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Preface

What can a new book of problems in elementary mathematics possibly con-
tribute to the vast existing collection of journals, articles, and books? This
was our main concern when we decided to write this book. The inevitability
of this question does not facilitate the answer, because after five years of writ-
ing and rewriting we still had something to add. It could be a new problem,
a comment we considered pertinent, or a solution that escaped our rationale
until this predictive moment, when we were supposed to bring it under the
scrutiny of a specialist in the field.

A mere perusal of this book should be sufficient to identify its target audi-
ence: students and coaches preparing for mathematical Olympiads, national
or international. It takes more effort to realize that these are not the only
potential beneficiaries of this work. While the book is rife with problems
collected from various mathematical competitions and journals, one cannot
neglect the classical results of mathematics, which naturally exceed the level
of time-constrained competitions. And no, classical does not mean easy! These
mathematical beauties are more than just proof that elementary mathematics
can produce jewels. They serve as an invitation to mathematics beyond com-
petitions, regarded by many to be the “true mathematics”. In this context,
the audience is more diverse than one might think.

Even so, as it will be easily discovered, many of the problems in this book are
very difficult. Thus, the theoretical portions are short, while the emphasis is
squarely placed on the problems. Certainly, more subtle results like quadratic
reciprocity and existence of primitive roots are related to the basic results
in linear algebra or mathematical analysis. Whenever their proofs are par-
ticularly useful, they are provided. We will assume of the reader a certain
familiarity with classical theorems of elementary mathematics, which we will
use freely. The selection of problems was made by weighing the need for rou-
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tine exercises that engender familiarity with the joy of the difficult problems
in which we find the truly beautiful ideas. We strove to select only those
problems, easy and hard, that best illustrate the ideas we wanted to exhibit.

Allow us to discuss in brief the structure of the book. What will most likely
surprise the reader when browsing just the table of contents is the absence of
any chapters on geometry. This book was not intended to be an exhaustive
treatment of elementary mathematics; if ever such a book appears, it will
be a sad day for mathematics. Rather, we tried to assemble problems that
enchanted us in order to give a sense of techniques and ideas that become
leitmotifs not just in problem solving but in all of mathematics.

Furthermore, there are excellent books on geometry, and it was not hard to
realize that it would be beyond our ability to create something new to add to
this area of study. Thus, we preferred to elaborate more on three important
fields of elementary mathematics: algebra, number theory, and combinatorics.
Even after this narrowing of focus there are many topics that are simply left
out, either in consideration of the available space or else because of the fine
existing literature on the subject. This is, for example, the fate of functional
equations, a field which can spawn extremely difficult, intriguing problems,
but one which does not have obvious recurring themes that tie everything
together.

Hoping that you have not abandoned the book because of these omissions,
which might be considered major by many who do not keep in mind the
stated objectives, we continue by elaborating on the contents of the chapters.
To start out, we ordered the chapters in ascending order of difficulty of the
mathematical tools used. Thus, the exposition starts out lightly with some
classical substitution techniques in algebra, emphasizing a large number of
examples and applications. These are followed by a topic dear to us: the
Cauchy-Schwarz inequality and its variations. A sizable chapter presents ap-
plications of the Lagrange interpolation formula, which is known by most only
through rote, straightforward applications. The interested reader will find
some genuine pearls in this chapter, which should be enough to change his or
her opinion about this useful mathematical tool. Two rather difficult chapters,
in which mathematical analysis mixes with algebra, are given at the end of
the book. One of them is quite original, showing how simple consideration of
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integral calculus can solve very difficult inequalities. The other discusses prop-
erties of equidistribution and dense numerical series. Too many books consider
the Weyl equidistribution theorem to be “much too difficult” to include, and
we cannot resist contradicting them by presenting an elementary proof. Fur-
thermore, the reader will quickly realize that for elementary problems we have
not shied away from presenting the so-called non-elementary solutions which
use mathematical analysis or advanced algebra. It would be a crime to con-
sider these two types of mathematics as two different entities, and it would
be even worse to present laborious elementary solutions without admitting
the possibility of generalization for problems that have conceptual and easy
non-elementary solutions. In the end we devote a whole chapter to discussing
criteria for polynomial irreducibility. We observe that some extremely efficient
criteria (like those of Peron and Capelli) are virtually unknown, even though
they are more efficient than the well-known Eisenstein criterion.

The section dedicated to number theory is the largest. Some introductory
chapters related to prime numbers of the form 4k + 3 and to the order of an
element are included to provide a better understanding of fundamental results
which are used later in the book. A large chapter develops a tool which is as
simple as it is useful: the exponent of a prime in the factorization of an inte-
ger. Some mathematical diamonds belonging to Paul Erd6s and others appear
within. And even though quadratic reciprocity is brought up in many books,
we included an entire chapter on this topic because the problems available to
us were too ingenious to exclude. Next come some difficult chapters concern-
ing arithmetic properties of polynomials, the geometry of numbers (in which
we present some arithmetic applications of the famous Minkowski’s theorem),
and the properties of algebraic numbers. A special chapter studies some ap-
plications of the extremely simple idea that a convergent series of integers
is eventually stationary! The reader will have the chance to realize that in
mathematics even simple ideas have great impact: consider, for example, the
fundamental idea that in the interval (—1,1) the only integer is 0. But how
many fantastic results concerning irrational numbers follow simply from that!
Another chapter dear to us concerns the sum of digits, a subject that always
yields unexpected and fascinating problems, but for which we could not find
a unique approach.



Finally, some words about the combinatorics section. The reader will imme-
diately observe that our presentation of this topic takes an algebraic slant,
which was, in fact, our intention. In this way we tried to present some unex-
pected applications of complex numbers in combinatorics, and a whole chapter
is dedicated to useful formal series. Another chapter shows how useful linear
algebra can be when solving problems on set combinatorics. Of course, we are
traditional in presenting applications of Turan’s theorem and of graph theory
in general, and the pigeonhole principle could not be omitted. We faced diffi-
culties here, because this topic is covered extensively in other books, though
rarely in a satisfying way. For this reason, we tried to present lesser-known
problems, because this topic is so dear to elementary mathematics lovers. At
the end, we included a chapter on special applications of polynomials in num-
ber theory and combinatorics, emphasizing the Combinatorial Nullstellensatz,
a recent and extremely useful theorem by Noga Alon.

We end our description with some remarks on the structure of the chapters.
In general, the main theoretical results are stated, and if they are sufficiently
profound or obscure, a proof is given. Following the theoretical part, we
present between ten and fifteen examples, most from mathematical contests
or from journals such as Kvant, Komal, and American Mathematical Monthly.
Others are new problems or classical results. Each chapter ends with a series
of problems, the majority of which stem from the theoretical results.

Finally, a change that will please some and scare others: the end-of-chapter
problems do not have solutions! We had several reasons for this. The first
and most practical consideration was minimizing the mass of the book. But
the second and more important factor was this: we consider solving problems
to necessarily include the inevitably lengthy process of trial and research to
which the inclusion of solutions provides perhaps too tempting of a shortcut.
Keeping this in mind, the selection of the problems was made with the goal
that the diligent reader could solve about a third of them, make some progress
in the second third and have at least the satisfaction of looking for a solution
in the remainder.

