(x,)) are those on which xr  has a 
1, thus all coordinates of xr±i  are nonnegative. Also, the places on which a 
1 appears on f(g(xr )) must be among the places on which xr  had a 0. This 
proves that xr±i also has all coordinates equal to 0 or 1. Now, it follows from 
the pigeonhole principle that for some i > j we have xi  = xj, which can be 
also written as 

f (g(x3)) + f (g(x3+1)) + • • • + f (g(x,-1)) = 0 

and this means precisely that a sum of rows in the new table is zero. 
There is no trace of the pigeonhole principle in the following problem. At 
least at first glance. However, a very clever argument based on the pigeonhole 
principle allows an elegant proof: 

Example 11: Let (an)n,>1 be an increasing sequence of positive integers 
such that ari±i — an  < 2001 for all n. Prove that there are 
infinitely many pairs (i, j) with i < j such that az  a3. 

Solution.  Let us construct an infinite matrix A with 2001 columns in the 
following way: the first line consists of the numbers al +1, al +2, ..., al  +2001. 
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Now, suppose we constructed the first k lines and the kth line is x1 + 1, xi + 
2, ..., x1 + 2001. Define the (k + 1)st line to be N + xi +1, N + xi + 2, ..., N + 
xi + 2001 where N = + 1)(xi + 2) • • • (xi + 2001). The way in which this 
matrix is constructed ensures (an inductive argument doing the job) that for 
any two elements situated on the same column, one divides the other. Now, 
pick any 2002 consecutive lines. On each line there is at least one term of the 
sequence, because (an)n>1 is increasing and an±i — an < 2001. Thus there are 
at least 2002 terms of the sequence on the matrix formed by the selected lines. 
By the pigeonhole principle, there exist two terms of the sequence on some of 
the 2001 columns. Those terms will form a good pair. Thus for each choice 
of 2002 consecutive lines we find a good pair. Because the numbers on each 
column are increasing, it is enough to apply this procedure to the first 2002 
lines, then to the next 2002 lines and so on. This will produce infinitely many 
good pairs. 

The following example was taken from an article called "24 Times the Pigeon-
hole Principle". We must confess we did not count exactly how many times 
this phrase appears in the following solution, but we do warn the reader that 
this will normally take a considerable amount of time. 

rExample 12.1 Let n > 10. Prove that for any coloring with red and blue of 
the edges of the complete graph with n vertices there exist 
two vertex-disjoint triangles having all six edges colored with 
the same color. 

[Ioan Tomescu] 

Solution. Have courage, this is going to be long! First, we will establish a 
very useful result, that will be repeatedly used in the solution: 

Lemma 20.1. Every coloring with two colors of the complete graph with six 
vertices induces a monochromatic triangle. The only coloring with two colors 
of the complete graph with five vertices that does not induce monochromatic 
triangles has the form: there exists a pentagon with edges red and diagonals 
blue. 
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Proof. Consider first the case of a complete graph with five vertices. It is clear 
that with every vertex there are at least two incident edges having the same 
color. If for a vertex at least three of them have the same color, it can be easily 
argued that a monochromatic triangle appears. So, suppose that every vertex 
is incident with two red and two blue edges. Let x be an arbitrary vertex 
and suppose that xy and xz are red. Then yz is blue. Now, let t be a vertex 
distinct from x, y, z and suppose that the edge connecting y and t is red and 
the edge connecting x and t is blue. Let w be the fifth vertex of the graph. 
Then the edges wz and wt are red, while wx and wy are blue. Similarly, zt 
is blue and so we can consider the pentagon xytwz which has red edges and 
blue diagonals. 

The case of the complete graph with six vertices is much easier: pick a vertex 
x. There exist three edges having the same color (say red) leaving from x 
(again the pigeonhole principle). Let y, z, t be their extremities. If yzt is blue, 
we are done. Otherwise, assume that yz is red. Then xyz is a monochromatic 
triangle. The lemma is proved. 

El 

Now, choose six vertices of the graph. They clearly induce a complete subgraph 
with six vertices. By the lemma, there exists a monochromatic triangle xyz. 
If we consider six of the remaining seven vertices, we find another monochro-
matic triangle uvw, whose set of vertices is disjoint from the set of vertices of 
xyz. If the two triangles have the same color, we are done. Otherwise, suppose 
that xyz is red and uvw is blue. Because there are nine edges between the 
two triangles, by the pigeonhole principle at least five edges have the same 
color, say blue. By the same principle, there exists a vertex of xyz, call it x, 
which is incident with at least two blue edges having the other extremity in 
triangle uvw. Suppose without loss of generality that these vertices are u, v. 
Thus two triangles xyz and xuv appear with x as a common vertex, the edges 
of xyz being red and the edges of xuv blue. Look at the remaining five ver-
tices, which form a complete graph with five vertices. If this graph contains a 
monochromatic triangle, we are done. Otherwise, by the lemma the remain-
ing five vertices form a pentagon abcde with red sides and blue diagonals. By 
the pigeonhole principle, there exist three edges among those connecting x to 
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vertices of abcde that have the same color. Now we have two cases. 

In the first case, vertices y and z are joined by at least three edges having the 
same color with vertices of abcde. If, for instance, the color corresponding to 
y is blue, then we can consider two blue edges joining y with abcde. Then 
no blue triangle with a vertex in y appears if and only if the two blue edges 
join y with two consecutive vertices of the pentagon, for example with a and 
b. But there is still a third blue edge joining y with one of c, d, e, and this 
shows the existence of a blue triangle with vertices y and the two extremities 
of a diagonal of the pentagon. So, two blue triangles with disjoint sets of 
vertices appear. Let us now consider the case when y and z are each joined 
by at least three red edges with the vertices of the pentagon. So, there is a 
red triangle with vertices x and two neighboring vertices of the pentagon, say 
a and b. Consider now y, z, c, d, e. If the induced complete graph with five 
vertices contains a monochromatic triangle, we are done, because we still have 
the red triangle xab and the blue triangle xuv. Otherwise, again using the 
lemma, yz, cd and de are red, so either ze, yc are red or zc, ye are red. In both 
cases all other edges of the complete graph induced are blue. Let us consider 
just the first subcase (ze, yc red), the second one being similarly treated. Then 
y is joined by at least three red edges with vertices of abcde, and since yd and 
ye are diagonals in ycdez (thus they are blue), it follows that ya and yb are 
red. Similarly we find that za, zb are red and so we have two good triangles 
zae and xyb. 

Finally, let us consider the second case. Actually, all we have to do is to argue 
as in the first case, by considering vertices u, v joined each by at least three 
edges of the same color with vertices of abcde. So we are done. 

The following problems are more computational, but contain much more math-
ematics than the previous examples. The first one is a famous example due 
to Behrend, concerning subsets with large cardinality containing no three el-
ements in arithmetic progression. This is related to an even more famous 
(but notoriously difficult) theorem of Roth: the maximum cardinality of a 
subset of {1, 2, ..., n} having no three elements in arithmetic progression is at 
most C ln(l n ) for an absolute constant C. This was refined by Bourgain to n n 
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(l)
V 

 lnn  Cn 	 The proofs of these results are very deep, but finding a lower ln rt 
bound for the maximum cardinality of such a set is is not so difficult, if you 
use the pigeonhole principle. Only easy when compared to the proofs of the 
mentioned theorems, of course... 

[Example fid There exists an absolute constant c > 0 such that for all suffi-
ciently large integers N there exists a subset A of {1, 2, ..., N} 

with at least Ne —c✓in N  elements and such that no three ele-
ments of A form an arithmetic progression. 

Behrend's theorem 

Solution. The beautiful idea that provides an elegant proof of this result is 
the observation that a line cuts a sphere of R in at most two points. For 
n = 3, this is immediate geometrically, and for larger n this follows from the 
Cauchy-Schwarz inequality: if 11x11 = 11Y11 = ax + (1—  a)YI I = r for some 

E (0,1), it easily follows by squaring the last relation that (x, y) = 11111 • 11Y1I, 
where () is the natural inner product and II•11  the Euclidean norm. By the 
Cauchy-Schwarz inequality, the last relation implies that x, y are colinear and 
from here the conclusion easily follows. Now, define F(n, M, r) to be the set 
of vectors x all of whose coordinates xi , x2, 	xn  are in {1, 2, ..., M} and such 
that xi + 4 + • 	xn2  = r2. Fix n, M and observe that as r2  varies from 
n to nM2, the sets F(n, M, r) cover the set of vectors with all coordinates in 
{1, 2, ..., M}. Using the pigeonhole principle it follows that there exists some r 

n 
such that ,\Ft, < r < M/ for which F(n, M, r) has at least n(mm,n  1)  > 

m 2 
 

elements. Let us now define the function f from F(n, M, r) to {1, 2, ..., N} 

by f (xi , x2, ..., xn) = E (2M)i—lxi. We claim that if f (x), f (y), f (z) form an 
i=1 

arithmetic progression, then x = y = z. Indeed, it follows that 

(xi  + yi  — 2z0(2M)z-1  = 0. 
i=1 

Put cti  = xi  + yi  — 2zi. Then jai l < 2M —1 and the last relation easily implies 
n-1 

that ai = 0 for all i (indeed, I E ai (2M)z-11 < (2M)n-1, so an  = 0; now, 
i=1 
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use an inductive argument to finish the proof). Therefore x + y = 2z and 
because x, y, z lie on a sphere, the observation made in the beginning of the 
solution shows that x = y = z. Also, f is injective: if f (x) = f (y), then 
f(x) + f(y) = 2f (y) and from the above argument, x + y = 2y, thus x = y. 
Finally, 

Ii(xi, x2, 	xn)I < M (2M)n 1  < (2M)Th. 
2M — 1 — 

Therefore, if we consider M the largest integer such that (2M)n < N, then 
f (F(n, M, r)) is a subset of {1, 2, ..., N} which has no arithmetic progressions 
of length three. Now we need to choose some n as to obtain an optimal cardi-
nality for f (F(n, M, r)). But this cardinality is the same as that of F(n, M, r) 

n  2 
(b necause f is injective), which is at least 

ivi
by the choice of r. But 

Nn2 Mn-2 

4n-2n  • 

So choose n the integer part of On N to see that f (F(n, M, r)) has at least 
Ne—c✓ln N  elements and has no three elements in arithmetic progression. 

We now pass to another revolutionary result, the famous Siegel's lemma. The 
applications of this theorem are so numerous and important that they would 
fill a book by themselves. We leave the interested reader to search in the huge 
literature of transcendental number theory for variations of the following result 
and for applications, among them the difficult Thue-Siegel-Roth theorem (do 
not kid yourselves, these require much more than Siegel's lemma alone!). 

Let 1 < m < n be integers and let A = (aii)i<2<n,1<j<rn 
be a matrix with integer entries. Suppose that for all 1 < 

j < m, the number Ai  = E laii i is nonzero. Prove that 
i=1 

there exist integers xi , x2, ..., xn, not all zero, such that Ixi l < 

n-'-VA1A2 ...Am  for all 1 < i < n and E aiixi = 0 for all 

1 < j < m. 

Siegel's lemma 
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Solution. The idea is the following: for a nonnegative real number M, we will 

prove that the quantity E aijx, cannot take too many distinct values when 

(xi, x2, ..., xTh ) goes through the set of vectors with integer coordinates, all of 
them between 0 and M. It will follow that the image of the function 

	

(

n 	 n 

f (xi , x2, ..., xn) = E anxi, ... 	aimxi 

	

i=i 	i=i 

is not too big and we will be able to use the pigeonhole principle as long as 
([M] + 1)n  is greater than the image of f. 

Consider integers ai, a2, ..., an  and suppose that al, a2, 	% are nonnegative 
and ap+l,  ap+2, ..., an  are negative. Then it is clear that for any integers x, 
such that 0 < x, < M we have 

[M j (ap±i  + • • • + an) < aixi + a2x2 + • • • + anxn  < (al +•• • + ap) [M j 

Thus there are at most 1+ ( I ai I + a2 + • • • + Ian I) 	values taken by al xi + 
a2x2 + • • • + anxn, which means that the image of f has at most 

(1  + I_MjAi)(1+ [M] A2) • • • (1 + [] Am) < A1A2 • • • Am(1 + I_Mpm  

elements. Because there are (1 + [M]Dn vectors in Zn all of whose coor-
dinates are between 0 and M, it follows that f is not injective if we take 
M = n-T/ Ai A2  • • • Am. Thus there exist two distinct vectors x, y such that 
f(x) = f (y). It is clear that the vector v = x — y satisfies all the desired 
conditions. 

And here is a surprising, yet very challenging, application of Siegel's lemma, 
inspired by a USAMO problem: 

[Example 15.] Let C > 0 and A < e 11 be two real numbers and let f : 
{1, 2, ...} —> {1, 2, ...} be a function satisfying f (n) < C An 
for all n. Suppose that f (n + p — 1) — f (n) is a multiple of 
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p for any prime number p and any n. Prove that there are 
integers ri, r2, 	T., not all zero such that for all n we have 

rif (n) + r2f (n + 1) + • + rsf (n + s — 1) =0. 

[Gabriel Dospinescu, Vesselin Dimitrov] 

Solution. Let us consider positive integers m, n such that in = [3-] (this is 
usually the best choice in Siegel's lemma) and let us define (43  = f (i + j) 
for 1 < i < n and 1 < j < m. We claim that we can choose some m such 
that if x1, x2, ..., xn  is a solution of the system given by Siegel's lemma, then 
xi f (j + 1) + x2 f + 2) + • • • + xn f (j + n) = 0 holds for all positive integers 
j. For this, we will need some preparation, which will be done in the next 
paragraph. 

Take x to be any solution given by Siegel's lemma, and observe that the 
desired relation holds for j < m. Assume that it fails for some k > m and let 
k + 1 be the smallest index for which it fails (thus it holds for all j < k and 
k > m). Consider p any prime smaller than k + 2. Then 1 < k + 2 — p < k 
and so 

xi f (1 + k + 2 — p) + + xn f (rt + k + 2 — p) = 0. 

But this last sum is congruent (mod p) to 

A = xif(1+ (k + 1)) + • • + xn f (n + (k + 1)) 	(20.1) 

which is nonzero by the choice of k. This shows that the last quantity A is 
actually a multiple of the product of all primes up to k + 1. The desired 
contradiction will follow from the fact that Siegel's lemma and the hypothesis 
on f ensure that A is small enough and thus cannot be divisible by the product 
of all p with p < k + 1. Let us estimate first the growth of x3. Using the 
notations of Siegel's lemma, we have 

A < C(A3+1  + • • • + Al+n) < C1An+3, 
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where C1 > 1 depends only on A, C. Thus 

1 mn 	m(rn-I-1)  
IX3  1 < (Ai • 

..AIn )n—m < C111' . A n—rn 2(n—m) 
 

for some C2 > 0 depending only on A, C. Therefore 

< C2A5n14 , 

Ixi f(1 + (k +1)) + • • • + xn f (n + (k +1))1< 

(max(Ixj) • C(Ak+l+l + • • • + An+k+1) < c3A9n/ 4+k 

where C3 is again a constant depending only on A, C. 

Now, we can prove the claim and thus end the solution. Suppose that the 
statement does not hold, so for infinitely many k (remember that for each m 
the corresponding k was at least m) we will have 

Hp < C3A9701±k. 
p<k 

Because k > m > n/2 — 1, we have 

A9n/4+kc3  < A11k/2c4.  

Thus for infinitely many k one must have 

llk 
	 ln A + ln C4 > E In p 

2 
p<k 

and this forces, from the prime number theorem, A > e , a contradiction 
with the choice of A. 

We end this chapter with a very challenging problem concerning the growth of 
coefficients of divisors of a polynomial whose coefficients are 0, 1 or —1. This 
type of problems, concerning the multiplicity of roots of polynomials with co-
efficients —1,0, 1 has been subject to extensive research, but seems to be a 
quite difficult problem. One estimation in the following problem can easily be 
obtained using the pigeonhole principle; the other requires a beautiful theorem 
of Landau. 
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[Example 10.1  For n > 2, let An  be the set of polynomial divisors of all 
polynomials of degree n with coefficients in { —1, 0,1}. Let 
C(n) be the largest coefficient of a polynomial with integer 
coefficients that belongs to An. Prove that for any E > 0 
there exists a k such that for all n > k, 

2 .  71 	< C(n) < 2n. 