We come now to the most delicate moment, the one of saying thank you.
First and foremost, we thank Marin Tetiva and Paul Stanford, whose close
reading of the manuscript uncovered many errors that we would not have
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liked in this final version. We thank them for the great effort they put into
reviewing the book. All of the remaining mistakes are the responsibility of
the authors, who would be grateful for reports of errors so that in a future
edition they will disappear. Many thanks to Radu Sorici for giving the book
the look it has now and for the numerous suggestions for improvement. We
thank Adrian Zahariuc for his help in writing the sections on the sums of
digits and graph theory. Several solutions are either his own or the fruit
of his experience. Special thanks are due to Valentin Vornicu for creating
Mathlinks, which has generated many of the problems we have included. His
website, mathlinks.ro, hosts a treasure trove of problems, and we invite every
passionate mathematician to avail themselves of this fact. We would also
like to thank Ravi Boppana, Vesselin Dimitrov, and Richard Stong for the
excellent problems, solutions, and comments they provided. Lastly, we have
surely forgotten many others who helped throughout the writing process; our
thanks and apologies go out to them.

Titu Andreescu Gabriel Dospinescu
titu.andreescu@utdallas.edu gdospi2002@yahoo.com
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THEORY AND EXAMPLES 3

1.1 Theory and examples

We know that in most inequalities with a constraint such as abc = 1 the

x z
substitution a = —, b = g, ¢ = — simplifies the solution (don’t kid yourself,
z x

not all problems gf this type become easier!). The use of substitutions is far
from being specific to inequalities; there are many other similar substitutions
that usually make life easier. For instance, have you ever thought of other
conditions such as

zyz=x+y+2+2; zy+yz+zr+22zyz=1, x2+y2+22+2xyz:1

or 2 + y? + 22 = zyz + 4?7 The purpose of this chapter is to present some of
the most classical substitutions of this kind and their applications.

You will be probably surprised (unless you already know it...) when finding
out that the condition zyz = = 4+ y 4+ 2z 4 2 together with z,y,z > 0 implies
the existence of positive real numbers a, b, ¢ such that

b+c cta a+b

T = y Y= y 2= .

a b c

Let us explain why. The condition zyz = ¢ 4+ y + 2 + 2 can be written in the
following equivalent way:

1 n 1 + 1
14z 14y 1+2z

Proving this is just a matter of simple computations. Now take

1 1 1
a= , b=—— c¢= .
142 1+y 142
1- b
Thena+b+c=1and z = ¢ _ +c. Of course, in the same way
a
b b b
we find y = c—;a’ z = ot . The converse (that is, +c’ c+a, ot
a c

c
satisfy zyz = = + y + 2 + 2) is much easier and is settled again by basic
computations. Now, what about the second set of conditions, that is z,y,2 > 0
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and zy+yz+zx+2xyz = 17 If you look carefully, you will see that it is closely
related to the first one. Indeed, z,y, z > 0 satisfy xy +yz + 2o + 2zyz = 1 if
1 I 1

111
and only if —, —, — verify — = — + — 4+ — 4+ 2, so the substitution here is
'y z xyz Y oz
o @ b o _C
“bre YT eva P e

Now, let us take a closer look at the other substitutions mentioned at the
beginning of the chapter, namely 22 + y* + 2% + 2zyz = 1 and 2% 4+ ¢° + 22 =
xyz +4. Let us begin with the following question, which can be considered an
exercise, too: consider three real numbers a, b, ¢ such that abc = 1 and let

The question is to find an algebraic relation between x,y, z, independent of
a,b,c. An efficient way to answer this question (that is, without horrible
computations that result from solving the quadratic equations) is to observe

that
1 1 1
Tyz = <a+—> <b+—> <c+—>
a b c
1 1 1
() () v (o4 3) 42
=@ -2+ @ -2+ (*-2)+2
Thus

22+ 4+ 22 —ayz =4
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Because |a + %| > 2 for all real numbers a, it is clear that not every triple
(z, vy, z) satisfying (1.2) is of the form (1.1). However, with the extra-assumption
min{|z|, lyl, |2z} > 2 things get better and we do have the converse, that is if
z,y,z are real numbers with min{|z], |y|, |2|} > 2 and satisfying (1.2), then
there exist real numbers a,b, ¢ with abc = 1 satisfying (1.1). Actually, it suf-

fices to assume only that max(|z|,|y|, |2]) > 2. Indeed, we may assume that
. 1

|z] > 2. Thus there exists a nonzero real number u such that z = u + —.
U

Now, let us regard (1.2) as a quadratic equation with respect to 2. Because
the discriminant is nonnegative, it follows that (22 —4)(y? —4) > 0. But since
|z| > 2, we find that y? > 4 and so there exist a non-zero real number v for

1

which y = v+ —. How do we find the corresponding 27 Simply by solving the
v

second degree equation. We find two solutions:

U
z1=uw+-—, 2z2=-—+
uv v

1 1
and now we are almost done. If z = uv + — we take (a,b,¢) = (u,v, —)
uY uY

1
and if 2 = = + E, then we take (a,b,c) = (—,v, E).
v uw v

Inspired by the previous equation, let us consider another one,

$2+y2+z2+$yz:4

where z,y,2z > 0. We will prove that the set of solutions of this equation is
the set of triples (2 cos 4,2 cos B,2cosC), where A, B,C are the angles of an
acute triangle. First, let us prove that all these triples are solutions. This
reduces to the identity

cos® A + cos® B +cos® C + 2cos Acos BeosC = 1.
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Solution. This is tricky, even with the substitution. There are two main
ideas: using some identities that transform the inequality into an easier one
and then using the substitution. Let us see. What does 2(,/zy + /¥z + /2%)
suggest? Clearly, it is related to

(VT + g+ V2 — (z+y+2).

Consequently, our inequality can be written as

VT + i+ vz <2z +y+2+3).

The first idea that comes to mind (that is using the Cauchy-Schwarz inequality
in the form vz 4+ /¥ + vz < /3(z + y+ 2) < /2(z +y + z + 3)) does not
lead to a solution. Indeed, the last inequality is not true: setting z+y+z = s,

we have 3s < 2(s 4+ 3). This is because the AM-GM inequality implies that
3 3

Tyz < ;—7 SO ;—7 5 + 2, which is equivalent to (s — 6)(s + 3)2 > 0, implying
s > 6.

Let us see how the substitution helps. The inequality becomes

b
\/b—}-c \/c+a \/a+b_\/2(b—(};c+c+b—a+az— +3>

The last step is probably the most important. We have to change the expres-

. b + b .
sion +C+C a+a+ + 3 a little bit.

a c
We see that if we add 1 to each fraction, then a+b+c will appear as a common
factor, so in fact

b+c c+a a+bd
+ +
a b

1 1 1
+3=(a+b+c) (5+5+E>'

And now we have finally solved the problem, amusingly, by employing again
the Cauchy-Schwarz inequality:

b 1 1 1
\/+C \/+a \/a+ \/b+c+c+a+a+b)(a+5+z>.
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First, we may assume that a, b, ¢ are the sides of a triangle ABC, since other-
wise the left-hand side in (1.4) is negative. This is true because no more than
one of the numbers a +b— ¢, b+ c—a, ¢+ a — b can be negative. Let R be
the center of the circumcircle of triangle ABC. It is not difficult to deduce
the following identity

a2b2c?

(a+b—c)(b+c—a)(c+a—b):m.

Consequently, the desired inequality can be written as

(a+b)(b+c)(c+a).

(a+b+c)R*> 5

But we know that in each triangle ABC, 9R? > a2 + b? + 2. Hence it suffices
to prove that

8(a+b+c)(a?+ b2+ c?) > 9(a+b)(b+c)(c+a).
This inequality is implied by the following ones:
8
8(a+b+c)(a® 4+ % + c?) > g(a+b+c)3

and
Ya+b)(b+c)(c+a) < g(a+ b+c).

The first inequality reduces to
2,52, 21 2
a®+b"+c > g(a+b+c) ,

while the second is a consequence of the AM-GM inequality. By combining
these two results, the desired inequality follows.

Of a different kind, the following problem and the featured solution prove that
sometimes an efficient substitution can help more than ten complicated ideas.
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We solve the system and we find the triplet
2cosBcosC 2cosAcosC 2cosAcosB
(z,y,2) = .

cosA ' cosB ' cosC
Hence we need to prove that

cos BcosC cosAcosC cosAcosB

> 2 2 A 2B 20y
cos A cos B cosC — (cos® A + cos” B + cos” ()

This one is a hard inequality and it follows from a more general result.

Lemma 1.1. If ABC is a triangle and x,y, z are arbitrary real numbers, then
22 + % + 2% > 2yzcos A + 22z cos B + 2zy cos C.

Proof. Let us consider points P, @, R on the lines AB, BC, C A, respectively,
such that AP = BQ = CR =1 and P,Q, R do not lie on the sides of the
triangle. Then we see that the inequality is equivalent to

(z-AP+y-BQ+2-CR)? >0,

which is obviously true.

Note that the condition
T+ y+2z=2/zycosC + 2,/yzcos A + 2+/zx cos B

is the equality case in the lemma. It offers another approach to Example 9.
The lemma being proved, we just have to take
{2cosBcosC [2cos AcosC {2 cos Acos B
Tr = _— = _—, 2 = _—— — -
cos A y cos B cosC
in the above lemma and the problem will be solved.

And finally, an apparently intricate recursive relation.
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1
All we are left to prove is that A\%¢ + v € N for all £k € N. But this is not

difficult, since

1 1
)\2+ﬁ€N, )\4+F€N

1 (2, 1 ok , 1 2(k—1 1
wmﬁ(A +ﬁ) (A 5w )~ (Vs )

and

A20k+1) |
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1.2

1.

Problems for training
Find all triples z,y, z of positive real numbers, solutions to the system:

2?2+ y? 4+ 22 =xyz+4
xy+yzt+zr=2(x+y+2)

Prove that if x,y, z > 0 satisfy zy + yz + zz + 22y2 = 1, then

1
zyz < 3 and zy +yz + 22 > 1
Prove that for any positive real numbers a, b, ¢ the following inequality

holds
b+c+c+a a+b a b c 9

+ + -
a b + ¢ b+e c¢c+a a+b 2

J. Nesbitt

Let a,b,c > 0 such that a? + b% + ¢ + abc = 4. Prove that
\/(2—a)(2—b)+\/(2—b)(2—c)+\/(2—c)(2—a):1
(24 a)(2+b) (2+b)(2+¢) (24 ¢)(2+a) ’

Cristinel Mortici, Romanian Inter-county Contest

Prove that if a, b, ¢ > 0 satisfy the condition |a2 +b?+c? — 4| = abe, then

(@—2)(b—2)+ (b -2)(c—2)+ (c—2)(a—2) > 0.

Titu Andreescu, Gazeta Matematica

. Prove that if x,y,2 > 0 and 2yz =z + y + z + 2, then

3
zy+tyz+zz>2(x+y+2z)and vV +/y++v/2< 5 VTYZ.
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10.

11.

Let z,y,z > 0 such that zy + yz + zz = 2(z + y + 2). Prove that
zyz <z 4+y+z+2.

Gabriel Dospinescu, Mircea Lascu

Prove that in any triangle ABC' the following inequality holds
cos A+ cos B +cosC > %(3 + cos(A — B) + cos(B — C) + cos(C — A)).
Titu Andreescu

Prove that in every acute-angled triangle ABC),

(cos A 4 cos B)? + (cos B + cos C)? + (cos C + cos A)% < 3.

Find all triples (a,b,c) of positive real numbers, solutions to the system

a?+ b2+ c%+abc=4
a+b+c=3

Cristinel Mortici, Romanian Inter-county Contest

Find all triplets of positive integers (k, [, m) with sum 2002 and for which
the system

( E_*_g:k
Yy x
v.oZ_,
2 Yy
z x
_+_:m

\r =z

has real solutions.

Titu Andreescu, proposed for IMO 2002
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12. Prove that in any triangle the following inequality holds

s’nA+s'nB+s'nC 2<cos2A+cos2B+cos20
— in — in — — — —.
Y 2 2] =7 2 2

13. Find all functions f : (0,00) — (0, 00) with the following properties:

a) f(z) + f(y) + f(2) + f(zyz) = f(vzy)f (Vy2)f (Vzz) for all z,y, 2;
b)if 1 <z <y then f(z) < f(y).

Hojoo Lee, IMO Shortlist 2004

14. Prove that if a,b, ¢ > 2 satisfy the condition a? + b2+ ¢ = abc+ 4, then

a+b+ctabtactbc>2v/(a+b+c+3)(a2+b2+c2—3).
Marian Tetiva,

15. Let z,y,z > 0 such that zy + yz + zz + zyz = 4. Prove that

1 1 1\?
3(ﬁ+ﬁ+ﬁ) > (z+2)(y +2)(z +2)

Gabriel Dospinescu

16. Prove that in any acute-angled triangle the following inequality holds

A\ 2 2 2
(COS ) +(COSB> +(COZC> +8cos AcosBeosC > 4.

cos B cosC

Titu Andreescu, MOSP 2000
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17.

18.

19.

20.

21.

22.

Solve in positive integers the equation

(z+2Dy+2)(z+2)=(z+y+2+2)%
Titu Andreescu

Let n > 4 be a given positive integer. Find all pairs of positive integers

(z,y) such that

(z+y)? _
- =

n — 4.

Titu Andreescu

Let the sequence (an)n>0, where ap = a1 = 97 and ap+1 = ap-1an +
\/(a% —1)(a2_; — 1) for all n > 1. Prove that 2+ /2 + 2a, is a perfect
square for all n > 0.

Titu Andreescu

Prove that if a,b, ¢ > 0 satisfy a® + b2 4 ¢ + abc = 4 then
0<ab+bc+ ca— abe < 2.

Titu Andreescu, USAMO 2001

1 1 1
Prove that ifa,b,c>0andxza%—g,y=b+z,z=c+a,then

xy+yz+zz > 2(x+y+ 2).
Vasile Cartoaje

Prove that for any a,b,c > 0,

(b+c—a)® (c+a=b)? (a+b-c)?® _3
b+c)+a® (c+a)?+b  (a+b)2+c2 5

Japan 1997
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Z (CEz — iEj)Q Z T(TL, k) Z (CEz - mj)Q.