Solution.  Let us start with the left hand side inequality: C(n) > 2j e . For a 
polynomial f with coefficients 0 or 1 and degree at most n define the function 
cb(f) = (f (1), f (1), ..., fN-1(1)). Taking into account that all coefficients of f 
are 0 or 1, we can immediately deduce that f(3)(1) < (1 + n)3+1  for all j, thus 
the image of f has at most (1 + n)1+2+ •+N < (1 + n)N2  elements. On the 
other hand, f is defined on a set of 2n+1  elements. So, if 2n+1  > (i+n)N2  then 
by the pigeonhole principle two polynomials f,g will have the same image and 
thus their difference will have all coefficients —1, 0 or 1 and degree at most n. 
Also, f — g will be divisible by (X — 1)N. Thus C(n) > ( NN), because the 

\ . largest coefficient of (X — 1)N  is 2NN) Because ( NN) is the largest binomial 
4  coefficient among (N), we have (2N\ 1 -- 

, 
2N-F1 > 2N  for N > No. By taking 

N = 	log(nn+1) [ 	2 	, we have (1 + n)N2  < 2n+1, thus C(n) > 2N  and it is easy 

to see that N > rl,'-' for n large enough. 

The other part, C(n) < 2', is much more subtle. For a polynomial f(X) = 
an,Xn + • • • + a1X + ao  with real coefficients (everything that follows applies 
verbatim for complex coefficients), define its Mahler measure by 

n 

M(f) = lamp 	max(1, lxii) 
	

(20.2) 
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where xi are the roots of f . The following inequality is due to Landau: 

Lemma 20.2. M(f) < Va8 + a? + • • • + 

Proof. There are many proofs of this lemma, but we particularly like the 
following one, which we haven't encountered in the literature. Consider N > n 
and let zi, z2, zN be the N-th roots of unity. A simple computation, based 
on the fact that E =1 3 Zk. = N if Njk and 0 otherwise, shows that 3  

E If(zi)12 = 
N n 

j=1 i=0 )

i.Z.i = 

E aijav  • zr = N • Ea?. 
u,v=0 	j=1 	 i=0 

Now, applying the AM-GM inequality, we obtain that 

E 	f (zi) f (z2) 	f (zN)12. 
i=0 

On the other hand, the identity (X — zi)(X — z2) • • • (X — zN) = X N  — 1 and 
the fact that f (X) = an(X — xl)(X — x2) • • (X — xn) imply the identity 

1 f (zi )f (z2) • • • f(zN) 1 = 1 an I N  1 1- — 411 1  —x2 I...  11 — 	1, 

which, combined to the previous inequality, implies 
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Now, it is pretty clear that limN,c.9 V11  zN  I = max(1, I,z1) whenever 
1. Thus the inequality is proved whenever all roots of f lie outside the unit 
circle. What happens in the opposite case? It really does not matter! Actu-
ally, Viete's formulae show that the inequality M(f) < . \/4 + ai + .• • + an2  
reduces to an inequality involving only absolute values of polynomials in xi. If 
this inequality holds whenever the variables x, are not on the unit circle, it also 
holds in the other cases, by continuity. Therefore the lemma is proved. 	❑ 

The previous lemma shows that polynomials with all coefficients of absolute 
value at most 1 have Mahler measure at most In + 1. Take now any divisor 
f of a polynomial g with all coefficients —1, 0,1 and write g = hf. Suppose 
that f has integer coefficients. It is easy to see that M(g) = M(h)M(f) > 
M(f). Thus M(f) < Vn + 1. Now, observe that by Viete's formula, the 
triangular inequality and the obvious fact that < M(f) for all 
distinct i1 , ..., is  and all s, we have that any coefficient of f is bounded in 
absolute value by the fact that 

([2J/ M(f)< 
✓n+ 	1 • (

1_2J
) < 2n 

for sufficiently large n. Thus the conclusion follows. 
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20.2 Problems for training 

1. On a piece of paper 4n unit squares are marked, their edges being par-
allel to the edges of the paper. Prove that there exist n pairwise disjoint 
squares. 

2. Let k be an integer greater than 1. Prove that there exists a prime 
number p and a stricly increasing sequence of positive integers al, az, ••• 
such that all numbers p + kai, p + ka2, ... are primes. 

3. Let 0 < al < az < 	< awl < 5050 be integers. Prove that we can 
choose four distinct integers ai , a3 , ak , al such that 5050 divides a2  + a3  —
ak — ai. 

Poland 1999 

4. Prove that for infinitely many positive integers A the equation Lx/j  + 
Ly.\5] = A has at least 1980 solutions in positive integers. 

Russia 1980 

5. A positive integer is written in each square of an n2  x n2  chess board. 
The difference between the numbers in any two squares sharing an edge 
is at most n. Prove that at least 1 + [3 j of the squares contain the same 
number. 

Hungary 1999 

6. Prove that any integer k greater than 1 has a multiple less than k4  which 
has at most four distinct digits. 

IMO 1987 Shortlist 
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7. Are there 10000 numbers with ten digits, all multiples of 7, and with the 
property that any one of them can be obtained from the first number by 
a suitable permutation of its digits? 

Czech-Slovak Match 1995 

8. Find the greatest positive integer n for which there exist nonnegative 
integers xi , x2, ..., xn, not all of them equal to 0, and such that n3  does 
not divide any of the numbers aixi±a2x2+• • •+anxr, with al, a2, •••, an = 
±1. 

Romanian TST 

9. The complete graph with 12 vertices has its edges painted in 12 colors. 
Is it possible that for any three colors there exist three vertices which 
are joined with each other by segments having these three colors? 

Russia 1995 

10. Prove that among any 2m + 1 integers whose absolute values do not 
exceed 2m — 1 one can always choose three that add up to 0. 

11. Prove that any sequence of mn + 1 real numbers contains an increasing 
subsequence with m + 1 terms or a decreasing subsequence with n + 1 
terms. 

Erd6s-Szekeres's theorem 

12. Let A be the set of the first 2m n positive integers and let S be a subset 
of A with (2in — 1)n + 1 elements. Prove that there exist a0, al , ..., 
distinct elements of S such that a() I al ••• am. 

Romanian TST 2006 
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13. Can you put 18 rectangles of size 1 x 2 on a 6 x 6 board such that there 
exists no straight line connecting two opposite sides of the table which 
goes along sides of the rectangles? 

N.B.Vasiliev, Kvant 

14. Consider a set of 2002 positive integers not exceeding 10100. Prove that 
this set has two nonempty disjoint subsets with the same size, the same 
sum of elements, and the same sum of squares of the elements. 

Poland 2001 

15. Consider an 11 x 11 chess board whose unit squares are colored using 
three colors. Prove that there exists an m x n rectangle with 2 < m, n < 
11 whose vertices are in squares having the same color. 

loan Tomescu, Romanian TST 1988 

16. 50 students compete in a contest where every participant has the same 
8 problems to solve. At the end, 171 correct solutions were received. 
Prove that at least 3 problems were solved by at least 3 students. 

Valentin Vornicu, Radu Gologan, Mathlinks Contest 

17. Prove that given any n2  integers, we can always put them in an n x n 
matrix whose determinant is divisible by n[n J. 

Titu Andreescu, Revista Matematica Timisoara 

18. Let A be the set of the first 40 positive integers. Find the least n for 
which one can partition A into n subsets such that a b + c whenever 
a, b, c (not necessarily distinct) are in the same subset. 

Belarus 2000 
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19. Consider a 100 x 1997 board whose unit squares are filled with 0 or 1 in 
such a way that every column contains at least 75 ones. Prove that we 
can erase 95 rows such that there exists at most one column consisting 
of zeros in the remaining table. 

Bulgaria 1997 

20. Prove that no matter how we choose more than 2'1+1  points in Rn, all 
of whose coordinates are ±1, there exists an equilateral triangle with 
vertices in three of these points. 

Putnam 2000 

21. Let a be a real number with 0 < a < a and let (an)n>1  be an increasing 
sequence of positive integers such that for all sufficienly large n there 
are at least n • a terms of the sequence smaller than n. Prove that for 
all k > a there are infinitely many terms of the sequence that can be 
written as the sum of at most k other terms of the sequence. 

Paul Eras, AMM 

22. Prove that for all N there exists a k such that more than N prime 
numbers can be written in the form T2+k for some integer T. Generalize 
it to any polynomial f (T). 

Sierpinski 

23. Let f(n) be the largest prime divisor of n, and consider (an)n>1  a strictly 
increasing sequence of positive integers. Prove that the set containing 
f(ai  a3) for all i # j is unbounded. 

24. Let P0, P1, ..., Pri,_1 be some points on the unit circle. Also let A1A2...An  
be a regular polygon inscribed on this circle. Fix an integer k, with 
1 < k < Z. Prove that one can find i, j such that Azi13  > A1Ak > PiP3• 
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25. Let k be an integer, and let al, a2, 	ari  be integers which give at least 
k + 1 distinct remainders when divided by n + k. Prove that some of 
these n numbers add up to n + k. 

Kornai 

26. Let S be the set of the first 280 positive integers. Find the least n 
such that any subset with n elements of S contains 5 numbers that are 
pairwise relatively prime. 

IMO 1991 

27. For a pair a, b of integers with 0 < a < b < 1000, the subset S of 
{1, 2, ..., 2003} is called a skipping set for (a, b) if for every pair of ele-
ments (81, s2 ) E 82, 	— s21 is different from a and b. Let f (a, b) be the 
maximum size of a skipping set for (a, b). Determine the maximum and 
minimum values of f . 

Zuming Feng, USA TST 2003 

28. Let n > 3 and let X be a subset (with 3n2  elements) of the set of the 
first n3  positive integers. Prove that there exist nine distinct elements of 
X, al , a2, a9 and nonzero integers x, y, z such that al x + a2y + a3z = 
0, a4x + 	+ a6z = 0 and a7x a8y + a9z = 0. 

Marius Cavachi, Romanian TST 1996 
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21.1 Theory and examples 

It is notoriously difficult to decide whether a given polynomial is irreducible 
over a certain field. There exist a variety of criteria that allow us to prove 
that a certain polynomial is irreducible, but unfortunately they are very lim-
ited, and their hypotheses are usually not satisfied. Furthermore, there are 
not many elementary techniques: a few classical irreducibility criteria and the 
study of roots of polynomials are practically the only ideas that we will dis-
cuss in this chapter. But, as you can easily see, even those are not trivial, 
and some of the problems can be extremely difficult, even though they have 
elementary solutions. We will discuss a very useful irreducibility criterion, 
Capelli's theorem, which is really not as well known as it should be, and we 
will see some striking consequences of this result. Also, we will insist on the 
method of studying the roots of polynomials, because it gives elegant solu-
tions for problems of this type: Perron's criterion and Rouche's theorem are 
discussed, as well as some applications. Finally, we will see that working with 
reductions of polynomials modulo primes can often give precious information 
about their irreducibility properties. In this chapter, we will assume that the 
reader is familiar with notions of algebraic number theory, but those will not 
exceed the results discussed in the chapter A Brief Introduction to Alge-
braic Number Theory. 

We will begin the discussion with the most elementary method, which is the 
study of roots of polynomials. Let us observe from the beginning two quite 
useful results: if a monic polynomial with integer coefficients f has a nonzero 
free term (constant term) and exactly one root of absolute value greater than 
1, then f is irreducible in Q[X]. Indeed, if f = gh for some nonconstant 
polynomials g, h with integer coefficients, we may assume that g has all roots 
of absolute value smaller than 1. Then Ig(0)1 < 1, because it is just the product 
of the absolute values of the roots of g. Because 19(0)1 is an integer, it follows 
that g(0) = 0 and thus f(0) = 0, contradiction. 

The second result is very similar: if f is monic and all roots of f are outside the 
closed unit disc and If (0)1 is a prime number, then f is irreducible in Q[X]. 
Indeed, with the same notations, we may assume that Ig(0)1 = 1. Because 
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Ig(0)1 is the product of the absolute values of the roots of g, it follows that at 
least one root of g is within the unit disc. But then f has at least one root 
in the closed unit disc, which is a contradiction. Here are some examples, the 
first two extremely simple, but useful, and the others more and more difficult. 

11  Example 171 Let f (X) = ao +aiXd- • • • +a,,,,X71  be a polynomial with integer 

coefficients such that a() is prime and lao 1 > 'all + 1a21 + • • • + 
lard- Prove that f is irreducible in Z[X]. 

Solution. By previous arguments, it is enough to prove that all zeros of f 
are outside the closed unit disk of the complex plane. But this is not difficult, 
because if z is a zero of f and if 1z1 < 1 then 

laol = 	a2z2  ± • • • ± anzn1 < 	la21 + • • • + lank 

which contradicts the hypothesis of the problem. 

The previous example may look a bit artificial, but it is quite powerful for the-
oretic purposes. For example, it immediately implies the Goldbach theorem 
for polynomials with integer coefficients: any such polynomial can be written 
as the sum of two irreducible polynomials. Actually, it proves much more: for 
any polynomial f with integer coefficients there are infinitely many positive 
integers a such that f + a is irreducible in Z[X]. 

We have already discussed algebraic numbers and some of their properties. 
We will see that they play a fundamental role in proving the irreducibility of 
a polynomial. However, we will work with an extension of the notion of alge-
braic number: for any field K C C, we say that the number z E C is algebraic 
over K if there exists a polynomial f E K[X] such that f(z) = 0. Exactly the 
same arguments as those presented for algebraic numbers over Q allow us to 
deduce the same properties of the minimal polynomial of an algebraic number 
over K. Also, a is an algebraic number, the set K[a] of numbers of the form 
g(a) with g E K[X] is a field included in C. The following fundamental result 
is frequently used. 

nvthanh1994
Note
AMM 2006 No 6-Trang 8
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L [ Exam I 2. Example  Let K be a subfield of C, p a prime number, and a E K. The 
polynomial XP — a is reducible in K [X] if and only if there 
exists b E K such that a = b P . 

  

Solution.  One implication being obvious, let us concentrate on the more diffi-
cult part. Suppose that XP — a is reducible in K[X], and consider a such that 
ceP = a. Let f be the minimal polynomial of a over K and let m = deg( f). 
Clearly m < p. Let f (X) = (X — ai)(X — a2)...(X — am) and introduce 
the numbers r1  = a, ri  = for i > 2. Because f divides XP — a, we have 
rP = 1. Hence (-1)mf (0) = cam for some c, a root of unity of order p. 
Since m < p, there exist integers u, v such that urn + vp = 1. It follows 
that (-1)um fu (0) = cuai—vp Combining this observation with the fact that 
aP = a, we deduce that cu a = (-1)mu f (0)u av = b E K, thus a = aP = b P . 
This finishes the proof of the hard part of the problem. 

We continue with a very beautiful result, the celebrated Cohn's theorem. It 
shows how to produce lots of irreducible polynomials: just pick prime num-
bers, write them in any base you want and make a polynomial with the digits 
in that base! 

Example 3.] Let b > 2 and let p be a prime number Write p = ao + 
alb + • • • + aribn with 0 < ai  < b — 1. Then the polynomial 
f (X) = anXn + an_1Xn-1  + • + aiX + ao is irreducible in 
Q [X] . 

[Cohn's theorem] 

Solution.  It is clear that gcd(ao, al , ..., am) = 1, so by Gauss's lemma it is 
enough to prove that f is irreducible over Z. First, we will discuss the case 
b > 3, the case b = 2 being, as we will see, much more difficult. Suppose that 
f (X) = g(X)h(X) is a nontrivial factorization of f . Because p is a prime, 
one of the numbers g(b) and h(b) is equal to 1 or —1. Let this number be 
g(b) and let x1, x2 i  ..., x,, be the zeros of f . There exists a subset A of the set 
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{1, 2, ..., n} such that g(X) = a fl (X — xi). We now prove a helpful result. 
TEA 

Lemma 21.1. Each complex zero of f has either nonpositive real part or an 
/4b-3  absolute value smaller than 1+■
2  

Proof. The proof is rather tricky, but not complicated. It is enough to observe 
that if lzl > 1 and Re(z) > 0 then Re (1) > 0 and so by the triangle inequality 

an  + 	(b — 1) 	+ • • • + T-t„.„)
z  

> Re (an  + 
b —1 	> 1z12  — Izi — (b — 1) . 

z ) 	1z12  

Therefore if f (z) = 0 and Re(z) > 0 then either lzl < 1 or 1z1 < 1+ 246-3  and 
this establishes the lemma. 	 ❑ 

f (z) 
zn 

It remains now to cleverly apply this result. We claim that for any zero x, of 
f we have lb — x, I > 1. Indeed, if  Re(x,) < 0, everything is clear. Otherwise, 

lb — xi l > b — xi > b 1+v 6-3  > 1, as you can easily verify if b > 3. Now, 
everything is clear, because this result implies that Ig(b)1> 1, a contradiction. 