1<i<j<n 1<i<j<k
[Gabriel Dospinescu]

Solution. In this form, we cannot make any reasonable conjecture about
T(n,k), so we need an efficient transformation. We observe that

> (@i—z)

1<i<j<n
is nothing else than
n n 2
SIERH
i=1 i=1
and also
k k 2
2 2
Y (oo kYA (L)
1<i<j<k i=1 i=1

according to Lagrange’s identity. Consequently, the inequality can be written
in the equivalent form

n n 2 k k 2
anf— (le> > T(n,k) ka?— (Zﬂvz)
i=1 i=1 i=1 i=1

And now we see that it is indeed a refinement of the Cauchy-Schwarz inequal-
ity, only if in the end it turns out that T'(n, k) > 0. We also observe that in the
left-hand side there are n — k variables that do not appear in the right-hand
side and that the left-hand side is minimal when these variables are equal. So,
let us take them all to be zero. The result is

k k 2 k k 2
anf— (sz> > T(n,k) ka?— (sz> ,
i=1 i=1 i=1 =1
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which is equivalent to

k

2
(T'(n,k)—1) <Z a:,) (kT(n,k) —n) Zm? (2.2)

i=1

Now, if kT'(n,k) —n > 0, we can take a k-tuple (x1,z2,...,Zx) such that
k k

Za:i = 0 and fo # 0 and we contradict the inequality (2.2). Hence we
=1 i=1

must have kT'(n, k) —n < 0 that is T(n, k) < % Now, let us proceed with the

converse, that is showing that

n n 2 k k 2
i=1 i=1 i=1 i=1

for all real numbers x1, z9, ..., z,. If we manage to prove this inequality, then
it will follow that T'(n, k) = % But (2.3) is of course equivalent to
& 2
n
i=k+1 i=1

Now, we have to apply the Cauchy-Schwarz inequality, because we need Z x;.

i=k—+1
We find that

n n 2
i=k+1

i=k-+1
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< v/3(a222 4+ b2y2 4 222 + 292 + a222 + 222 + a2y? + b222)
= \/3(0,2 + b2 + 02).

We have used here the hypothesis z2 + 32 + 22 = 1. Thus, /3(a? + b2 + c2)

o5

is the upper bound and this value if attained forzx =y =2z =

But for the lower bound things are not so easy. Investigating what happens
when zyz = 0, we conclude that the minimal value should be a+b+c, attained
when two variables are zero and the third one is 1 or —1. Hence, we should
try to prove the inequality

Va2z2 + b2y2 + 222 + \/b222 + 212 + 222

+vc2x2 + a2+ 0222 >a+b+c
Why not square it? After all, we observe that

a23:2+b2y2+0222+b23:2+02y2+a222+02x2+a2y2+b222:a2+b2+02,

so the new inequality cannot have a very complicated form. It becomes

Va2z? + b2y2 + 222 - /b222 + 22 + 222

+/B222 + 2y? + a222 - /222 + a2y? + 222
+/ 222 + a2y? + 0222 - \/a2z2 + b2y? + 222 > ab+ be + ca

which has great chances to be true. And indeed, it is true and it follows from
— what else, the Cauchy-Schwarz inequality:

Va2z? + 0292 + 222 - \/b222 + 2% + a222 > abz® + bey® + caz?

and the other two similar inequalities. This shows that the minimal value is
indeed a + b + ¢, attained for example when (z,y, z) = (1,0,0).

It is now time for the champion inequalities. Do not worry if the time you
spend on them is much longer than the time spent for the other examples:
these problems are difficult! There are inequalities where you can immediately
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aiaj n(n _ 1)
2 < .
1<i<j<n (1—-a;)(1—a;) ~ 2(2n—1)
[Vasile Cartoaje]

Solution. This is a very hard problem, in which intuition is better than tech-
nique. We will concoct a solution using a combination of the Cauchy-Schwarz
inequality and Jensen’s inequality, but we warn the reader that such a solution
cannot be invented easily. Fasten your seat belts! Let us write the inequality

in the form ,
n n 2
a; a: n(n—1)
< t .
(Zl—al) _;(l—ai)2+(2n—l)2

i=1

We apply now the Cauchy-Schwarz inequality to find that

(02 ) = (50) (Sate) -5 s

i=1

Thus, it remains to prove the inequality
>y —
(1—a;)?~ & (l—a)2 (2n —1)%

The latter can be written of course in the following form:

a;(1 - 2a;) 2n(n -1
Z (1-a;)? — (2n —1)2

This encourages us to study the function

filog|~r -

z(1 —2z)
(1-z)
and to see if it is concave. This is not difficult, for a short computation shows

that f"(z) = (T_%

plete the solution.

< 0. Hence we can apply Jensen’s inequality to com-
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Solution. Here is a unusual way to apply the Cauchy-Schwarz inequality:
Sy oy e Y
¥ IiVi+i iVits

i=1 j=1 i,j=1

o~

: Z\/E(HJ Z\fz+3

2,7=1 3,j=1

By rearranging terms in both sums, it is enough to prove that for any positive
integer m

_Ym
g(mmwf ‘

Fortunately, this is not difficult, because the inequality

1 T
(TH—77”L+1)\/n+1S n  (@+m)z

holds as a consequence of the monotonicity of f(z) =

W. By adding up

these inequalities, we deduce that

1 * dz
z:(TH—77"L+1)\/n+1 S/g (z +m)\/z

n>0

With the change of variable x = mu?, a simple computation shows that the

last integral is \/_ and this finishes the solution.

We end this chapter with a remarkable inequality due to Fritz Carlson . There
are many analytic methods of proving this result, but undoubtedly the follow-
ing one, due to Hardy, will make you say: always Cauchy-Schwarz!
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2.2

1.

Problems for training

Let a, b, ¢ be nonnegative real numbers. Prove that
(az? + bz + ¢)(cz? + bz +a) > (a + b+ ¢)%z?

for all nonnegative real numbers z.
Titu Andreescu, Gazeta Matematica

Let p be a polynomial with positive real coefficients. Prove that if
1 1

D (— > —— is true for £ = 1, then it is true for all > 0.
z) ~ plz)

Titu Andreescu, Revista Matematica Timisoara

Prove that for any real numbers a, b, ¢ > 1 the following inequality holds:

Va—1+vVb—1++ve—1</albe+1).

. For any positive integer n find the number of ordered n-tuples of integers

(a1,as9,...,a,) such that

a1+a2+~'+an2n2 anda%+a§+---+ai§n3+1.

China 2002
Prove that for any positive real numbers a, b, c,
1 1 1 1 (atbte+t v abc)?

+ + + :
a+b b+c ct+a 2¥abc (a+b)(b+c)(c+a)

Titu Andreescu, MOSP 1999
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. Let ay,as,...,an,b1,be,...,b, be real numbers such that

Z aia; > 0.

1<i<j<n

Prove the inequality

2

Z aibj > Z a;a; Z bibj

1<i#j<n 1<izj<n 1<izj<n

Alexandru Lupas, AMM

. Let n > 2 be an even integer. We consider all polynomials of the form

"+ ap_12" 1 + -~ - + a1z + 1, with real coefficients and having at least
one real zero. Determine the least possible value of a +a3 + - +a2_;.

Czech-Polish-Slovak Competition 2002

. The triangle ABC satisfies the relation

A 4 (20t B 4 (300t O = (&)
co2 co; ot 5 =\7) -

Show that ABC is similar to a triangle whose sides are integers, and
find the smallest set of such integers.

Titu Andreescu, USAMO 2002

. Let 1,2, ..., T, be positive real numbers such that

1 N 1 - 1
1421 14z 1+,
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10.

11

12.

Prove the inequality

VIL+ T2+ +m>(n—1)<\/—:+% +\/%_n)

Vojtech Jarnik Competition 2002

T
Given real numbers x1,22,...,Z19 € [0, 5] such that
.2 -2 ) _
sin“xzy +sin“xs + - -+ +sin“xz19 = 1.
Prove that
3(sinzy +sinzy + -+ +sinzig) < coszy + cosza + - - - + cos x10.

Saint Petersburg, 2001

Prove that for any real numbers z,, g, ..., z, the following inequality
holds

(iim-zﬂ) ZZW‘%I

i=1 i=1 i=1 j=1
IMO 2003

Let a1,as, ..., a, be positive real numbers which add up to 1. Let n; be
the number of integers k£ such that 21=t > g, > 27t Prove that

Z \/g <4+ +/logy(n).
i>1

L. Leindler, Miklos Schweitzer Competition
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13.

14.

Let n > 2 and z7, 29, ..., £, be positive real numbers such that
1 1 1 9
(Ti+zo+ o Fz) | —+—+ - +— ) =n+1
A Z9 In
Prove that
1 1 1 2
2 2 2 2
o+ -+ 2 -+ =+ F+=])>n"+44+ —x.
(z1 + =3 + ")<xf+x§+ +x%> + Y p—
Gabriel Dospinescu
Prove that for any positive real numbers aj,asg, ..., an, Z1, Z2,...,Zn
such that
_(n
2 mw={y),
i<i<j<n

the following inequality holds

a a

az+---+ap a;+---+ap—

Vasile Cartoaje, Gabriel Dospinescu
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3.1 Theory and examples

Most of the time, proving divisibility reduces to congruences or to the famous
theorems such as those of Fermat, Euler, or Wilson. But what do we do when
we have to prove, for example, that lcm(a, b, ¢)? | lem(a, b) -lem(b, ¢) - lem(c, a)
for any positive integers a,b,c? One thing is sure: the above methods fail.
Yet, another smart idea appears: if we have to prove that alb, then it suffices
to show that the exponent of any prime number in the prime factorization of
a is at most the exponent of that prime in the prime factorization of b. For
simplicity, let us denote by v,(a) the exponent of the prime number p in the
prime factorization of a. Of course, if p does not divide a, then vy(a) = 0.
Also, it is easy to prove the following properties of vp(a):

o vp(a+b) > min{vp(a),vp(b)}

* vp(ab) = vp(a) + vp(b)
for any positive integers a and b. Now, let us rephrase the above idea in
terms of vp(a): alb if and only if for any prime p we have vp(a) < vy(b),
and a = b if and only if for any prime p, vp(a) = vp(b).

o up(ged(ar, ag,...,an)) = min{vp(a1), vp(az), ..., vp(an)},

e vp(lem(ay, ag, ..., an)) = max{vp(a1), vp(az),. .., vplan)}
n n n _n—s (n)

’““"’):bM?JﬂEJ*"'—fZ -

Here, sp(n) is the sum of the digits of n when written in base p. Observe that
the third and fourth properties are simple consequences of the definitions. Less
straightforward is the fifth property; it follows from the fact that among the

n n
numbers 1, ..., n there are 5 multiples of p, L?J multiples of p? and so on.

The other equality is not difficult. Indeed, let us write n = ap+a1p+- - -+akpk,
where ag,a1,...,a; € {0,1,...,p— 1} and ax # 0. Then

n n _ k—1 k—2
» + I~ t+---=artap+---+agp” " taztaspt---tagpt T+ tag,
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the problem will be solved if we prove our claim. Fix k£ > 1 and suppose that
there are exactly b; indices 5 € {1,2,...,n} such that a; = i (mod p¥), for
each i € {0,1,...,p* — 1}. Then

oo [ I o) =5 (3)

1<i<j<n i=0

Let us see what happens for a; = 7. If i = 0, then the number of 1 < j < n
for which j = 0 (mod p*) is L%J If 4 > 0 then any 1 < j < n for which

n—i

j =1 (mod pk) has the form rpk + 4 for some 0 < r < {—I)%J Thus we find

14+ {"p—;lJ indices in this case. Hence

o T 6es :pil (1+[2”—?J)+({%J) (3.1)

1<i<j<n i=1

Ny | I G-9) =pk_1({%lJ),

1<i<ji<n 3=0

so it suffices to prove that
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pk_l 4 k_l
Now, observe that we need to find the minimum of Z (1321) , when Z Ti=n
1=0 =0
(it is clear from the definition of b; that
k__ ke
p—1 p -1 n+j
Z bj=n= k
i=0 j=o L P

from the definition of b;). For this, let us suppose that z¢o < 27 < 2o <
oo < zpe_y is the p*-tuple for which the minimum is reached (such a p*-tuple

p*—1

exists since the equation Z z; = n has a finite number of solutions). If
i=0

T,k_1 > Zo+1, then we consider the n-tuple (To+ 1,21, ., Tpk_0, Tpk_1 — 1),

where the sum of components is n, but for which

() () n ()« (7
()2 () () ()

The last inequality is true, since it is equivalent to z,x_; > zo + 1. But this
contradicts the minimality of (zo,z1,...,%2,...,Zpr_1). S0, Tpe_3 < z0+ 1,
and from here it follows that z; € {20, z0 + 1} for all i € {0,1,2,...,p* — 1}.
Hence there is a j € {0,1,2,...,p* — 1} such that g = 21 = --- = z; and
Tj4l = Tjp2 = '+ = Tpe_1 = To + 1. Because the variables z, add up to n,
we must have . '
G+ Dzo+ (@* —j— Dz +1) =n,

k_ y .
thus p*(zg + 1) = n + j + 1. Therefore Zfzol (1721) > (5 +1)(%) + (F -
j —1)(*;!). Finally, observe that for all 0 < ¢ < p* — 1 we have [”p—*,;’ J =

zo+ 1+ 1-;—,:1J , and this is equal to zg+ 1 if ¢ > j + 1 and to zg otherwise.

Therefore
k

S (=) o)

1=0
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for k > 0, we finally deduce that

295 <wva(z" —y") <wva(z+y)+va(r —y) +up — 1 (3.2)

Consequently, (2% ),eps is bounded, a simple reason being the inequality 2% <
vo(z + ) + v2(x — y) + up, — 1. Hence (up)nepr takes only a finite number of
values, and from (3.2) it follows that (jn)nem also takes a finite number of
values, that is M is finite, a contradiction.

ii) Suppose that p is odd and let d be the least positive integer k such that
p|z* — y*. Then for any n in M we have plz™ — y™. Let = = tu, y = tv, where
(u,v) = 1. Clearly, tuv is not a multiple of p. It follows that

p|@W=vd U — ") = umd _ 4 (nd) | pld) y ()
and by the choice of d, we must have d|n. Therefore any element of M is a

multiple of d. Take now n in M and write it in the form n = md, for some
positive integer m. Let A = z% and B = y%. Then

pm|pn|zn_yn:Am_Bm,

and this happens for infinitely many m. Moreover, p|A — B. Let R be the
infinite set of those m. We will prove now a very useful result in this type of
problems:

Theorem 3.1. Let p be an odd prime and let A, B be positive integers, not
divisible by p and such that p|A — B. Then for all positive integers n we have

vp(A™ — B™) = vp(n) + vp(A — B).