Now let us deal with the very difficult case b = 2. We will present a very 
beautiful solution communicated by Alin Bostan. The idea is to prove that 
2 — x, 1 > I 1 — xi I for any zero xi  of f. Keeping the previous notations, we 

will deduce that 1 = 1g(2)1 > 1g(1)1 and so g(1) = 0. This implies f (1) = 0, 
which is clearly impossible. Now take x to be a zero of f and observe that if 
12 — xl < 11 — xl then Re(x) > (3) , and so if y = we have ly1 < 1 and y 
satisfies a relation of the form 

yn 	

2 
(_1 

2 
_1) yn_i 	

, 2f 2 
1 
— y +1= O. 

Multiplying by yn+1  and adding the two relations, we find another relation 
of the same type (but with n increased) and by repeating this argument we 
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deduce that there are infinitely many N for which y satisfies the relation 

(1 	1) 	, 	1 	1 
y

N 
+ -

2 
± -

2 	
+ • • • + (-

2 
± -

2
) +1 =0. 

This can be also written as 

+
2  
1 	 1 (y + y2 + 	

2 
yN) 	(±y  ± y2 ± 	yN) 

The triangle inequality implies 

2  y y N + 1 

2(1 - y) 

and this for infinitely many N. Taking into account the fact that ly1 < 1, we 
deduce from the above inequality that 

ly1  
- - I y I 

Finally, the last inequality implies 

  

  

2x - 1 

 

1  
<2 

lx 1 - 1  - 

  

x - 1 

 

     

and thus 12x - 11 < 12x - 21, which is impossible for Re(x) > 3. This finishes 
the proof of the claim and also the solution of this difficult problem. 

We end this part of the chapter with a very beautiful criterion due to Perron 
and with a difficult theorem of Selmer. Perron's criterion is quite similar to the 
first example, but much more difficult to prove: it states that if a coefficient is 
"too large", then the polynomial is irreducible. Here is the precise statement: 

[hxample 4. Let .f (X) = X n + an_iXn-1  + • • • + aiX + ao be a polynomial 

with integer coefficients. If lan_11 > 1+1ao1+1a11+ • • • + lan-21 
and a() 0 then f is irreducible in Q[X]. 

_< I j( V-Y Ny 1+)  1  

2 - y 
1 - y 

[Perron] 
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Solution.  We will prove that f has exactly one zero outside the closed unit 
disk of the complex plane. This will show that f is irreducible in Z [X], and 
by Gauss's lemma it will also be irreducible in Q[X]. It is quite clear that no 
zero of f is on the unit circle, because if z is such a zero, then 

Ian-ll = lan_izn-11 = Izn +an-2Zn-2  * • ± alZ +aol < 1+ laol+- • + lan-21  1, 

a contradiction. On the other hand, I f (0)1 > 1, so by Viete's formula at least 
one zero of f lies outside the unit disk. Call this zero xi and let x2, ..., xr, be 
the other zeros of f . Let 

(X)  
g(X) = 

xn-1 bn_2xn-2 • • + biX + bo =  
_A — xi 

By identifying coefficients in the formula f (X) = (X — xi)g(X), we deduce 
that 

an-1 = bn-2 — xi, an-2 = bn-3 bn-2X1, 	al = bo — bixi, ao = —boxi. 

Therefore the hypothesis 	> 1+1aol + Ia1 + • • • + lan-21 can be rewritten 
as 

1bn_2 — x11 > 1 + 1bn-3 — bn-2xil + • • • + lboxil• 

Taking into account that Ibn-21 + 411 > lbn-2 — xi I and 

lbn-3 	bn-24 	 — 1bn-31, • • • , Ibo — bixil 

we deduce that 	— > 	 + 	+ • • • + Ibn-21) and since 411 > 1, 
it follows that jbol + l b1 I + • • • Ibn_21 < 1. Using an argument based on the 
triangle inequality, similar to the one in the first example, we immediately 
infer that g has only zeros inside the unit disk, which shows that f has exactly 
one zero outside the unit disk. This finishes the proof of this criterion. 

The above elegant solution, due to Laurentiu Panaitopol, shows that deep 
theorems can be avoided even when this seems impossible. The classical proof 
of this criterion uses Rouche's theorem. Because this is also a very powerful 
tool, we prefer to prove it in a very particular, but very common, case for 
polynomials and circles. 
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Theorem 21.2 (Rouche's theorem). Let P, Q be two polynomials with complex 
coefficients and let R be a positive real number. If P, Q satisfy the inequality 
1P(z) Q(z)i < 1Q(z)i for all z on the circle of radius R, centered at the 
origin, then the two polynomials have the same number of zeros inside the 
circle, multiplicities being counted. 

Proof. The proof of this theorem is not elementary, but with a little bit of 
integral calculus it can be proved in a very elegant way. Let L be the set of 
all curves -y : [0, 27r] —> C which are differentiable, with continuous derivative, 
such that -y(0) = -y(27r) and 7 does not vanish. The index of 7 E L is defined 
as 

1 	j(2' -)/(t) 
-1(7) 	2i7r 	0 	-y(t) dt 

	
(21.1) 

 

t 	/ We claim that I(y) is an integer. Indeed, consider K(t) = ef -Y ° -Y((xx)) dx and 

note that K is differentiable and that K'(t) = K(t) 7'(tt) • This shows that 7()  
K (t s a constant function. Therefore, because -y(0) = -y(27r), we must have 7(t)

)  i 
K(0) = K(27r), which says exactly that I(y) is an integer. The following result 
is essential in the proof: 

Lemma 21.3. The index of a curve -y E L contained in a disc that does not 
contain the origin is 0. 

Proof. Let B(x, r) be the open disc of center x and radius r > 0 and suppose 
that -y is contained in B(w, s), a disc that does not contain the origin (thus 

s < ICJI) that is l-y(t) — w < s for all t. The idea is to make a continuous 
deformation of 7, keeping the index unchanged, and such that at a certain 
moment the index of the new curve can be trivially computed. In order to 
do this, take u E [0, 1] and consider the application fu(t) = u-y(t) + (1 — u)w, 
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defined on [0, 276. The triangle inequality shows that fu  E L and also that 
this curve is contained in B(w, s). On the other hand, we claim that the 
mapping cb(u) = I(fu) is continuous. Because it takes only integer values (by 
the previous remark), it will be constant. Therefore, I(y) = I(f1) = .1"(f0) = 0. 
So, let us prove that I(fu) is continuous with respect to u. Indeed, note that 

.g)(t)  
fu(t) 	fv(t) 

  

w • (u — v) • -/(t) 

 

(u-y(t) + (1 — u)w)(v-y(t) (1 — v)w) 

< PI 	vI*1-1(t)1  
— 	s)2  

 

  

because lu-y(t)+ (1— u)wl 	172117(0-w' > IwI - S. This inequality shows 
by integration that I(fu) satisfies 

IWI f27,-  
li(fu)-i(fv)i c 

27,(1w1- 	
171(t)Idt • lu — v1, 

which proves that /(fu) is continuous, and finishes the proof of the lemma. 

This lemma implies that two curves in L sufficiently close have equal index. 
Indeed, suppose that yl  and 72 are in L and satisfy 1-yi(t) — -y2(t)1 < 1'Y2(t) 
for all t. Then the curve -y(t) = -r]-(t)(t)  72 	satisfies 1-y(t) — l < 1 for all t. Because 
17(0 — 1 is also continuous on the compact interval [0, 27r], it follows that its 
maximum is smaller than 1, that is, there exists a disc that does not contain 
the origin and which contains -y. By the lemma, -y has index 0. But a quick 
computation shows that I(-y) = — I (-y2). Thus yi  and y2 have the same 
index. Finally, let us prove this particular case of Rouche's theorem. Consider 
the curves y1(t) = P(Reit) and -y2(t) = Q(Reit). Observe that the inequality 

IP(z) Q(z)I < IQ(z)I implies that yi does not vanish on [0, 27]. Thus -yi , -y2  
are in L and also j-yi(t) 72(01 < 11-Y2(01. Thus the two curves have the 
same index. But for a polynomial P one can easily compute the index of the 
associated curve! Indeed, suppose that P(z) = a(z — zi)(z — z2) • • • (z — zn), 
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where zi  are not necessarily distinct. Then it is well known that 

This shows that if -y(t) = P(Reit), then 

R 	n f zir eitdt 
I (Y)  = 27  Jo Reit — zi .  

j=1  

Now, we have seen that Izj j R. Suppose that I zj I < R. Then 

/27 eitdt 	1dt 	27r 

Jo  Reit — zi R Jo  1— zie-it 

Indeed, 
zm -imt 	= 1 + 	
j 

jam  — FZ Trt>1 

and the mean value of e-zmt over [0, 27r] is 0 for all m > 1. It is enough to 
change the order of integral and summation (which is legal, because of the 
uniform convergence with respect to t) in order to see that 

1 f27 	dt 
Rio  1—a 

 

= 27r 
 • 

 

Now, in exactly the same way, you can prove that 

/27 eitdt 

Jo  Reit — zi 
=0 

if 1z31 > R. Thus I (-y) is exactly the number of zeros of P inside the circle of 
radius R centered at the origin. This finishes the proof of Rouche's theorem. 

1 
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Observe that Perron's criterion instantly solves the following old IMO prob-
lem: the polynomial Xn 5x-n-1 + 3 is irreducible in Q[X], just because 
"five is greater than four!" Here are two nicer examples, where this criterion 
turns out to be extremely efficient. The solution to the first problem is due to 
Mikhail Leipnitski. 

Example 5.1 Let f1 i  f2, fn  be polynomials with integer coefficients. Prove 
that there exists a reducible polynomial g E Z[X] such that all 
polynomials fi + g, f2 + fn + g are irreducible in Q[X]. 

Iranian Olympiad 

Solution.  Using Perron's criterion, it is clear that if M is sufficiently large and 
m is greater than max(deg(f1), deg(f2), deg(fn)), the polynomials Xm+1  + 
MXm + fi(X) are all irreducible in Q[X]. Therefore we can choose g(X) = 
Xm+1  MXm. 

rExample 6.1 Let (fn)n>0 be the Fibonacci sequence, defined by fo = 0, fi = 
1 and f Jn+1 = fn + fn-1- Prove that for any n > 2 the polyno-
mial Xn + fnin+1Xn-1  + • • • + f2f3X + fi f2 is irreducible in 
Q[X]. 

[Valentin Vornicu] Mathlinks Contest 

Solution.  By Perron's criterion, it suffices to verify the inequality 

fn-Fi fn > 	+ + f2f1 + 1  

for all n > 3. For n = 3 it is obvious. Supposing the inequality true for n, we 
have 

fn+ifn + fnfn-1 + • • • + f2h + 1 < fn+lfn + fn+ifn < fn+2fn+1, 
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because this is equivalent to 2.fn < fro-2 = fn-Fi + fn and this one is obvious. 
The inductive step is proved and so is the proof for n > 3. 

Finally, a very difficult example of an irreducibility problem that can be solved 
by studying the roots of polynomials. It generalizes a classical result stating 
that XP — X —1 is irreducible over the field of rational numbers if p is a prime 
number. 

Example 7.] Prove that X' — X —1 is irreducible in Q[X] for all n. 

Selmer's theorem 

Solution.  Let us consider a factorization Xn — X —1 -= f(X)g(X) for some 
integer nonconstant polynomials f, g. It is not difficult to check that X' —
X — 1 has distinct complex roots. Thus f will have some roots z1i  z2, •••, •zs 
of X' — X — 1, which are pairwise distinct. The essential observation is the 
following estimation: 

Lemma 21.4. For each root z of X' — X —1 one has 

2Re 	— 1 —) >
i 	

1. 
z 	z

1

i 2  

Proof. By writing z = reit , the inequality comes down to (1+2r cos t)(r2  —1) > 
0. However, r2" = lz12n = 1Z + 112  = 1 + 2r cost + r2, so what we need is 
(7,2n — r2)(r2 1) > 0, which is clear. 

I=1 

Using the lemma, it follows that 

	

2Re (zi — 1 
	 1 	 1 

—) + 2Re (z2 — —) + • • • + 2Re (z, — —
z, 

> 

	

zi 	 Z2 

1 	1 	1 

	

> 	+ 	+ + 	 s > 0, 
I z112 	1z212 	1z81 2 
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by the AM-GM inequality, because the product of 	is just If (0)1 = 1. Thus 

Re (zi — 1 ) + Re (z2 — 1 ) + • • • + Re (z, — —
z, 

>0. 
Z1 	 Z2 

On the other hand, because f is monic and has integer coefficients, 

1 	 1 
Re (zi — —) + Re (z2 — —) + • • • + Re (z, — —

1 
Zi 	 Z2 	 Zs  

is an integer, so it is actually at least 1. Working similarly with g, we de- 

duce that Re (zi — 1  + z2 — -3— + • • • + zn  — k) > 2, where zi, z2, ..., zn  are 
Z1 	 Z2 	 Zn 

all roots of Xn — X —1. However, this is impossible, because by Viete's formula 
i z1 —  + z2 — 1  + • • • + zn  — 

Zn 
— = 1. This shows that any such factorization 

Zi 	 Z2  

is impossible, and so Xn — X — 1 is irreducible in Z[X]. All we need now is to 
apply Gauss's lemma to obtain a complete proof. 

We pass now to a proof of the celebrated Capelli's theorem. As we will immedi-
ately see, this is a very powerful criterion for the irreducibility of compositions 
of polynomials, even though the proof is really easy. However, this does not 
seem to be well known, especially in the world of mathematical competitions. 
We thank Marian Andronache for showing us this striking result and some of 
its consequences. 

Example 8. Let K be a subfield of C and f, g E K[X]. Let a be a complex 
root of f and assume that f is irreducible in K [X] and g(X) — a 
is irreducible in K[a][X]. Then f (g (X)) is irreducible in K[X]. 

 

Capelli's theorem 

Solution. Define h(X) = g (X) — a and consider a zero of the polynomial h. 
Because f (g (13)) = f (a) = 0, /3 is algebraic over K. Let deg( f) = n, deg(h) = 
m and let s be the minimal polynomial of /3 over K. If we manage to prove 
that deg(s) = mn, then we are done, since s is irreducible over K and s divides 
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f (g(X)), which has degree mn. So, let us suppose the contrary. By using a re-
peated division algorithm, we can write s = rn_ign-i+rn,_2gn-2+. • •+rig+ro, 
where deg(ri) < m. Hence rn_1(0)an-i. + • • • + ri  (0)a + ro(0) = 0. By group-
ing terms according to increasing powers of /3, we deduce from the last relation 
an equation kin_1(a)0"1-1  + • • • + ki (a)13 + ko(a) = 0. Here the polynomials Is 
have coefficients in K and have degree at most n - 1. Because h is irreducible 
in K (a)[X], the minimal polynomial of 0 over K(a) is h and thus it has degree 
m. Therefore the last relation implies km-i. (a) = • • • = ki (a) = ko(a) = 0. 
Now, because f is irreducible in K[X], the minimal polynomial of a has degree 
n, and since deg(ki) < n, we must have km--i = • • • = ki = ko = 0. This shows 
that rn_i = • • • = ri  = ro  = 0 and thus s = 0, which is clearly a contradiction. 
This shows that s has degree mn, and thus it is equal (up to a multiplicative 
constant) to f (g(X)) and this polynomial is irreducible. 

This previous proof could have been written in a much shorter and con-
ceptual form, using some basic facts of extensions of fields. Namely, let 
0 be a zero of g - a. Then [K (a, (5) : K(a)] = deg(g) because g - 
is irreducible, and thus the minimal polynomial of 0 over K(a). On the 
other hand, f being irreducible over K, it is the minimal polynomial of 
a over K. Thus [K(a) : K] = deg(f). Thus, by multiplicativity of de-
grees in extensions, [K(a, 0) : K] = deg(f) • deg(g). On the other hand, 
a = g(0), thus K(a, /3) = K(3), so the degree of /3 over K is at least 
deg(f) • deg(g) = deg(f(g(X)). Because f (g(X)) has j3 as zero, it follows 
that it is the minimal polynomial of 0 over K and so it is irreducible over K. 

Using the previous result, we obtain a generalization (and a more general 
statement) of two difficult problems given in recent Romanian TST's: 

Example 9.1 Let f be a monic polynomial with integer coefficients and 

let p be a prime number. If f is irreducible in Z[X] and 
.V(_i)deg(f)f (0) is irrational, then f(XP) is also irreducible 
in Z,[X]. 

Solution. Consider a a complex zero of f and let n = deg( f) and g(X) = XP 
and h = g - a. Using previous results, it suffices to prove that h is irreducible 
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in Q[a] [X]. Because Q[a] is a subfield of C, it suffices to prove that a is 
not the p-th power of an element of Q[a]. Suppose there is u E Q[X] of 
degree at most n — 1 such that a = uP (a). Let al, a2, ..., an  be the zeros 
of f . Because f is irreducible and a is one of its zeros, f is the minimal 
polynomial of a, so f must divide uP(X) — X. Therefore al • a2 • • • an = 
(u(ai)•u(a2) • • • u(an))P. Finally, using the fundamental theorem of symmetric 
polynomials, u(a1)-u(a2) • • • u(an) is rational. But al • a2 • • an  = (-1)nf (0), 
implies ,V(-1)"f (0) E Q, a contradiction. 
A direct application of Capelli's theorem solves the following problem, which 
is not as easy otherwise: 

Example 10. I Prove that for each positive integer n the polynomial f (X) = 
	 (X2 + 12)(X2 + 22) 	(X2  + n2) + 1 is irreducible in Z[X]. 

Japan 1999 

Solution. Consider the polynomial g(X) = (X + 12)(X + 22)...(X + n2) + 1. 
Let us prove first that this polynomial is irreducible in Z[X]. Suppose that 
g(X) =- F(X)G(X) with F, G E Z[X] nonconstant. Then F(—i2)G(—i2) = 1 
for any 1 < i < n. Therefore F(—i2) and G(—i2) are equal to 1 or —1 and 
since their product is 1, we must have F(—i2) = G(—i2) for all 1 < i < n. 
This means that F — G is divisible by (X +12)(X + 22)...(X + n2) and because 
it has degree at most n — 1, it must be the zero polynomial. Therefore g = F2  
and so (n!)2  + 1 = g(0) must be a perfect square. This is clearly impossible, 
so g is irreducible. All we have to do now is to apply the result in example 4. 

Sophie Germain's identity m4  + 4n4  = (m2  — 2mn + 2n2)(m2  + 2mn 2n2) 
shows that the polynomial X4  + 4a4  is reducible in Z[X] for all integers a. 
However, finding an irreducibility criterion for polynomials of the form X' + a 
is not an easy task. The following result, even though very particular, shows 
that this problem is not an easy one. Actually, there exists a general criterion, 
also known as Capelli's criterion: for rational a and m > 2, the polynomial 
X' — a is irreducible in Q[X] if and only if va, is irrational for any prime p 
dividing m and also, if 41m, a is not of the form —4b4  with b rational. 
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Example 11. L_ 	 Let n > 2 be an integer and let K be a subfield of C. If the 

polynomial f (X) = 	— a E K[X] is reducible in K[X], 
then either there exists b E K such that a = b2  or there exists 
c E K such that a = —4c4. 

  

Solution.  Suppose the contrary, that X2  — a is irreducible in K[X]. Let a 
be a zero of this polynomial. First, we will prove that X4  — a is irreducible 
in K[X]. Using the result in example 8, it is enough to prove that X2  — a is 
irreducible in K[a][X]. If this is not true, then there are u, v E K such that 
a = (u + av)2, which can be also written as v2a2  + (2uv — 1)a + u2  = 0. 
Because a2  E K and a is not in K, it follows that 2uv = 1 and u2  + av2  = 0. 
Thus a = —4u4  and we can take c = u, a contradiction. Therefore X2  — a is 
irreducible in K[a][X] and X4  — a is irreducible in K[X]. Now, we will prove 
by induction on n the following assertion: for any subfield K of C and any 
a E K not of the form b2  or —4c4  with b, c E K, the polynomial X2n  — a is 
irreducible in K[X]. Assume it is true for n — 1 and take a a zero of X2  — a. 
Let Kt  be the set of xt  when x E K. Then with the same argument as above 
one can prove that a does not belong to —K2[a] (thus it is not in —4K4[a]) 
and it does not belong to K2[a]. Therefore X2Th  — a is irreducible over 
K[a]. In the same way we prove that X2"

-1 
 + a is irreducible over K (a). 

Now, observe that X2n  — a = (X
n.-1 a)(x2".-1 a)

,  so it has at most two 
irreducible factors over K. If it is not irreducible over K, then one of its ir-
reducible factors over K will be X2n  + a or X2n-1  — a, thus one of these 
polynomials would have coefficients in K. This would imply that a E K, which 
means that a is a square in K. This is a contradiction which finishes the proof. 

The following example is a notoriously difficult problem given a few years ago 
in a Romanian Team Selection Test. 

rExample 12—.] Prove that the polynomial (X2  + X)2n  + 1 is irreducible in 
Q[X] for all integers n > 0. 

[Marius Cavachi] Romanian TST 1997 
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Solution.  Using Capelli's theorem, it is enough to prove that if a is a root of 
f (X) = X2n  + 1 (which is clearly irreducible in Q[X] by Eisenstein's theorem 
applied to f (X + 1)), then X2  + X — a is irreducible in Q[a] [X] (this is also 
immediate from the previous problem). But this is not difficult, because a 
polynomial of degree 2 (or 3) is reducible over a field if and only if it has roots 
in that field. Here, it is enough to prove that we cannot find a polynomial 
g E Q[X] such that g(a)2  + g(a) = a. Suppose by contradiction that g is 
such a polynomial. Then, if al, a2, a2Th are the roots of f it follows from 
the irreducibility of f that (g (a,) + = a, + 4  for all i. By multiplying 
these relations, we deduce that f (— 21) is the square of a rational number (the 
argument is always the same, based on the theorem of symmetric polynomi-
als). But this means that 42"+1 is a perfect square, which is clearly impossible. 

A very efficient method for proving that a certain polynomial is irreducible 
is working modulo p for suitable prime numbers p. There are several criteria 
involving this idea, and Eisenstein's criterion is probably the easiest to state 
and verify. It asserts that if f (X) = a„Xn + an_1Xn-1  + • • aiX + a0 is 
a polynomial with integer coefficients for which there exists a prime p such 
that p divides all coefficients except an  and p2  does not divide a0 then f is 
irreducible in Q[X]. The proof is not complicated. Observe first of all that 
by dividing f by the greatest common divisor of its coefficients, the resulting 
polynomial is primitive and has the same property. Therefore we may assume 
that f is primitive and so it is enough to prove the irreducibility in Z[X]. 
Suppose that f = gh for some nonconstant integer polynomials g, h and look 
at this equality in the field Z/pZ. Let f* be the polynomial f reduced modulo 
p. We have g*h* = anXn (by convention, an  will also denote an  (mod p)). 
This implies that g* (X) = bXr and h* (X) = cX' for some 0 < r < n, with 
be = an. Suppose first that r = 0. Then h(X) = cXn pu(X) for a certain 
polynomial with integer coefficients u. Because p does not divide an, it does 
not divide c and so deg(h) > n, contradiction. This shows that r > 0 and 
similarly r < n. Thus there exist polynomials u, v with integer coefficients 
such that g(X) = bXr + pu(X) and h(X) = cX' +pv(X). This shows that 
a0 = f (0) = p2u(0)v(0) is a multiple of p2, contradiction. 

Before passing to the next example, note two important consequences of Eisen- 
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stein's criterion. First, if p is a prime number, then f (X) = 1 + X + X 2  + 
• • • + XP-1  is irreducible in Q[X]. This follows from Gauss's lemma and the 
observation that f (X + 1) = +xy - 1) satisfies the conditions of Eisen-
stein's criterion. Second, for all n there is a polynomial of degree n which is 
irreducible in Q[X]. Indeed, for Xri — 2, Eisenstein's criterion can be applied 
with p = 2 and the result follows from Gauss's lemma. 
The following example is more general than Eisenstein's criterion. And older! 

lExample 13 Let k = f n  pg with n > 1, p a prime, and f and g polyno-
mials with integer coefficients such that deg( fn ) > deg(g), k 
is primitive, and there exists a prime p such that f* is irre-
ducible in Z/pZ[X] and f* does not divide g*. 
Then k is irreducible in Q[X]. 

[Schonemann's criterion] 

Solution.  Suppose that k = k1k2 is a nontrivial factorization in polynomials 
with integer coefficients. By passing to Z/pZ[X] we deduce that kiq = (f* )11. 
From the hypothesis and this equality, it follows that there exist nonnegative 
integers u, v with u + v = n and polynomials with integer coefficients gi, g2  
such that k1  = fu + p91 and k2 = ft' + pg2, with deg(gi) < u deg(f) and 
deg(g2) < v deg(f). From here we infer that g = fug2+ fvgi+pg192. Because 
k1 is not identical 1, we have u > 0 and v > 0. Let us assume, without loss of 
generality, that u < v. From the previous relation there exists a polynomial h 
with integer coefficients such that g = fuh+pg192. It is enough to pass again 
in Z/pZ[X] this last relation to deduce that f* divides g*, which contradicts 
the hypothesis. Therefore F is irreducible. 

Here is an application of the above criterion, hardly approachable otherwise: 

rExample 14. Let p be a prime of the form 4k+3 and let a, b be integers such 
that min(vp(a), vp(b — 1)) = 1. Prove that the polynomial 
X2P + aX + b is irreducible in Z[X]. 

[Laurentiu Panaitopol, Doru $teanescu] 
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Solution.  Indeed, the fact that p = 3 (mod 4) ensures that X2  + 1 is irre-
ducible in Z/pZ[X] (indeed, being of degree 2, it is enough to prove that it 
has no roots in Z/pZ, which was proved for instance in the chapter Primes 
and Squares). Let us try to write X2P + aX + b as (X2  + 1)P + pg(X), just 
as in the previous example. It is enough to take 

	

g(X) 
a x  + b-1 + 1 . [(P 	 P x 2(p-1) + 	x 2(p-2) + ... + 	P x-2 . 

P 	p 	p 	1 	 2 	 P 1  

Now it is immediate that all conditions of Schonemann's criterion are satisfied, 
so the problem is solved. 

Now let us see a beautiful proof of the irreducibility of the cyclotomic poly-
nomials. This is not an easy problem, as the reader can immediately observe. 
But for the reader who is not so familiar with these polynomials, let us make 
a (very small) introduction. Let n be a positive integer. If n = 1 we define 
01(X) = X - 1 and if n > 1 we put 

2ikw  
(X — e  n (21.3) 

gcd(k,n)=1,1<k<n 

From this definition, it is not even clear why this polynomial has integer coef- 
ficients. Actually, one can easily prove the identity IT q5d(X) = X' - 1, which 

din 
allows a direct proof by induction of the fact that On(X) E Z[X]. Indeed, 
just observe that Xn - 1 has no repeated zero, that clearly the left-hand side 
divides Xn - 1 because every zero of it is a zero of Xn -1 (it is clear from the 
definition/ that On  has no repeated zeros and also that On  and Om, are relatively 
prime for distinct m, n) and finally that the degree of 1-1 Od(X) is n because of 

din 

the identity > co(d) = n (proved in the chapter The Smaller, the Better). 
din 

Now, let us prove the following important result: 
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[Example 15.1 The polynomial 07., is irreducible in Q[X] for each positive 
integers n. 

Solution.  Let a be a primitive root of unity of order n and let p be a prime 
number relatively prime to n. Let f and g be the minimal polynomials of a 
and aP over the field of rational numbers. Because a is an algebraic integer, 
f, g have integer coefficients. Also, because g(aP) = 0, it follows that f divides 
g(XP). The idea is that in Z/pZ we have g(XP) = g(X)P and so if f* and g* 
are the polynomials f, g reduced modulo p, then f* divides (g*)P in Z/pZ[X]. 
Thus, if r is a root of f* in some algebraic closure of Z/pZ, then g*(r) = 0. 
Now, suppose that f g. Both f and g divide On  in Z[X], because aP is also 
a primitive root of unity. Because f g are irreducible, they are relatively 
prime and fg divides On  in Z[X], thus f*g* divides Xn — 1 (seen as a poly-
nomial in Z/pZ[X]). But this is impossible, because it would follow that r 
is a root of multiplicity at least 2 of the polynomial Xn — 1 modulo p, that 
is we also have nrn-1  = 0 in that algebraic extension. Because n and p are 
relatively prime, this implies that r = 0, which is impossible, because rTh = 1. 

The above contradiction shows that f = g, that is a and aP have the same 
minimal polynomial for all prime numbers p relatively prime to n. This im-
mediately implies that a and Cek  have the same minimal polynomial for all k 
relatively prime to 71. Thus, the minimal polynomial of a must have as roots 
all primitive roots of unity of order n and thus degree at least (,o(n), which 
means that it is On, that is On  is irreducible. 

There exists another beautiful proof of this result, but which uses the difficult 
(and non elementary) Dirichlet's theorem on primes in arithmetic progressions. 
Let w be a primitive root of unity of order n and let s = cp(n) = deg(0,). Also, 
let f be an irreducible factor of On  with integer coefficients, which has w as 
a zero. Then the zeros of f (which, as we have seen in chapter A Brief 
Introduction to Algebraic Number Theory, are called the conjugates 
of w) are of the form wt. Also, if On  is not irreducible then the number of 
zeros of f is smaller than s. Now, take p to be a prime number. Because f is 
monic and has all zeros of absolute value 1, it follows that < 2s. But 
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because f(w) = 0, it follows that f 	 is is an algebraic integer (this result is 
not obvious, but it has been discussed in the same chapter). Its conjugates 

are also algebraic integers of the form f (wtP) . Thus if we choose p > 2S, then 

all conjugates of the algebraic integer f (wP)  are inside the unit disc of the 

complex plane, thus f(wP) = 0 (indeed, if x = f(u)P)  and  g is the minimal 
polynomial of x, then by Gauss's lemma g has integer coefficients, and thus 
the product of the absolute values of all conjugates of x is just lg(0)1; if all 
conjugates are inside the unit disc, then g(0) = 0 and because g is irreducible, 
g(X) = X, thus x = 0). Therefore, for any prime number p > 2', wP is a 
zero of f. All we need to observe now is that Dirichlet's theorem assures us 
of the existence of infinitely many primes p r (mod n) for any r such that 
gcd(r, n) = 1. Therefore all of with gcd(r, n) = 1 are zeros of f, which shows 
that deg(f) > deg(On) and proves the irreducibility of On. 
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21.2 Problems for training 

1. Let n be an integer greater than 2. Prove that the polynomial f(X) = 
X(X — (n! +1))(X — 2(n! + 1)) . - - (X — (n —1)(n! +1))+n! is irreducible 
in Z[X], but f(x) is composite for all integers x. 

2. Let p be an odd prime and k > 1. Prove that for any partition of the 
set of positive integers into k classes there is a class and infinitely many 
polynomials of degree p — 1 with all coefficients in that class and which 
are irreducible in Z[X]. 

Marian Andronache, Ion Savu, Unesco Contest 1995 

3. Find the number of irreducible polynomials of the form XP + pXc  + 
pX1  +1, where p > 5 is a fixed prime number and k, 1 are subject to the 
conditions 1 < 1 < k < p —1. 

Valentin Vornicu, Romanian TST 2006 

4. Find all integers k such that X"±1  + kXTh — 870X2  + 1945X + 1995 is 
reducible in Z[X] for infinitely many M. 

Vietnamese TST 1995 

5. Let p and q be distinct prime numbers and n > 3. Find all integers a 
for which X' + aXn-1  + pq is reducible in Z[X]. 