Proof. The proof of this theorem is natural, even though it is quite long and
technical. Indeed, let us write n = p* - [ with ged(l,p) = 1. We will prove the
result by induction on k. First, suppose that k& = 0. Observe that v,(A™ —
B") = v,(A — B) if and only if p does not divide A" 1 + A" 2B + ... +
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AB"™ 2 4 B"!, If the latter does not hold, because A = B (mod p), we infer
that pjnA™~! and this cannot hold because k = 0 and gcd(A, p) = 1. Suppose
now that the result holds for k and take n = p**1l with ged(l,p) = 1. Then,
if m = p*l we can apply the inductive hypothesis and write:

vp(A"™ — B") = v,(A™ — B™P) = vy, (A™ — B™)+
vp(Am(p_l) + Amp=2)gm o ... 4 pgmpm(P-2) 4 Bm(p—l))
= vp(A— B) 4+ k + up(A™P~D) 4 gmp=2)gm | ... 4 AmpBmp=2) | gpmp-1),
So, we need to prove that
vp(A™P=) 4 Agme=2gm 4 . gmpm(e=2) 4 pmp1)) — g,

But this is not difficult. First, note that if we put A™ = a, B™ = b, it is
enough to prove that if vy(a) = vp(b) = vp(a — b) — 1 =0, then

vp(aP ™t + P2+t abP 4P = 1

Now, write b = a + pc for some integer ¢ and observe that using the binomial
formula we can write

aP 4 aP %+ 4 abP 2 P = 0P 4 aP 2 (a + pe) 4 aP3(a? 4 2apc)+

- +a?(aP 3 + (p—3)aP " *pc) +a(aP 2 + (p— 2)aP3pe) +aP 7 + (p— 1)aP2pc

2 p-1
2

which proves the inductive step and finishes the proof of the theorem.

=paP! + caP%p =paP~! (mod p?),

|

Let us come back to our problem. Using the theorem, we deduce that for
infinitely many m we have

m < vp(A™ — B™) = vp(A — B) 4+ vy(m) < vp(A — B) + |log,m],
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which shows that
.oy fne
3 P

1> p<Vn

mJIH

So, all we need now is to prove that there exists a constant ¢ > 0 such that

Inp c-lnn. Actually we will prove more, that
p — b p
p<n

Z lnp _ Inn+ O(1).
p<n

The tool will be again the factorization of n!. Indeed, this gives the identity

= Z vp(n!) - Inp.

On the one hand, using Stirling’s formula n! ~ (Z)"v2mn, we deduce that
In(n!) = n(lnn — 1) + O(lnn). On the other hand, 2 — 1 < vp(n!) < ;27.
Therefore

nz Z _1)_van' ‘lnp>n- Z——lnl—[p

p<n p<n

(3.3)

p<n p<n

Inp —
p(p—1)

Because the series Z 1) is clearly convergent, it follows that n- >

O(n). o~

And now, we will prove the following result also due to Erdés: [] p < 4™ ! if
p<n

n > 1. The proof of this theorem is magnificent. We use induction. For small

values of n it is clear. Now, assume the inequality true for all values smaller

than n and let us prove that H p < 4" If n is even, we have nothing to
p<n

prove, since H p= H p<4r? < gqnl
p<n p<n-1
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elementary estimations. For example, using the fact that (27?) is the largest

binomial coeflicient and that the sum of these binomial coeflicients is 4", we
easily infer the inequality (27?) > %:1, which is more than enough for our
modest purposes. Now, another important fact about this binomial coeflicient

is that the prime powers dividing it do not have large exponents. Indeed,

#(()=Z (5] 2 [7]) = tosn

which shows that the largest power of p dividing (27?) does not exceed 2n.

This implies that the exponent of any prime p > v/2n is at most 1. But the
remarkable observation that Erdds had is that actually this special binomial

coefficient is not a multiple of any prime between %” and n, as you can im-

mediately establish using the fact that vp((%?)) = > (B—QJ -2 L%J) So,
k>1

using all these observations, we infer that

4" 2
sri=(n)s Men T v 11 2

p<V2n V2n<p<ZE  m<p=in

Using the result proged in the solution of the previous example, we deduce
that ] p <437l Also, it is clear that [[ 2n < (2n)V2"1 so if

Ven<p< % p<v2n
f(n) is the number of primes between n and 2n, then
4n

< 14+v2n 421, In) ()
< ()43 (on)

By taking logarithms, we finally deduce that

Z _ O(vn-Ilnn)
logy n

f(n) >

from which the conclusion follows immediately.

But the most subtle and difficult problem of this chapter (and probably of
the whole book) is the following fascinating result, conjectured by Palfy and
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S0

a

(b) = g — HpB(p)—A(p)+B(p2)—A(p2)+~--

p<a

There is another crucial observation to be made: if m(p) is the largest k such
that B(p¥) is not zero, then using the fact that A(p) = B(p) we obtain

m(p)
B(p) - Alp) + B(p*) — A(p*) +--- = Y _ (B(P)) — A(p)),

B(p) — A(p) + B(p®) — A(p*) +--- <m(p) — 1

(recall that we have established the inequality B(p*) — A(p*) < 1). Therefore
() is a divisor of [] p™®~! and so

p<a
(b—a+1)-(b—a-+2) b
Hpm(P)

p<a

is a divisor of l'af!p' However, the last divisibility cannot hold for b > 2a.

p<a

Indeed, it is clear that

a! (b—a+1)-(b—a+2)---b

< aa—w(a) < ,
p<a p<a

because after cancellations are made in

(b—a+1)-(b—a+2)---b
Hpm(P) !

r<a

we obtain a — 7(a) factors all equal to at least b—a + 1 > a, a contradiction.
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3.2 Problems for training

1. Prove the identity

lem(a, b, c)? B ged(a, b, c)?
lem(a, b) - lem(b, ¢) - lem(c,a)  ged(a,b) - ged(b, c) - ged(c, a)

for all positive integers a, b, c.
USAMO 1972

2. Let a, b, ¢, d be positive integers such that ab = cd. Prove that

ged(a, ¢) - ged(a, d) = a - ged(a, b, ¢, d).
Polish Olympiad

3. Let aj,ay,...,ak,b1, by, ..., bg be positive integers such that ged(a;, b;) =
1forallie{1,2,...,k}. Let m =lem(by,bo,...,bg). Prove that

aim asm apm
cd

= ged .
b by bk) ged(a1, ag, . .., ag)

IMO 1974 Shortlist

4. Let n be a positive integer such that 27~2095|n!. Prove that n has at
most 2005 non-zero digits when written in base 2.

5. Let 0 < a; < - - < ap be integers. Find the greatest m for which we can
find the integers 0 < b; < --- < by, such that

n m n m
> 2% = "beand [J2%)! =[] be!
k=1 k—1 k=1 k=1

Gabriel Dospinescu
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10.

11.

Show that if n is a positive integer and a and b are integers, then n!
divides a(a + b)(a +2b) - -+ (a+ (n — 1)b)b" L.

IMO 1985 Shortlist

Prove that the product of the numbers between 21917 + 1 and 21991 — 1
is not a perfect square.

Tournament of the Towns 1991

Let a, b, ¢ be positive integers such that c|a® — b°. Prove that | a;:gc.

I.Niven, AMM E 564

. Prove the identity

(n+1) lem <<g) <7ll> <Z>) —lem(1,2,...,n41)

for any positive integer n.

Peter L. Montgomery, AMM E 2686

Prove that the least common multiple of the numbers 1,2, ...,n equals
. n n n\ .
the least common multiple of the numbers <1), <2) yeees <n) if and

only if n 4+ 1 is a prime.
Laurentiu Panaitopol, Romanian TST 1990
Find v2(A), where A is the numerator of 1 + % + % ot

J.L.Selfridge, AMM E 1408
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12.