Chinese TST 1994 

6. Let n and r be positive integers. Prove the existence of a polynomial 
f with integer coefficients and degree n such that for any polynomial g 
with integer coefficients and degree at most n, if the coefficients of f — g 
have absolute values at most r, then g is irreducible in Q[X]. 

Miklos Schweitzer Competition 
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7. Prove that for any positive integer n, the polynomial 

(x-2 ± 2)n + 5(X2n-1. 10Xn  ± 5) 

is irreducible in Z[X]. 

Laurentiu Panaitopol, Doru Stefanescu 

8. Let p be a prime of the form 4k +3 and let n be a positive integer. Prove 
that (X2  + 1)n + p is irreducible in Z[X]. 

N. Popescu, Gazeta Matematicg 

9. Find all positive integers n such that Xn + 64 is reducible in Q[X]. 

Bulgarian Olympiad 

10. Let f (X) = amXm + am_i Xm-1  + • • • + ai X + a0 be a polynomial of 
degree m in Z[X] and define H = max IN. If f (n) is prime for 

o<z<m-1 am 
some integer n > H + 2 then f is irreducible in Z[X]. 

AMM 

11. Let f be a monic polynomial of fourth degree which has exactly one real 
zero. Prove that f is reducible in Q[X]. 

MOSP 2000 

12. Let a and n be integers and p be a prime such that p > 'al + 1. Prove 
that Xn + aX + p is irreducible in Z[X]. 

Laurentiu Panaitopol, Romanian TST 1999 
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13. Let p > 3 be a prime number and m, n be positive integers. Prove that 
X' + X' + p is irreducible in Z[X]. 

Laurentiu Panaitopol 

14. Let p be a prime number and let k be an integer not divisible by p. Prove 
that XP — X + k is irreducible in Z[X]. 

15. Let A be the ring of Gaussian integers Z[i] and let zi , z2, 	E A 
be such that 	— zi I > 2 for all i > 1. Prove that the polynomial 
1 + (X — zi)(X — z2) • • • (X — zn) is irreducible in A[X]. 

Oral Examination ENS 

16. Let f e Z[X] be a monic polynomial irreducible in Z[X], and suppose 
that there exists a positive integer m such that f(X") is reducible in 
Z[X]. Show that for any prime p dividing f (0) we have vp( f (0)) > 2. 

17. Let f be a monic polynomial with integer coefficients having distinct 
integer roots. Prove that f2  + 1 and f4  + 1 are irreducible in Q[X]. 

18. Let p, q be odd prime numbers such that p 1 (mod 8) and (7 ) = 1. 

Prove that the polynomial (X2  — p + q)2  — 4qX2  is irreducible in Z[X] 
but that it is reducible mod m for all integers m. 

David Hilbert 

19. Prove that for all positive integers d there is a monic polynomial f of 
degree d such that Xn + f (X) is irreducible in Z[X] for all n. 

20. Let d > 1 be an integer and let f (n) be the probability that a polyno-
mial of degree n with all coefficients bounded by n in absolute value is 
reducible in Z[X]. Prove that f (n) = 0(in2n). 



504 	21. SOME USEFUL IRREDUCIBILITY CRITERIA 

21. Let f be a primitive polynomial with integer coefficients of degree n for 
which there exist distinct integers xi, x2, ..., xr, such that 

171+1  I! 
0 < If(x2)1 < L 	n2+171  . 

Prove that f is irreducible in Z[X]. 

Polya-Szego 

22. Factor the polynomial X2005  — 2005X + 2004 over Z[X]. 

Valentin Vornicu, Mathlinks Contest 

23. Is there a polynomial f with rational coefficients such that f(1) 	—1 
and Xnf(X) +1 is reducible for all n > 1? 

Schinzel 

24. Let f be an irreducible polynomial in Q[X] of degree p, where p > 2 is 
prime. Let xi, x2, ..., x p  be the zeros of f. Prove that for any nonconstant 
polynomial g with rational coefficients, of degree smaller than p, the 
numbers g(xi),g(x2),...,g(xp) are pairwise distinct. 

Toma Albu, Romanian TST 1983 

25. Let a be a nonzero integer. Prove that the polynomial 

+ aXn-1  + + aX2  + aX 1 

is irreducible in Z[X]. 

Marian Andronache, Ion Savu, Romanian Olympiad 1990 

26. Let p1, p2, ...,pn  be distinct prime numbers. Prove that the polynomial 

f (x) = 	 (x + eiN/Fi + e2VP2 + • • • + enN/F971) 
ei,e2,•••,en=±1 

is irreducible in Z[X]. 
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22.1 Theory and examples 

After a very elementary chapter about extremal properties of graphs, it is 
time to see how the study of their cycles can give valuable information in 
combinatorial problems. We will assume in this chapter some familiarity with 
basic concepts of graph theory that can be found in practically any book of 
combinatorics. We prefer to do so, because recalling all definitions would re-
quire a large digression and would largely diminish the quantity of examples 
presented. And since the topic is very subtle and the problems are in general 
difficult, we think it is better to present many examples. We would like to 
thank Adrian Zahariuc for the large quantity of interesting results and solu-
tions that he communicated to us. 

We start with a simple, but important result. It was extended by Eras in a 
much more difficult to prove statement: if the number of edges of a graph on 
n vertices is at least (n-21)k then there exists a cycle of length at least k + 1 (if 
k > 1). Let us remain modest and prove the following much easier result : 

Example 1.1 In a graph G with n vertices, every vertex has degree at least 
k. Prove that G has a cycle of length at least k + 1. 

Solution. The shortest solution uses the extremal principle. Indeed, consider 
the longest chain xo, xi, ..., xi. in G and observe that this maximality property 
ensures that all vertices adjacent to x0 are in this longest chain. Or, the degree 
of x0 being at least k, we deduce that there exists a vertex xi  adjacent to x0  
such that k < i < r. Therefore xo, x1, ..., xi, x0 is a cycle of length at least k+1. 

Any graph with n vertices and at least n edges must have a cycle. The following 
problem is an easy application of this fact: 

Example 2.1 Suppose 2n points of an n x n grid are marked. Prove that 
there exists a k > 1 and 2k distinct marked points al, a2, •••, a2k 

such that for all i, a2i_1 and a2, are in the same row, while a2z 

and a2,4_1 are in the same column. 

IMC 1999 
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Solution.  Here it is not difficult to discover the graph to work on. It is enough 
to look at the n lines and n columns as the two classes of a bipartite graph. We 
connect two vertices if the intersection of the corresponding row and column 
is marked. Clearly, this graph has 2n vertices and 2n edges, so there must 
exist a cycle. But the existence of a cycle is equivalent (by the definition of 
the graph) to the conclusion of the problem. 

The following example is an extremal problem in graph theory, of the same 
kind as Turan's theorem. This type of problem can go from easy or even trivial 
to extremely complex and complicated results. Of course, we will discuss just 
the first type of problem. 

[Example 3.1 Prove that every graph on n > 4 vertices and m > n±n V 
4
4n-3 
 

edges has at least one 4-cycle. 

Solution.  Let us count, in two different ways, the number of triples (c, a, b) 
where a, b, c are vertices such that c is connected to both a and b. For a 
fixed vertex c, there are d(c)2  — d(c) possibilities for the pair (a, b), where d(c) 
denotes the valence of c. It follows that there are at least E(d(c)2  — d(c)) 

triples. By the Cauchy-Schwarz inequality, if m represents the number of 
edges of the graph, then 

2  E d(e)2 _ d(c) > 4m 	2m 	 (22.1) 
C 

Now, if there are no 4-cycles, then for fixed a and b there is at most one vertex 
c that appears in a triple (a, b, c). Hence we obtain at most n(n — 1) triples. 

It follows that 47712  2m < n2  n, which implies that m < n±n 44n-3  a  

contradiction. 
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Recall that a graph in which every vertex has degree 2 is a disjoint union of 
cycles. It turns out that this very innocent observation is more than helpful 
in some quite challenging problems. Here are some examples, taken from 
different contests: 

Example 4. A company wants to build a 2001 x 2001 building with doors 
connecting pairs of adjacent rooms (which are 1 x 1 squares, 
two rooms being adjacent if they have a common edge). Is it 
possible for every room to have exactly 2 doors? 

   

[Gabriel Carol]] 

Solution. Let us analyze the situation in terms of graphs: suppose such a 
situation is possible, and consider the graph G with vertices representing the 
rooms and connecting two rooms if there exists a door between them. Then 
the hypothesis says that the degree of any vertex is 2. Thus G is a union of 
disjoint cycles C1, C2, ..., Cp. However, observe that any cycle has even length, 
because the number of vertical steps is the same in both directions and the 
same holds for horizontal steps. Therefore the number of vertices of G, which 
is the sum of lengths of these cycles, is an even number, a contradiction. 

Reading the solution to the following problem, one might say that it is ex-
tremely easy: there is no tricky idea behind it. But there there are many 
possible approaches that can fail, and this probably explains its presence on 
the list of problems proposed for the IMO 1990. 

Example 5.1 Let E be a set of 2n —1 points on a circle, with n > 2. Suppose 
that precisely k points of E are colored black. We say that this 
coloring is admissible if there is at least one pair of black points 
such that the interior of one of the arcs they determine contains 
exactly n points of E. What is the smallest k such that any 
coloring of k points of E is admissible? 

IMO 1990 
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Solution.  Consider G the graph having vertices the black points of E and 
join two points x, y by an edge if there are n points of E on one of the two 
open arcs determined by x and y. Thus the problem becomes: what is the 
least k such that among any k vertices of this graph at least two are adjacent? 
The problem becomes much easier with this statement, because of the fact 
that the degree of any vertex in G is clearly 2, thus G is a union of disjoint 
cycles. It is clear that for a single cycle of length r, the least value of k is 
1 + L 2  J . Now, observe that if 2n - 1 is not a multiple of 3 then G is ac-
tually a cycle (because (gcd(n + 1, 2n - 1) = 1), while in the other case G 
is the union of three disjoint cycles of length 2n1 . Therefore the least k is 
n= L 

12n 
2 
 1]  +1 if 2n -1 is not a multiple of 3 and n 1 = 3  [2n6-1]  +1 otherwise. 

Finally, a more involved example using the same idea, but with some compli-
cation which are far from obvious. 

L Example 6 Consider in the plane the rectangle with vertices (0, 0), (m, 0) 
(0, n), (m, n), where m and n are odd positive integers. Par-
tition it rectangle into triangles satisfying the following condi-
tions: 1) Each triangle has at least one side (called the good 
side; the sides that are not good will be called bad) on a line 
x = j or y = k for some nonnegative integers j, k, such that 
the height corresponding to that side has length 1; 2) Each bad 
side is common for two triangles of the partition. Prove that 
there are at least two triangles having two good sides each. 

IMO 1990 Shortlist 

Solution.  Let us define a graph G having as vertices the midpoints of the bad 
sides and as edges the segments connecting the midpoints of two bad sides in 
a triangle of the partition. Thus, any edge is parallel to one of the sides of 
the rectangle, being at distance k from the sides of the rectangle, for a 
suitable integer k. Also, it is clear that any vertex has degree at most 2, so we 
have three cases. The easiest is when there exists an isolated vertex. Then the 
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triangles that have the side containing that vertex as common side have two 
good sides. Another easy case is when there exists a vertex x having degree 1. 
Then x is the end of a polygonal line formed by edges of the graph, and having 
the other end a point y, which is the midpoint of a side in a triangle having two 
good sides. The conclusion follows in this case, too. Thus, it remains to cover 
the "difficult" case when all vertices have degree 2. Actually, we will show that 
this case is impossible. Observe that until now we haven't used the hypothesis 
that m, n are odd. This suggests looking at the cycles of G. Indeed, we know 
that G is a union of disjoint cycles. If we manage to prove that the number of 
squares traversed by any cycle is even, it would follow that the table has an 
even number of unit squares, which is impossible, because mn is odd. Divide 
first the rectangle by its lattice points into mn unit squares. So, fix a cycle 
and observe that from the hypothesis it follows that the center of any square 
is contained in only one cycle. Now, by alternatively coloring the cells of the 
rectangle with white and black, we obtain a chessboard in which every cycle 
passes alternatively on white and black squares, so it passes through an even 
number of squares. This proves the claim and shows that G cannot have all 
vertices of degree 2. 

The next problem is already unobvious, and the solution is not immediate, 
because it requires two arguments which are completely different: a construc-
tion and a proof of optimality. Starting with some special cases is often the 
best way to proceed, and this is indeed the key here. 

Example 7. i Let n be a positive integer. Suppose that n airline companies 
offer trips to citizens of N cities such that for any two cities 
there exists a direct flight in both directions. Find the least N 
such that we can always find a company which can offer a trip 
in a cycle with an odd number of landing points. 

Adapted after IMO 1983 Shortlist 

Solution.  By starting with small values of n, we can guess the answer: N = 
2' +1. But it is not obvious how to prove both that for 2' the assertion in the 
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problem is not always true and the fact that for 272  + 1 cities the conclusion 
always holds. Let us start with the first claim: the result is not always true if 
we allow only 2n cities. Indeed, let the cities be Co, C1, C2n-i. Write every 
number smaller than 2n in base 2 with n digits (we allow zeros in the first 
positions), and let us join two cities Ci  and C3  by a flight offered by an airline 
company Al  if the first digit of i and j is different, by a flight offered by A2 if the 
first digits are identical, but the second digit differs in the two numbers and so 
on. Because the i-th digit is alternating in the vertices of a cycle for company 
Ai, it follows that all cycles realized by 24.7, are even. Therefore N > 2n + 1. 
Now, we prove by induction that the assertion holds for N > 2n + 1. For n = 1 
everything is clear, so assume the result for n — 1. Suppose that all cycles in 
the graph of flights offered by company An  are even (otherwise we have found 
our odd cycle). Therefore the graph of flights offered by An  is bipartite, that 
is there exists a partition B1, B2, ..., Bni, D1, D2, ..., Dp  of the cities such that 
any flight offered by An  connects one of the cities Bi with one of the cities Dk. 
Because m+p = 2n  + 1, we may assume that m > 2n-1+1. But then the cities 
B1, B2, ..., Bm  are connected only by flights offered by A1, A2, ..., An_1, so by 
the induction hypothesis one of these companies can offer an odd cycle. This 
finishes the induction step and shows that N = 2n  + 1 is the desired number. 
Here comes a very challenging problem with a very beautiful idea: 

Example 80 On an infinite checkerboard are placed 111 non-overlapping 
corners, L-shaped figures made of 3 unit squares. Suppose 
that for any corner, the 2 x 2 square containing it is entirely 
covered by the corners. Prove that one can remove each num-
ber between 1 and 110 of the corners so that the property will 
be preserved. 

St. Petersburg 2000 

Solution. We will argue by contradiction. Assuming that by removing any 
109 corners the property is no longer preserved, it would follow that no 2 x 3 
rectangle is covered by 2 corners. Now, define the following directed graph 
with vertices on the corners: for a fixed corner C, draw an edge from it to the 



THEORY AND EXAMPLES 513 

corner that helps covering the 2 x 2 square containing C. It is clear that if in 
a certain corner there is no entering edge, we may safely remove that corner, 
contradiction. Therefore, in every corner there exists an entering edge and so 
the graph constructed has the property that every edge belongs to some cycle. 
We will prove that the graph cannot be a cycle of 111 vertices. Define the 
"center" of a corner as the center of the 2 x 2 square containing it. The first 
observation, that no two corners can cover a 2 x 3 rectangle, shows that in a 
cycle the x coordinate of the centers of the vertices are alternatively even and 
odd. Thus the cycle must have an even length, which shows that the graph 
itself cannot be a cycle. Therefore, it has at least two cycles. But then we 
may safely remove all the corners except those in a cycle of smallest length 
and the property will be preserved, thus again a contradiction. 
The following result is particularly nice: 

There are n competitors in a table-tennis contest. Any 2 of 
them play exactly once against each other and no draws are 
possible. We know that no matter how we divide them into 
2 groups A and B, there is some player from A who defeated 
some player from B. Prove that at the end of the competition, 
we can sit all the players at a round table such that everyone 
defeated his or her right neighbor. 

Solution.  Clearly, the problem refers to a tournament graph, that is, a di-
rected graph in which any two vertices are connected in exactly one direction. 
We have to prove that this graph contains a Hamiltonian circuit. Take the 
longest elementary cycle, v1, v2, ..., vrn  with pairwise distinct vertices, and take 
some other vertex v. Unless all edges come either out of v or into v, there is 
some i such that viv and vvi±i are edges. Then, vi, v2, ..., vZ  v, vi+i, vim, is a 
longer elementary cycle, contradiction. Therefore, there are only two kinds of 
vertices v E V — {vi}: (type A) those for which all vv, are edges; and (type B) 
those for which all v.,v are edges. If there is some edge ba with a of type A and 
b of type B, then we can construct once again a longer circuit: b, a, v1, ..., vim,. 
Therefore, for any a E A and b E B, ab is an edge. Consider the partition 
V = B U (A U {v2}). Due to the hypothesis, since all edges between the two 
classes point towards B, we must have B = 0. But, once again, V = A U { 
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is a forbidden partition, so A = 0. Therefore, the circuit is Hamiltonian. 

Before discussing the next problem, we need to present a very useful result, 
which is particularly easy to prove, but has interesting applications. This is 
why it will be discussed as a separate problem and not as a lemma: 

[Example 10.1 Prove that a graph is bipartite if and only if all of its cycles 
have even length. 

Solution.  One part of the result is immediate: if the graph is bipartite then 
obviously it cannot have odd cycles, because there is no internal edge in one of 
the two classes of the partition. The converse is a little bit trickier. Suppose 
that a graph G has no odd cycles and start your "journey" with an arbitrary 
vertex v and color this vertex white. Continue your trip through the vertices 
of the graph, by coloring all neighbors of the initial vertex in black. Continue 
in this manner, by considering this time every neighbor of v as an initial point 
of a new trip and color new vertices by the described rule, avoiding vertices 
that are already assigned a color. We must prove that you can do your trip 
with no problem. But the only problem that may occur is to have two paths 
to a certain vertex (called a problem vertex), each leading to a different color. 
But this is impossible, since all cycles are even. Indeed, any two paths from v 
to this problem vertex must have the same parity. Therefore we have a valid 
coloring of the vertices of the graph, and by construction this proves that G 
is bipartite. And here is an application: 

Example 11. A group consists of n tourists. Among any 3 of them there 
are 2 who are not familiar. For every partition of the tourists 
in 2 buses, we can always find 2 tourists that are in the same 
bus who are familiar with each other. Prove that there is a 
tourist who is familiar with at most ki tourists. 

 

Bulgaria 2004 
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Solution.  Construct a graph G on n vertices corresponding to the n tourists. 
We construct the edge ab if and only if the tourists a and b are familiar with 
each other. By the hypothesis, G is not bipartite, so it must have an odd 
cycle. Let al , a2 , a/ be the smallest odd cycle. Since 1 is odd and 1 > 3, we 
must have 1> 5. It is clear that there are no other edges among the a2 except 
aini+1. If some vertex v is connected to a, and a3 , it is easy to show that the 
"distance" between i and j is 2, that is equals 2 or 1— 2, since otherwise 
we would have a smaller odd cycle. Therefore, every vertex which does not 
belong to the cycle is adjacent to at most 2 ai 's. Even more, every vertex of 
the cycle is connected to exactly 2 ai 's. Therefore, if c(v) is the number of 
edges between v and the vertices of the cycle, c(v) < 2, so 

At first glance, the following has nothing to do with graphs and cycles. Well, 
it does! Here is a beautiful solution by Adrian Zahariuc: 

r xample 12.1 In each square of a chessboard is written a positive real num-
ber such that the sum of the numbers in each row is exactly 
1. It is known that for any 8 squares, no two in the same 
row or column, the product of the numbers written in these 
squares does not exceed the product of the numbers on the 
main diagonal. Prove that the sum of the numbers on the 
main diagonal is at least 1. 

St. Petersburg 2000 
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Solution.  First, let us label the rows and the columns 1,2, ..., 8, consecutively, 
in increasing order. Suppose by way of contradiction that the sum of the num-
bers on the main diagonal is less than 1. Then on row k there is some cell 
(k, j) such that the number written in it is greater than the number written 
in cell (j, j), that is, the one in the same column, on the main diagonal. Color 
(k, j) red and draw an arrow from row k to row j. Some of these arrows must 
form a loop. From each row belonging to the loop we choose the red cell, 
and from all other rows we choose the cell on the main diagonal. All these 8 
cells lie in different rows and different columns and their product exceeds the 
product of the numbers on the main diagonal, a contradiction. Therefore our 
assumption is false, and the sum of the numbers on the main diagonal is at 
least 1. 

And for the die-hards, here are two very difficult problems communicated to 
us by Adrian Zahariuc: 

Example 13. There are two airline companies in Wonderland. Any pair of 
cities is connected by a one-way flight offered by one of the 
companies. Prove that there is a city in Wonderland from 
which any other city can be reached via airplane without 
changing the company. 

Iranian TST 2006 

Solution.  We would rather reformulate the problem in terms of graph theory: 
given a bichromatic (say, red and blue) tournament G(V, E) (i.e. a directed 
graph in which there is precisely one edge between any pair of vertices). We 
have to prove that there is a vertex v such that, for any other vertex u, there 
is a monochromatic directed path from v to u. Such a point will be called 
"strong". Let V I = n. We will prove the claim by induction on n. 
The base case is trivial. Suppose it is true for n — 1; we will prove it for n. 
Now suppose by way of contradiction that the claim fails for some G. By the 
inductive hypothesis we know that for each v E V there is some s(v) E V-{v} 

which is a strong point in G — {v}. Clearly, s(v) 	s(v") for all v v', since 
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otherwise s(v) would be strong in G. Let f = s-1, i.e. s(f(v)) = v for all 
v. It is clear that from v we can reach all points through a monochromatic 
path except f(v). For each v, draw an arrow from v to f(v). These arrows 
must form a loop. If this loop does not contain all n vertices of the graph, by 
the inductive hypothesis we must have a strong vertex in this graph, which 
contradicts the fact that we can't reach f(v) from v. Hence, this loop is a 
Hamiltonian circuit v1, v2, ..., vn. Let vn+1 =- vi. From vi, we can reach all 
vertices except vi+1 because vi+i = f(vi). We can't reach v from u through 
paths of both colors since, in that case, from u we could reach all the points 
we could reach from v, including f (u), which is false. 

For v 	f (u), let c(uv) be the color of all paths from u to v. It is clear 
that c(uv) 	c(v f (u)). We have c(uv) 	c(v f (u)) 	c(f (u) f (v)), so c(uv) = 
c(f (u) f (v)) for u # v f (u). In other words, c(vkvk+m) = c(vio_ivk±„,+1)• 
From here, it is easy to fill in the details. Basically, we just have to take m > 1 
coprime with n to get that we can travel between any two points through paths 
of color c(vovm) and we are done. 

Example 14. Does there exist a 3-regular graph (that is, every vertex has 
degree 3) such that any cycle has length at least 30? 

 

St. Petersburg 2000 

Solution. Even though the construction will not be easy, the answer is: yes, 
there does. We construct a 3-regular graph G, by induction on n such that any 
cycle has length at least n. Take G3 = K4, the complete graph on 4 vertices. 
Now, suppose we have constructed Gn(V, E) and label its edges 1, 2, ..., m. 
Take an integer N > n2m and let V' = V x ZN. If the edge numbered k in 
G, is ab, we draw an edge in an±i(Vi, .E') between (a, x) and (b, x + 2k) for 
all x E ZN. It is clear that Gri+1 is 3-regular. We show that Gn+i has the 
desired property, i.e. it contains no cycle of length less than n + 1. Suppose 
(a1, x1), ..., (at , xt ) is a cycle with t < n. Clearly, al, a2, •.., at is a cycle of Gn. 
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Therefore t = n, and all ch are distinct. We have 

n 

0 = (xi — x2) + (x2 — x3) + • • + (xn — 
	±2ki (mod N). (22.3) 

=1 

This sum is nonzero since all k3  are distinct, and also it is at most n2m < N 
in absolute value, a contradiction. Therefore this graph has all the desired 
properties, and the inductive construction is complete. 



PROBLEMS FOR TRAINING 	519 

22.2 Problems for training 

1. Prove that any graph on n > 3 vertices having at least 2 + (n21) edges 
has a Hamiltonian cycle. Does the property remain true if 2 + (n21)  is 
replaced by a smaller number? 

2. In a group of 12 people, among any 9 persons one can find five, any two 
of whom know each other. Show that there are 6 people in this group, 
any two of whom know each other. 

Russia 1999 

3. In a connected simple graph any vertex has degree at least 3. Prove that 
the graph has a cycle such that it remains connected after the edges of 
this cycle are deleted. 

Kornai 

4. For a given n > 2 find the least k with the following property: any set 
of k cells of an n x n table contains a nonempty subset A such that in 
every row and every column of the table there is an even number of cells 
belonging to A. 

Poland 2000 

5. In a society of at least 7 people each member communicates with three 
other members of the society. Prove that we can divide this society 
in two nonempty groups such that each member communicates with at 
least 2 members of their own group. 

Czech-Slovak Match 1997 
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6. Let n be a positive integer. Can we always assign to each vertex of a 2n-
gon one of the letters a and b such that the sequences of letters obtained 
by starting at a vertex and reading counterclockwise are all distinct? 

Japan 1997 

7. On an n x rt table real numbers are put in the unit squares such that no 
two rows are identically filled. Prove that one can remove a column of 
the table such that the new table has no two rows identically filled. 

8. Let G be a simple graph with 2n + 1 vertices and at least 3n + 1 edges. 
Prove that there exists a cycle having an even number of edges. Prove 
that this is not always true if the graph has only 3n edges. 

Miklos Schweitzer Competition 

9. There are 25 towns in a country. Find the smallest k for which one 
can set up bidirectional flight routes connecting these towns so that the 
following conditions are satisfied: (i) from each town there are exactly k 
direct routes to k other towns; (ii) if two towns are not connected by a 
direct route, there is a town which has direct routes to these two towns. 

Vietnamese TST 1997 

10. Let G be a tournoment (directed graph such that between any two ver-
tices there is exactly one directed edge) such that its edges are colored 
either red or blue. Prove that there exists a vertex of G, say v, with the 
property that for every other vertex u there is a monochromatic directed 
path from v to u. 

Iranian TST 2006 
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11. Some pairs of towns are connected by road. At least 3 roads leave each 
town. Show that there is a cycle containing a number of towns which is 
not a multiple of 3. 

Russia 

12. Prove that the m 
[

aximal
3( 	

number of edges in a graph of order n without 
n 1) an even cycle is 	2 _1' 

13. On the edges of a convex polyhedra we draw arrows such that from each 
vertex at least one arrow is pointing in and at least one is pointing out. 
Prove that there exists a face of the polyhedra such that the arrows on 
its edges form a circuit. 

Dan Schwartz, Romanian TST 2005 

14. A connected graph has 1998 points and each point has degree 3. If 200 
points, no two of them joined by an edge, are deleted, show that the 
result is still a connected graph. 

Russia 1998 
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23.1 Theory and examples 

Undoubtedly, polynomials represent a powerful tool in practically any area 
of mathematics, simply because they manage to create a subtle link between 
analysis and algebra: on the one hand, considering them as formal series comes 
handy in arithmetic and combinatorics; on the other hand their analytic prop-
erties (location of zeros, complex-analytic properties, etc) are particularly in-
teresting for effective estimations. The purpose of this chapter is to present 
some striking applications of these ideas in number theory and combinatorics. 
We will merely scratch the surface, but we are convinced that even this small 
amount will show the reader what profound mathematical objects polynomi-
als are. A particularly important result to be discussed is the revolutionary 
"Combinatorial Nullstellensatz" of Noga Alon, which shows perfectly well the 
power of algebraic methods in combinatorics. 

We begin, as usual, with a very easy problem. However, it is not entirely 
trivial because there are many approaches that can fail. A purely algebraic 
solution is both easy and insightful. 

Is there a set of points in space which cuts any plane in a finite, 
nonzero number of points? 

IMO 1987 Shortlist 

Solution. The idea is very simple: by taking such a set A to be the set of 
points of the form (f (t), g(t), h(t)), we need to find functions f, g, h such that 
for any a, b, c not all zero and any d, the equation a f (t) + bg(t) + ch(t) + d = 0 
has a finite nonzero number of solutions. This suggests taking polynomials 
f, g, h. One of the many choices is f (t) = t5, g(t) = t3  and h(t) = t. Indeed, 
the equation at5  bt3  ct d = 0 clearly has a finite number of solutions and 
has at least one, since any polynomial of odd degree has at least one real root. 
This shows that such a set exists. 
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You may very well know the classical problem stating that if 2' + 1 is a prime 
number, then n is a power of 2 (the reader who does not know it is urged 
to give it some thought before passing to the next problem!). The following 
example is an adaptation of this classical result, but it is not as immediate as 
the cited problem. 

Prove that if 4"1  — 2rn + 1 is a prime number, then all prime 
divisors of m are smaller than 5. 

[S. Golomb] AMM 

Solution. Suppose that p is a prime divisor of m, with p > 3. Write m = np. 
Then en  - 2m + 1 = P(-2"), where P(X) = X 2P + XP + 1. We claim that P 
is a multiple of X2  + X +1. Indeed, X2  + X +1 has distinct complex roots 
and any of its roots is clearly a root of P. Therefore X2  + X +1 divides P in 
C[X], thus in Q[X] too. Because X2  + X +1 is monic, Gauss's lemma implies 
that P is divisible by X2  + X +1 in Z[X]. Therefore, P(-211) is a multiple of 
4' — 2n + 1 > 1, so 4m — 2' + 1 is not a prime number. 

We continue with a fairly tricky problem, whose beautiful solution was com-
municated by Gheorghe Eckstein. This will be a preparation for the next 
challenging problem. 

Prove that the number obtained by multiplying all 2100  num- 

bers of the form +1 ± 	'/100 is the square of an 
integer. 

Tournament of the Towns 

Solution. The crucial observation is that if P E Z[X] is an even polynomial, 
then for every positive integer k, the polynomial P(X — fi-c)P(X + /) is also 
an even polynomial with integer coefficients. Now, consider the polynomials 

-P1 (X) = X, Pk (X) = Pk-1(X - 1/k)Pk_i (X + VTC) 
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for k > 2. By the first observation, Pioo  is an even polynomial with integer 
coefficients. But it is clear that the desired product is just P100(1)P1oo(-1), 
so it is a perfect square. This finishes the solution. 

As we said, the next problem is very challenging. The solution presented here 
is due to Pierre Bornsztein, and can be adapted to prove much more: the 
square roots of the squarefree positive integers are linearly independent over 
the set of rational numbers. There are also elementary proofs of this deep 
result, but the following argument is simply stunning. Interested readers will 
find in the exercise section a much more general (and difficult) statement that 
can be proved using polynomial techniques, and which we strongly recommend. 

Example 4. Let al, a2, an  be positive rational numbers such that Val + 
. \/t2  + + Van  is a rational number. Prove that the ai  are 
all rational numbers. 

 

Solution. If all xi  = c1,,„ then x2 are rational numbers and the sum S of the 
xi's is also rational. Let us assume that x1  is not rational and consider the 
polynomial 

P(X) = 	H 	(X - + u2x2 + • • • + unxn) 	(23.1) 

Clearly, when we expand this polynomial x2, x3, ..., xn  appear with even ex-
ponents because the polynomial is invariant under the substitutions x2 —> 
—x2, ..., xn  --> —xn. After expansion, the polynomial can be written as 

P(X) = 

for some polynomials with rational coefficients N and D. Because P vanishes 
at S, we deduce that xiD(S,xT,...,xn2 ) = N(S,x7,...,xn2 ), and the assump- 
tion that x1  is irrational implies that D(S, xi, ...,x2n) = N(S,xT, ..., x7,2) = 0. 
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But then we also have P(S, -xi , x2, ...,xn) = 0, which is impossible, since 
P(S, -xi, x2, ..., xii) is a product of positive numbers. This contradiction 
shows that xi  is rational and, by induction, all xi  are rational. 

The following problem became a classical application of polynomial techniques. 
It was also used in a Balkan Mathematical Olympiad and more recently in a 
Chinese TST. The following solution is probably a reason for its popularity. 

Example 5. A positive integer p is prime if an only if each equiangular 
polygon with p vertices and rational side-lengths is regular. 