13.

14.

15.

16.

Let ai,as,...,ar be positive integers not exceeding n such that a; does

not divide [] a; for all <. Denote by m(n) is the number of primes not
1]
exceeding n. Prove that k < 7(n).

Erdos

Let ay, ..., a, > 0 be such that whenever k is a prime number or a power
of a prime number, we have

(e {0

Prove that there is a unique ¢ € {1,2,...,n} such that a; + -+ -+ a, <
1+ [az]

Tache Alexandru
Let m be an integer greater than 1. Suppose that a positive integer n
satisfies m|a™ — 1 for all integers a relatively prime to m. Prove that
n < 4m(2™ — 1). Find all cases of equality.

Gabriel Dospinescu, Marian Andronache, Romanian TST 2004

Prove that the sequence (zn)n>1, Zn being the exponent of 2 in the
.2 22 o

decomposition of the numerator of 1 + o + .-+ —, goes to infinity as

n

n — 00. Even more, prove that zon > 2" —n + 1.
Adapted from a Kvant problem

Let z,y be relatively prime different natural numbers. Prove that for
infinitely many primes p, the exponent of p in 2P~! — yP~1 is odd.

AMM
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17.

18.

19.

20.

21.

22.

Find the exponent of 2 in the prime factorization of the number

2n+1 on
on o on—1J°
J. Desmong, W.R.Hastings, AMM E 2640

Let n be an integer greater than 1 and let a, b be positive integers smaller
than n. Prove that there exists a prime number p such that min(s,(a)+
sp(n —a), sp(b) + sp(n — b)) > p— 1+ sp(n).

Gabriel Dospinescu

Prove that there exists an absolute constant ¢ such that for any positive
integers a,b,n for which a!b! = nl and 1 < a < b < n we have n <
b+ clnlnn.

Paul Erdés, AMM 6669
Prove that the product of at most 25 consecutive integers is not a square.
Narumi’s Theorem

Prove that for all positive integers n different from 3 and 5, n! is divisible
by the number of its positive divisors.

Paul Erdés, Miklos Schweitzer Competition

Let (an)n>1 be a sequence of positive integers such that ged(am,an) =
Ggcd(m,n) for all positive integers m,n. Prove that there exists a unique

sequence of positive integers (bn)n>1 such that an = [] ba.
dln

Marcel Tena,
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23. Let f(n) be the maximum size of a subset 4 of {1,2,...,n} which does not
contain two elements 7, j such that |2j. Prove that f(n) = 4+ O(Inn).

Paul Erdés, AMM E 3403
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We will prove now that if f is nonconstant and satisfies the conditions in the
problem, then n > 0. Suppose not. Then 2f(z?+y2) = f(z)+ f(y) and hence
2f(x)? = 2f(z? + 0%) = f(z) + f(0). It is clear that we have f(0)% = f(0).
Because f is nonconstant, we must have f(0) = 0. Consequently, 2f(z)? =

1
f(x) for every integer x. But if there exists z such that f(z) = 3 then

2f(x?)? # f(z?), contradiction. Thus, f(z) = O for any integer z and f is
constant, contradiction. So, n = 1 is the least number for which there are
nonconstant functions which satisfy a) and b).

We will now prove that any nonconstant function f which satisfies a) and b)
must be of the form f,: or the function sending all nonzero integers to 1 and
0 to 0. We have already seen that f(0) = 0. Since f(1)? = f(1) and f is
nonconstant, we must have f(1) = 1. Also,

2f(2)? - f(z) = 2f(2* +0?) — f(z) - £(0) € {0, 1}

for every integer . Thus f(z) € {0,1}. Because f(—1)? = f(1) = 1 and
f(=1) € [0,00), we must have f(—1) = 1 and f(-z) = f(-1)f(z) = f(z)
for any integer x. Then, since f(zy) = f(z)f(y), it suffices to find f(p) for
any prime p. We prove that there is exactly one prime p for which f(p) =
0. Because f is nonconstant and f is not the function sending all nonzero
integers to 1, there is a prime number p for which f(p) = 0. Suppose there is
another prime g for which f(q) = 0. Then 2f(p? + ¢?) € {0, 1}, which means
f(P* + ¢*) = 0. Then for any integers a and b we must have:

0=2f(a®+b*)f(p* +¢*) = 2f((ap + bg)* + (aq — bp)?).

Observe that 0 < f(z) + f(y) < 2f(x% + y?) for any 2 and y, so we must have
flap +bq) = f(ag — bp) = 0. But p and ¢ are relatively prime, so there are
integers a and b such that ag —bp = 1. Then 1 = f(1) = f(ag — bp) = 0,
a contradiction. So, there is exactly one prime p for which f(p) = 0. Let us
suppose that p = 2. Then f(z) = 0 for any even = and 2f(z? + y2) = 0 for
any odd numbers x and y. This implies that f(z) = f(y) = 0 for any odd
numbers z and y and thus f is constant, contradiction. Therefore p € P, U Ps.
Suppose p € P;. According example 1, there are positive integers a and b such
that p = a% +b2. Then we must have f(a) = f(b) = 0. But max{a,b} > 1 and
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Indeed, let us define P(z) = [] (1 + 3‘}%’—) + %’z’j—) + - ) It is a finite product
p<z
of absolutely convergent series, so we can write

Py = 3 M,

nePy(z)

where Pj(z) is the set of positive integers having all prime divisors not ex-
ceeding . Thus the difference between the sum of the absolutely convergent

series ) = Aln) and P(z) is just the sum of ( ) taken over the set of all positive
n>1
integers that have at least one prime divisor greater than z, thus it is certainly
bounded in absolute value by 3 # Because this converges to 0 for  — oo,
n>x
it follows that P(z) converges to L(s) for x — 0o, so we have

2
b =TI (12222 ) T Ly

Now, observe that

so we can take logarithms in both sides of (4.1) in order to obtain
A
InL(s) = Zl ( (p) )

Finally, observe that there exists a constant w such that |~In(1—z)—z| < Cx?
forall 0 <z < % Indeed, the function Mﬁ is continuous on [0, %], so

it is bounded. Therefore

In L(s) — Z%

P

1 1
<w- — <w —.
DRI
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Now, let us prove that In L(s) is bounded for s — 1. Indeed, from

0-(-8)+ (1) 13- 8)

it follows that for s > 1 we have In L(s) € (In %,O). With exactly the same
arguments (applied this time for the function ¥ (n) = 1 for odd n and ¥(n) =0

for even n and Lq(s) = Y, %), we can prove that
n>1

u( > L)

n62N+1 p>2

is bounded for s — 1. However, it is clear that

3 %:(1—2—15)(@),

ne2N+1

where ((s) = Y. A is the famous Riemann’s function. Because In L(s) is
n>1

bounded, it follows from a previous inequality that ) ’\TS? is also bounded
p>2
near 1. Finally, we deduce from these observations that

- Yo

:DEP1 1061’3

and
Z Z n(1 —27°) +In¢(s) + O(1)
:DEP1 :DEP3

for s — 1. A simple integral estimation shows that In(1—27%)+In{(s) ~ In J1;

for s — 1, which finishes the proof of this beautiful theorem.