Solution.  We will first prove that if n is a positive integer, E = etr7, and 
al , a2, ..., an  are positive real numbers, then there exists an n-gon with equal 
angles and side-lengths al, a2, ..., an  if and only if al + a2E + • • • + anEn-1  = 0. 
This is not difficult: it is enough to consider the edges of the polygon as ori-
ented vectors in clockwise direction. Clearly, their sum is 0. However, one can 
translate these vectors so that all of them have origin at 0, the origin of the 
plane. By choosing the positive semiaxis al , the complex numbers correspond-
ing to the extremities of the vectors are al, a2E, anin-1, from where we find 
al + a2E + • • • + anEn-1  = 0. The converse is easy, because the construction 
follows from the previous argument. 

Now assume that p is a prime number, and consider a polygon with side-
lengths al, a2, %, all rational numbers, and whose angles are equal. It 
follows that al + a2E + • • • + apEP-1  = 0 and the irreducibility of the polynomial 
1 + X + • • + XP-1  over the field of rational numbers shows that al = a2 = 
• • • = ap, so the polygon is regular (the argument is identical to the proof of 
the first lemma in chapter Complex Combinatorics). For the converse, let 
us assume that p is not a prime and prove that there exists a non-regular poly-
gon with rational side-lengths and equal angles. Let us write p = mn for some 

2z, 
m, n > 1. Then E = e P satisfies the equation 1 
and also the equation 1+ c+ +€73-1  = 0. By adding these two equations, we 
obtain a relation of the form al + a2€ + • • • + ap€P-1  = 0, where all a, are equal 
to 1 or 2 and not all of them equal. The observation in the beginning of the 

± ± 	 e(m-1)n = 0 
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solution shows that there exists a polygon with equal angles and side-lengths 
al, a2, 	ap. Clearly, this polygon is not regular. 

We continue with two difficult problems. The first one is classical, but very 
difficult. It belongs to a large class of additive problems in number theory and 
it is quite remarkable that it has a purely algebraic solution. A similar state-
ment is the famous four-squares theorem, stating that any positive integer is 
the sum of four squares of integers, or the notoriously difficult Waring prob-
lem, stating that for any k there is m such that any sufficiently large integer is 
a sum of at most m powers of exponent k. We leave it to the interested reader 
to deduce from the four squares theorem that any positive integer is the sum 
of 53 fourth powers! 

Example 6. Prove that any rational number can be written as the sum of 
the cubes of three rational numbers. 

 

Solution. If someone really wants to be cruel, they will just write the following 
identity: 

X3  - 36 	3 ( X3  + 35X -1-- 36 3 	9X2  + 35x 	3 
= x. 

( 

9X2  + 81x + 36 
4_ 

9x2  + 81x + 36 + 
	  
9x2  + 81x + 36  

Well, how on earth can we come with such a thing? A natural idea would be 
to look for a representation of x as a sum of cubes of three rational functions. 
So let us try to find first two polynomials f,g such that f3  + g3  has a cubic 
factor. On the other hand, the factorization 

f3  g3 	(f g)(f zg)(f + z2g), 

2%, 

where z = e 3  suggests a smart choice: f +zg = (X — z)3  and f +z2g = (X —
z2)3. A small computation shows that f = X 3  — 3X — 1 and g = —3X2  — 3X. 
This already gives us the identity 

(x3  — 3x — 1)3  + (-3x2  — 3x)3  = (x2  + x + 1)3((x — 1)3  — 9x), 



530 	23. SOME SPECIAL APPLICATIONS OF POLYNOMIALS 

which easily implies the relation presented in the very beginning of the solu-
tion, after changing 9x to x. 

The next problem has a particular flavor, because of the nice idea really well-
hidden and of the technical difficulties that appear at all steps of the solution. 
Definitely not a friendly problem in a mathematical competition, but excellent 
spiritual food! 

On an m x n sheet of paper a grid dividing the sheet into unit 
squares is drawn. Then, the two sides of length n are taped 
together to form a cylinder. Prove that one can write a real 
number in each square, not all numbers being zero, such that 
each number is the sum of the numbers in the neighboring 
squares, if and only if there are integers k, 1 such that n + 1 
does not divide k and 

cos (2
m  
17r  \ + cos ( 	k7T 	= 

n + 1 	2 

[Ciprian Manolescu] Romanian TST 1998 

Solution. Number the rings 1,2, ..., n going downwards and the columns 
1,2, ..., m, anticlockwise. The idea is to associate to each ring a polynomial 
Pi (X)= ail  + ai2X + • • • + aimXm-1  and to study how the condition imposed 
on the numbers translates in terms of these polynomials. This is not difficult, 
because such numbers exist if and only if 

Pa (X) = Pi-1(X) + 	+ (Xm-1  + X)Pi(X) (mod Xm - 1), 

where Po = Pn+1  = 0. This can be also written as 

Pi±i  (X) 1=_-  (1 - X - Xm-1)Pi(X) - Pi-1(X)  (mod Xm - 1) 

and so Pi (X)= Qi(X)P1(X), where Qi  is the sequence defined by Qo = 
0, Qi = 1 and 

Qi+i (X) = (1 - X - Xm-1)Q ,(X) - Q (X) (mod Xm - 1). 
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The condition for all numbers to be zero becomes Pi 0. So, the condition of 
the problem is satisfied if and only if we can find a nonzero polynomial Pi (of 
course, (mod X' — 1)) such that PiQ,,,±1 = 0 (mod X' — 1), which means 
that Q„,_+.. 1  and X' — 1 are not relatively prime. This is also equivalent to the 
existence of a number z such that zm = 1 and Qm±i (z) = 0. If xk = Qk (z), 
the identity satisfied by Qi  becomes x0 = 0, x1  = 1 and 

1) 

Now, if a = 1 — z — z-1, the relation becomes xi±i — ax, x j_ 1  = 0. Let 
ri ,r2 be the roots of the equation t2  — at + 1 = 0. Then ri , r2  are nonzero, 

rn+1_,,,n+1 
so if xr,,±1 = 0, then we surely have r1  r2 and also x72+1 = ri -r2 

2 	. Thus 

the condition on m,n is to have rrl  
xn+1 	

— 7.27/±1, that is there exists x such that 

equivalent to the existence of a nontrivial root of order n + 1 of 1, say x, such 
that a2x = (1 + x)2, that is 2 + 2Re(x) = (1 — 2Re(z))2. Of course, this is 
equivalent to the condition of the problem. This finishes the solution. 

Let us now turn to some combinatorial problems. We begin with a very beau-
tiful result. Do not underestimate it because of its short proof — it is far from 
being trivial. Actually, this old conjecture of Artin plays a very important role 
in additive number theory and has given birth to some important theorems of 
Ax and Katz, which are unfortunately well beyond the scope of this book. 

Example 8. Let f1, f2, •••, fk be polynomials in Z/pZ[Xi, X2, X,-,] such 

that E deg(L) < n. Then the cardinality of the set of vec-
i.---1 

tors (xi, x2, ..., xn) E (Z/pZ)n  such that f,(x) = 0 for all 
i = 1, 2, ..., k is a multiple of p. 

Chevalley-Warning theorem 

1, x # 1 and also r2 = xr1. Using Viete's formula, this becomes 

Solution.  The idea is that the cardinality of the set of common zeros of L 
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can be expressed more conveniently as 

(1  — fi(x)P-1)(1  — f2(x)P-1)- • • (1  — fk(x)P-1), 

x=(xi,•••,xn)E(Z/pZ)' 

where we understand by f i (x) the element fi (xi , x2, ..., xn). Indeed, this fol-
lows easily from Fermat's little theorem, because the polynomial 

P (X) = (1 — f 1(X)P-1)(1 — f 2(X)P-1) • • • (1 — fk(X)P-1) 

(here X = 	X2, ..., Xri )) has the property that P(xi, xz, 	xn) = 0 if and 
only if at least one of fi (xi, x2, ..., xn) is nonzero and 1 otherwise. 

Now, let us prove that 	E 	P(x) = 0. In order to do this, it is enough 
xe (z/pz)n 

to prove it for any monomial of P, of the form Xi' x2a2 XnnObserve that 
in any such monomial we have al + a2 + • • • + an < Th(P — 1), because of 

k 
the condition E deg(fi) < n. This means that there exists an i such that 

i=1 
ai < p — 1. Observe that 

iLl x? 	xarin H 
 

xE(Z/pZ)' 	 3=1  x3 EZ/pZ 

and because cb,,, < p — 1, by a result proved in the chapter The Smaller, the 
Better, > xiai = 0, which shows that 	> P(x) = 0 in Z/pZ. This 

x,,EZ/pZ 	 xE(Z/pZ)n  

finishes the proof, because it follows that the cardinality of the set is a multiple 
of p. Finally, observe that if we assume that MO) = 0 for all i, it follows that 
fi  have at least one nonzero common root in the field with p elements, which 
is anything but trivial! 

We continue with an apparently immediate application of Chevalley-Warning 
theorem: the famous Erdos-Ginzburg-Ziv theorem. There are many other 
approaches to this beautiful result, but the way in which it follows from 
Chevalley-Warning's theorem had to be presented. 
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[ Example 9. Prove that from any 2n - 1 integers one can choose n whose 
sum is divisible by n. 

 

Erd6s-Ginzburg-Ziv theorem 

Solution.  Let us suppose first that n = p is a prime number. As we will see, 
this is actually the hard part of the theorem. Consider the polynomials over 
Z/pZ: 

f1 (X1, X2, X2p-1) = Xr1 X2-1
x-2p 11  , 

f2 (X1) X2, • • • X2p-1) = aiXT1  a24-1  + • • • + a2p-1X2p 11 

where al, a2, 	a2p- I are the 2p - 1 numbers. Clearly, the conditions of 
Chevalley-Warning's theorem are satisfied and so the system fi  (X) -= f2  (X) = 
0 has a nontrivial solution (x,),-1,...,2p-1.  Let I be the set of those 1 < i < 2p-
1 such that xi 	0. Then from Fermat's little theorem fi(xi, x2, •••,x2p- i) 

III (mod p) and f2(xl, x2, ..., x2p_1) = Eici  a, (mod p) and so p divides 1/1 
and > 	ai. Because I has at least 1 and at most 2p - 1 elements, it follows 
that it has exactly p elements, and the theorem is proved in this case. 

In order to finish the proof of the theorem, it is enough to prove that if it 
holds for a and b integers greater than 1, it also holds for ab. So, take 2ab - 1 
integers look at the first 2a - 1 among them. There are some a whose sum 
is a multiple of a. Put them in a box labelled 1 and look at the remaining 
numbers. You have at least 2a(b - 1) -1 > 2a - 1, so you can find some other 
a numbers whose sum is a multiple of a. Put them in a box labelled 2. At 
each stage, as long as you still have at least 2a - 1 numbers which are not yet 
in a box, you can create another box with a numbers, the sum of which is a 
multiple of a. So, you can create at least 2b - 1 such boxes. Now, apply the 
induction hypothesis for the sums of the numbers in the first 2b - 1 boxes di-
vided by a and you will obtain a collection of ab numbers the sum of which is a 
multiple of ab. This shows that the theorem holds for ab and finishes the proof. 

The next example presents a truly amazing theorem, appeared in the revo- 
lutionary article "Combinatorial Nullstellensatz" by Noga Alon and which is 
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now a must in algebraic combinatorics. The reader with background in com-
mutative algebra will immediately understand the title of the article: yes, it 
is related to the even more famous Nullstellensatz of Hilbert, one of the basic 
results of algebraic geometry and probably one of the most important theo-
rems in mathematics. What does the latter say? Well, the strong form says 
that if fl , f2, fk  are polynomials with complex coefficients in n variables 
and if f is another such polynomial which vanishes at all common zeros of 
the polynomials fi ,  f2, fk, then some power of f can be written in the form 

+ f292 + • + fk9k for some polynomials gi , g2, ...,gk. Note for instance 
that if fi ,  f2, fk have no common zeros then there will be gi,g2, gk such 
that fi9i + f292 + • • • + fk9k = 1, a fact far from being obvious! Actually, 
the proof of Hilbert's Nullstellensatz is difficult and really needs a fair amount 
of commutative algebra, so we will not present it here. The reader can find 
a proof in practically any book of algebraic geometry. Note however that 
there are substantial differences between this statement and the "Combinato-
rial Nullstellensatz", and they probably explain why the latter is so well-suited 
for combinatorial applications. 

Example 10. Let F be a field, f E F[X1, X2, •-, Xri] a polynomial, and let 
Si, S2, ..., Sn  be nonempty subsets of F. 
a) If f (si, 82, •.., sn) = 0 for all (51,82, 	sn) E Si X S2 X 

... X Sn, then f lies in the ideal generated by the polyno-
mials gi(Xi ) (Xi  — s). Moreover, the polynomials 
hi , h2, hn  satisfying f = 91h1 + g2h2 + • • • + gnhn  can be 
chosen such that deg(hi) < deg(f) — deg(g,) for all i. Finally, 

if 91, 92,..., 9n E R[Xi, X2, ..., Xn ] for some subring R of F, 
one can choose hi  with coefficients in R. 
b) If deg(f) = t1 + t2 + • • • + tri , where t, are nonnega-
tive integers such that t, < Si and if the coefficient of 
Xil X 2  • Xmtn is not zero, then there exist s, E Si such that 

f (si, 82, ..., Sn) 	0. 

 

[Noga Alon] Combinatorial Nullstellensatz 
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Solution.  a) The idea is that any element si  of Si  satisfies an algebraic equa-

tion of degree S  so any power of si  is a linear combination of 1 s s1siI-1
with coefficients independent of the choice of si  E Si. Indeed, if 

9i3 Xi  
j=0 

Isd-1 
then 	= E gii si . This allows us to "reduce" the polynomial f by replac- 

3=0 

ing every Vic with a linear combination of 1, Xi, ..., Xis 1. This corresponds 
to subtractions from f of polynomials of the form gihi, with deg(hi) < deg(f)- 

n 
deg(gz ). So we see that by subtracting a linear combination E gihi  from f we 

i=i 
obtain a polynomial fi  whose degree in Xi  is at most Si1l  - 1 and such that 
0 = s2,..., sn) = s2,..., sm) for all .5, E Si. But this immediately 

implies fi  = 0. Indeed, fi can be written as F0 + F1X1  + ". + 
for some polynomials Fi E 	X7 , such that Fi has degree in X j  at most 

- 1. Now, for all s2 E S2, ..., Sn  E Sn, the polynomial 

Fo(s2,-,sn) 	 1(82, 	sn)Xlis11-1  

has at least 1.511 zeros in the field F, so it is identically zero, that is 

= • " = Fis,1-1(s2,•••, sn) = 0 

for all (s2, 	sn) E S2 • • • Sn. An inductive reasoning shows that F0 = • • • = 

= 0 and so fi = 0. This finishes the proof of a). b) This is a di-
rect consequence of a). Suppose by contradiction that f vanishes on Si  x 
82 x • • • x 8n. By taking subsets of Si  with ti  + 1 elements, we can assume 
that Si1l = ti  + 1. Let hi  and gi  be defined as in a). It follows that the 
coefficient of X11 X22  • • • Xntn in g1  hi + g2h2 + • • • + gnitn  is not zero. Because 
deg(hi) < deg(f) - deg(gi ), the coefficient of X11 X22  • Xntn in gihi  is zero: 
any monomial appearing in this polynomial and having degree deg(f) is a 
multiple of .X- z+1, contradiction. 
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Let us see now some applications of this result. First, some direct consequences 
which already show the power of the method: try to find other solutions to 
these problems and you will see that they are far from being trivial. This 
is probably also a reason for selecting the next problem as problem 6 at the 
International Mathematical Olympiad in 2007. 

Example 117.1  Let n be a positive integer and consider the set 

S 	{(x,y,z)lx,y,z E {0, 1, ...,n},x + y + z > 0} 

as a set of points in space. Find the minimum number of 
planes, the union of which contains S but does not contain 
(0, 0, 0). 

IMO 2007 

Solution.  Let aix+biy+ciz = d, be the equations of these planes and consider 
the polynomial 

f (X , Y, Z) =- H (aiX biY ci Z — di) — m • H (X - i)(Y — i)(Z — i), 
i=i 

where m is chosen such that f (0, 0, 0) = 0. If k < 3n, then clearly the co-
efficient of XmYriZn in f is nonzero. Thus, by combinatorial Nullstellensatz 
there are integers x, y, z E {0, 1, ..., n} such that f (x, y, z) 0. If at least one 
of x, y, z is nonzero, then clearly both terms defining f are zero, a contradic-
tion. Thus (x, y, z) = (0, 0, 0), which contradicts the fact that f (0, 0, 0) = 0. 
Therefore k > 3n and since for k = 3n an example is immediate, we deduce 
that this is the answer to the problem. 

And now a very similar statement: 

Example 12. Let p be a prime and let S1, S2, . 	Sk be sets of non-negative 
integers, each containing 0 and having pairwise distinct ele- 
ments modulo p. Suppose that Ez asi l — 1) > p. Prove 
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that for any elements al, ... , ak E Z/pZ, the equation xiai + 
x2a2+• • •+xkak = 0 has a solution (x1, ... , xk) E S1 X • • • X Sk 
other than the trivial one (0, ... , 0). 

Troi-Zannier's theorem 

Solution.  [Peter Scholze] Consider the polynomial 

P(Xi, ..., Xk) = (aiXi + a2X2 + • • • + akX0P-1  — 1 

+C 
fJ 

 (yi +81) fJ 
 (X2  +82)... H (Xk +.9k ) 

oosi Esi 	00.92E52 	 ooskEsk 

where C is chosen such that P(0, ..., 0) = 0. 

Because of the third condition, the coefficient of xr11-1...xlso—i  is s nonzero. 
Therefore there are ti E Si , ..., tk E Sk with P(ti, ..., tk) # 0. Since P(0, ..., 0) = 
0, it is clearly not the zero solution. Thus, 

c H (ti+81) IT (t2 - 82 ) • • • H ( tk — 8k) 

00,91 ES1 
	 0As2ES2 	 008k ESk 

	

must be zero, which implies that (aiti + • • • + aktk)P-1 	1. It remains only 
to note that Fermat's little theorem gives aiti + • • • + aktk = 0. 

The category of deep results with short proofs is going to be represented once 
again, this time with a really important result of additive combinatorics, one of 
those mathematical fields which exploded in the twentieth century. Of course, 
there are many other proofs of this result, all of them very ingenious. The 
result itself is important: as an exercise (solved by Cauchy about two hundred 
years ago...), try to prove this using this Lagrange's famous theorem stating 
that any positive integer can be written as a sum of four squares of integers. 
There are very elementary arguments, as we will see, but the combinatorial 
Nullstellensatz also implies this result and actually much more. 
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[Example 13. For any subsets A, B of Z/pZ the following inequality holds 

IA + BI > min(p, 	+ 	— 1). 

Cauchy-Davenport theorem 

Solution. There is one very simple case: lAl + > p + 1. In this case, 
A + B = Z/pZ, since for any x E Z/pZ, the function f (a) = x — a defined 
on A cannot take all its values outside B, because it is injective. The difficult 
case is when +1/31 < p. Let us suppose that IA+Bl < IA1+1.131— 2 and let 
us choose a subset C of Z/pZ containing A+ B and having (Al +1.BI — 2 ele-
ments. The polynomial f X2) = 11 (X1 + X2 — c) E Z/pZ[X] has degree 

cEC 
1.131— 2 and vanishes on A x B. In order to obtain a contradiction, it is 

I thus sufficient to prove that XiA —1 X2
Ii  appears with a nonzero exponent 

in f . However, it is clear that this exponent equals (lArAril -2) (mod p), which 

is not zero, because +1./31 — 2 < p — 2. Using the previous theorem, we 
obtain the desired contradiction. 

Before passing to the next example, let us present a truly magnificient (for its 
simplicity!) proof of the previous result, which is probably more natural when 
seeing the statement for the first time, but which is by no means as obvious 
as it looks! We shall prove the result by induction on Al, the case when 
IA = 1 being obvious. Clearly, we may assume that > 1 and also that 
IBI < p. Now, A having more than one element, by shifting it we may assume 
that it contains 0 and some x 0. Now, B is nonempty and B Z/pZ, so 
there must be an integer n such that nx E B but (n + 1)x does not belong to 
B. By shifting B this time we may suppose that 0 E B, but x is not in B. 
Thus, A n B is a proper nonempty subset of A and we may use the induction 
hypothesis for it and A U B. Because A + B contains (A n B) + (A U B) and 

'An/31 +1AuB1 =1A1+1B1, 

the conclusion follows. Even though this proof is very beautiful and short, it 
should be noted that Alon's technique is much more powerful. Indeed, Alon 
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shows in his seminal paper that his theorem implies a famous conjecture of 
Eras-Heilbronn, with a very similar statement, but with no elementary proof 
(exercise for the reader: check that the above elementary solution does not 
work for the following result): for any nonempty subset A of Z/pZ one has 

1{a + 	b E A, a 	min(p, 21AI — 3). 

The next problem uses the proof given by Noga Alon for a special case of 
a difficult conjecture of Snevily. Again, the combinatorial nillstellensatz is 
well-suited, but this time it is not so clear that its hypotheses are satisfied. 
Actually, the most difficult part in using this powerful tool is finding the good 
polynomial, but there are situations when it is even more difficult to check the 
hypothesis, because the polynomial can have a quite complicated expression. 

[Example 14.1 Let p be a prime number, and let al , a2, ak E Z/pZ, not 
necessarily distinct. Prove that for any distinct elements 
b1, b2, bk of Z/pZ there exists a permutation a such that 
the elements al + bum, a2 + b0(2), ak + b,(k) are pairwise 
distinct. 

Alon's theorem 

Solution. Let B = 	b2, ..., bk} and suppose the contrary, that is for all 
choices of distinct elements xl, x2, ..., xk at least two of the elements x1 + 
al, ..., xk + ak are identical. That is, if x1, x2, ..., xk are distinct elements of B, 
we have n (x, + ai — xj — ai) = 0 in Z/pZ. We can relax the restriction 

1<z<j<k 
of x1, x2, ..., xk  being pairwise distinct by considering the polynomial 

f (Xi , X2, ..., Xk) = H ( X, - ) ( X , + ai  — Xi  — ai  ). 
1<i<j<k 

The previous remark shows that f vanishes on Bk . Clearly, f can be written 
as 

H _ xj)2±xx1,x2,...,xo 
1<i<j<k 
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for some polynomial g of smaller degree. Also, deg(f) = k(k — 1). We will try 
to find t1, t2, tk such that t1+t2+• • •+tk = k(k-1), ti  < k and the coefficient 
of XI' X 2  • • • Xktk  is nonzero in f . The first two conditions impose ti = t2 = 
• • • = tk = k —1, so the question is whether the coefficient of (Xi X2 • • • Xk)k-1 
in f is zero. Of course, if we manage to prove that (X1X2 • • • Xk)k-1  appears 
with a nonzero coefficient in n 	- Xj)2  we can apply Alon's theorem 

i<i<3<k 
and obtain the desired contradiction. However, using the result in example 8 
of the Lagrange Interpolation Formula chapter, we deduce that the free 

term of 11 ( 1 - ) is Id. But note that 
i<20j<k 

n 	_xj)2 
IT (1_ 

X 
xi) = (-1) k(k-1) 15i<jk  

1.<i0j<k 	3 	 (X1X2 • • . )(k )k-1 (23.2) 

so the coefficient of (Xi X2 • • • Xk_i) is nonzero in Z/pZ because of the as-
sumption k < p. This finishes the proof of the result. 

We have already seen examples of combinatorial problems for which it is almost 
impossible to find combinatorial solutions. We continue with an example, 
which is a quite deep result of Alon, Friedland and Katai. Needless to say, 
the solution using combinatorial Nullstellensatz is practically straightforward. 
There are, however, limits of the method, for instance one does not know if in 
the next result one can replace p prime by any positive integer. 

[Example 15.1 Let G be a graph with no loops (yet, multiple edges are al-
lowed) and let p be a prime number. Assume that all vertices 
have degree at most 2p — 1 and the average degree of the 
graph is greater than 2p — 2. Prove that G has a p-regular 
subgraph (a subgraph in which every vertex has degree p). 

Solution.  Let us consider the incidence matrix 	where v denotes a vertex 
and e an edge and av e  = 1 if v E e and 0 otherwise. Let xe  be a variable 
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associated with each edge e and consider the polynomial 

The hypothesis implies that f has degree 1E1 and because the coefficient 
of fl  xe  is nonzero, Alon's Nullstellensatz implies the existence of values 
xe  E {0,1} such that the evaluation of f at these xe  is not zero. Now, clearly 
this is not the zero vector, thus using Fermat's little theorem we deduce that 
all EeEE  av,exe  are 0 in Z/pZ, that is if we look at the subgraph of those edges 
e such that xe  = 1, all vertices have degrees multiples of p, smaller than 2p. 
Thus this subgraph is p-regular. 

The reader is urged to take a look at the problems for training for many other 
applications of combinatorial Nullstellensatz, a theme that will surely become 
recurrent in algebraic combinatorics and additive number theory. We will now 
present a quite subtle result, based on algebraic properties of polynomials. We 
have already encountered this type of argument in a previous chapter, but the 
result and the method are too important not be presented. 

Example 16. i Let F be a family of subsets of a set X with n elements. 
Suppose that there exists a set L with s elements such that 
A n BC E L for all distinct members A, B E F. Prove that F 

has at most 

() 	n 	(rz 	(7?, 
— 1) + • • • + 

elements. 

Frankl-Wilson theorem 



542 	23. SOME SPECIAL APPLICATIONS OF POLYNOMIALS 

Solution. Let L = {l1,12, ...,1,} and assume without loss of generality that 
X = {1, 2, ..., n}. Finally, call A1, A2, ..., A, the elements of F, such that 

1 1111 < 11121 < ••. < lAml. We will associate with each set Az  its characteristic 
vector vi  = (vi3 )1<3<ri defined by: v23  = 1 if j E Ai  and 0 otherwise. Observe 
that if (x, y) = xiyi +x2y2+• • • +xnyn  is the standard euclidean inner product, 
then IA, n A3  = (vi, v3 ). Now, let us define the polynomials 

fi(x) = fl ((x, vi) - lk) 
k,lk <1Ai 

for i = 1, 2, ..., m. The main idea is to consider the restrictions of these 
polynomials to the vertices of the unit cube, that is the set Y = {0,1}n. 
Because x72, = x, if x, E {0,1}, it is clear that these restrictions can be writ-
ten in the form gi (xl , x„), where g, are polynomials of degree at most 
s and have degree at most 1 in each variable. What is remarkable is that 
these functions f, : Y —> R are linearly independent. This is not difficult: if 
Ai 8  (x) + A2 f2 (X) + • • • + fm(x) = 0 for x E Y, then by taking x = v3  for all 
j and using the fact that fi (v3 ) = 0 if j < i and fi (vi) 0 (which is obvious), 
we immediately deduce by induction that all A, are 0. The result follows from 
the fact that the vector space generated by these functions has dimension m 
and is a subspace of the vector space of polynomials of maximum degree at 
most s and partial degrees at most 1, which has dimension 

	

(n) 	n 	(n) (rt 

	

) 	— 1) + • • • + 	) V)). 
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23.2 Problems for training 

1. Let n, m be positive integers with n < m — 1 and let al, a2, a, be 
nonzero integers such that for all 0 < k < m we have al a2 2k 
am  Mk  = 0. Prove that there are at least n 1 pairs of consecutive 
terms having opposite signs in the sequence al, a2, 	a,. 

Russia 1996 

2. Let al, a2, 	aim and b1, b2, 	b100 be 200 distinct real numbers. Con- 
sider an n x n table and put the number a, bj  in the (i, j) position. 
Suppose that the product of the entries in each column is 1. Prove that 
the product of the entries in each row is —1. 

Russian Olympiad 

3. The finite sequence {ak}i<k‹, is called p-balanced if the sums 

s(k,p) = ak + a k+p ak-F2p + • • • 

are all equal for k -= 1, 2, ... ,p. Prove that if a sequence of 50 real 
numbers is 3, 5, 7, 11, 13 and 17-balanced, then all its terms are equal 
to 0. 

St. Petersburg 1991 

4. Two numbers are written on each vertex of a convex 100-gon. Prove that 
it is possible to remove a number from each vertex so that remaining 
numbers in any two adjacent vertices are different. 

Fedor Petrov, Russia 2007 
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5. Let A be an n x n matrix over a field K and define its permanent as 

Per(A) = lo-  (1)a2o (2) • • ano(n). 

crESn  

If Per(A) 	0, prove that for each b 	b2, 	bn) E Fn and for 
every family of two-element sets Si, , Sn, of F, there is a vector 
X E Si x S2 x • • • x Sn  such that for each i the i-th coordinate of AX 
differs from b2. 

Alon's Permanent Lemma 

6. Let p be a prime and let al , a2, a2p_1  be elements of Z/pZ. Prove that 
the number of subsets I of {1, 2, ..., 2p — 1} with p elements such that 

= b in Z/pZ is congruent to 0 or 1 modulo p, for all b E Z/pZ. 

W. Gao 

7. Let p be a prime and d a positive integer. Prove that for any integer k 
there are integers x1, x2, ..., xd  such that k x1+4+ • • +4 (mod p). 

Gabriel Carrol 

8. Let H1, 	, H, be a family of hyperplanes in R' that cover all vertices 
of unit cube {0, 1}n but one. Prove that m > n. 

Noga Alon 

9. Let Si 82, , Sn  be subsets of Z/pZ and let S = Sl x S2 x • • • x Sn. 
Consider polynomials fi ,  f2,..., fk in n variables over Z/pZ such that 

n 

(p —1) • 	deg(fi) 
i=i 

(lsil - 1). 

i=1 

Prove that if the system fi(x) = f2(x) = • • • = fk(x) = 0 has a solution 
a E S, then it has another solution b E S. 



PROBLEMS FOR TRAINING 	545 

10. Let A be a subset of Z/pZ, where p is a prime number. Prove that among 
the elements a + b where abiEJ1 there are at least min(p, 21.211 — 3) 
distinct elements. 

Erdos-Heilbronn conjecture 

11. Let A1, A2, ..., An  be subsets of Z/pZ such that Ei<n (1 + 	< p. 
Also, let A = {ai, a2, ..., an} and B1, B2, 	be 	of Z/pZ such 
that 1Bi l > (n — 1)(1 + Ad). Prove that we can select bi  E Bi  such that 
ai + 	+ bj for i # j and (aj  + bj) — (ai+ bi ) does not belong to A. 

12. Let F be a family of subsets of {1, 2, n} such that IAA = k whenever 
A E F and IA n B1 E L for all distinct members A, B E F, L being a set 
with s elements. Prove that F has at most (ns ) elements. 

Frankl-Wilson 

13. Let A1, A2, ..., A, and B1, B2, ..., 139„ be subsets of {1, 2, ..., n} such that 
there exists a set L with k elements for which 	n 	E L if i < j and 

nBi j does not belong to L for all i. Prove that m < (7) ± (n2 ) + • • H-  (nk). 

14. Let p, q be prime numbers and r a positive integer such that qlp —1, q 
does not divide r and p > rq-1. Let al, a2, 	ar. be integers such that 

- 1 	p - 1 	 271 

al  q + a2 q + • + a,. q is a multiple of p. Prove that at least one of 
the ai 's is a multiple of p. 

AMM 

15. Prove that there exists a positive integer n such that any prime divisor 
of r — 1 is smaller than 2 1993  - 1. 

Komal 
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16. A family F of k-element subsets of {1, 2, ..., n} is a k-forest if for every 
f E F there exists a partition {1, 2, ..., n} = Vl , f U • • • U Vic,f ,such that f 
is the only member of F which intersects every 14,f. Prove that for any 
such family F we have 11'1 < (71k1D. 

17. Let f (n) denote the maximum positive integer k with the property that 
there exists a k-element set A c Rn such that the points in A determine 
at most two distinct distances. Show that 

n(n 1) 	 (n + 1)(
2

n + 2) 

	

2 	
< f (n 2) <   

Larman, Rogers, Seidel, Blokhius 

18. Let al , a2, ..., an  be positive integers and kl , k2, 	kn  be integers greater 
1/k1 	1/k2 	ipc„ than 1. If al  + a2  + • • • + an is a rational number, then any term 

of the previous sum is also a rational number. 
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