Now, let us see why the set ()2 has zero density. The proof of this result will
surely look very complicated. Actually, it is a motivation to give some other
very useful results connected to this problem. First of all, let us start with
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Theorem 4.2. Let P be a set of prime numbers. The set of positive integers

n divisible by some prime p € P has density 1 if J] (1 - %) = 0.
qeEP

Proof. The proof of this result is quite simple, even though in order to make it
rigorous we need some technical details. It is clear that P is infinite, so let p; <
pa < ... be its elements. Let E be the set of the numbers n divisible by some
prime p € P and let X be the set of positive integers n that are not divisible
by any element of P. Also, let f(z,y) be the cardinal of the set of those

numbers not exceeding z and which are relatively prime to [[ ¢. Using
gePq<y
the Inclusion-Exclusion Principle and the fact that the number of multiples

of p;, Diy.--pi, not exceeding z differs by at most 1 from T TRET. p,“f o e deduce
i1 Pig - "Pis
that

fen=2 [[ (1—é)+0(2y)

qEP <y

(because in the sum appearing in the Inclusion-Exclusion Principle there are

2Y terms of the form p—‘zrl:—'p + O(1)). Now, by choosing y = In z we deduce
i Pig--"Pis

that
femz) =z ] (1—%) 0(z"?).

gePg<Inz

Because the counting function of X satisfies R(z) < f(z,y) for all z,y and

because limz 0o ][] (1 - %) =0, it follows that R(z) = o(z), that is X
gePg<Inz
has zero density. It is clear then that E has density 1.

O

Now, using the previous theorem due to Dirichlet, we can easily establish

that z;) % = 00. Because In (1 — %) + % =0 (;15), it easily follows that
pEP;

I1 (1 — %) = 0. By the previous theorem, it follows that the set of integers

pEP3

divisible by at least an element of P3 has density 1. Now, let P3(z) be the

counting function of the set of positive integers that are not divisible by 4 or
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by any element of P3. They are the only integers that are sums of two coprime
squares. Also, we have proved that P3(z) = o(x). It is also clear that if Sq(x)
is the counting function of the set of positive integers that are sums of two

squares, then Sq(z) < Y P; (3%) Now, for N an arbitrary positive integer,
jz1

observe that

> Py (]%) < VaPs(N)

A<

because Pj (3%) < P3(N) for these j and the sum has at most v/z nonzero
terms. On the other hand,

T Ps(t) r Py(t)
E P3| = ] <su E — < 3z -sup —=.
’ (J2) tZJI\)/ t J2 P t

>N 51 t2N

Everything should be clear now: for € > 0 choose N such that sup;> PSt(t) <

4B(N)?

&- Then for z > we have Sq(x) < ex, which means that Sq(z) = z.
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4.2

Problems for training

. Prove that a positive integer can be written as the sum of two perfect

squares if and only if it can be written as the sum of the squares of two
rational numbers.

Euler

a) Prove that for any real number z and any nonnegative integer N one

find int d h that —p| < ——.
can find integers p and g such that |gz pl_N-l—l

b) Suppose that a is a divisor of a number of the form n? + 1. Prove
that a € Qo.

Prove that the equation 3 = m? + n? + 1 has infinitely many solutions
in positive integers.

Saint-Petersburg Olympiad

Prove that each p € P; can be represented in exactly one way as the sum
of the squares of two integers, up to the order of the terms and signs of
the terms.

. Find all positive integers n for which the equation n = 2% + y2, with

0 <z <y and ged(z,y) = 1 has exactly one solution.

Prove that the number 4mn — m — n cannot be a perfect square if m
and n are positive integers.

IMO 1984 Shortlist

The positive integers a, b have the property that the numbers 15a + 16b
and 16a — 15b are both perfect squares. What is the least possible value
that can be taken by the smallest of the two squares?

IMO 1996
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10.

11.

12.

13.

Find all pairs (m,n) of positive integers such that

m? —1|3™ + (n! — 1)™.

Gabriel Dospinescu

2,2
: e +
Find all pairs (z,y) of positive integers such that the number Ty

T—Yy
a divisor of 1995.

is

Bulgaria 1995

Find all n-tuples (a1, a9, ..., a,) of positive integers such that
((11! - 1)(0,2! - 1) [N (an' - 1) — 16

is a perfect square.
Gabriel Dospinescu

Prove that there are infinitely many pairs of consecutive numbers, no
two of which have any prime factor that belongs to Ps.

Ivan and Peter alternately write down 0 or 1 until each of them has
written 2001 digits. Peter is a winner if the number, whose binary rep-
resentation has been obtained, cannot be expressed as the sum of two
perfect squares. Prove that Peter has a winning strategy whenever Ivan
starts.

Bulgaria 2001
Prove that the equation y? = z° — 4 has no integer solutions.

Balkan Olympiad 1998
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14.

15.

16.

17.

18.

19.

20.

It is a long standing conjecture of Erd&s that the equation % = %—i— % + %
has solutions in positive integers for all positive integers n. Prove that
the set of those n for which this statement is true has density 1.

Let T the set of the positive integers n for which the equation n? = a2+b?
has solutions in positive integers. Prove that 7" has density 1.

Moshe Laub, AMM 6583

Find all positive integers n such that the number 2™ — 1 has a multiple
of the form m? + 9.

IMO 1999 Shortlist

Prove that the set of odd perfect numbers (that is for which o(n) = 2n,
where o(n) is the sum of the positive divisors of n) has zero density.

Prove that the equation 28 4+ 1 = n! has only finitely many solutions in
nonnegative integers.

Find all functions f : ZT — Z with the properties:
1. f(a) > f(b) whenever a divides b.

2. for all positive integers a and b,
f(ab) + f(a® +b°) = f(a) + f(b).
Gabriel Dospinescu, Mathlinks Contest

Let Lo = 2, L1 = 1 and Lpy2 = Lpy1 + Ly be the famous Lucas’s
sequence. Then the only n > 1 for which L, is a perfect square is n = 3.

Cohn’s theorem
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5.1 Theory and examples

Ty’s lemma is clearly a direct application of the Cauchy-Schwarz inequality.
Some will say that it is actually the Cauchy-Schwarz inequality and they are
not wrong. Anyway, this particular lemma has become very popular among the
American students who attended the training of the USA IMO team. This
happened after a lecture delivered by the first author at the Mathematical
Olympiad Summer Program (MOSP) held at Georgetown University in June,
2001.

But what exactly does this lemma say? It says that for any real numbers
ai, az, - .-, 0, and any positive real numbers 1, z3, ..., z, the inequality

2 (a1 +ag+-+ap)?

ZTn z1t+ax2+ -+ 2n

a

2y

holds. And now we see why calling it also the Cauchy-Schwarz inequality is
natural, since it is practically an equivalent form of this inequality:

2 2 2

a a a
(—1+—2+---+—’l>(a:1+a:2+---+a:n)
1 T2 Tn
2
a2 a2
= RV VIR \/_+ —”-\/r_n
1

But there is another nice proof of (5.1), by induction. The inductive step is

reduced practically to the case n = 2, which is immediate. Indeed, it boils
a

down to (a1z2 — azazl)z > 0 and the equality occurs if and only if a_ 22—‘
7 x2

Applying this result twice it follows that

d B 4 (m+m) 4 (a+ata)’

r1 x2 r3  x1t22 T3 = T +T2+ 123
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Solution. Usually, in such problems the minimal value is attained when the

1
variables are equal. So, we conjecture that the minimal value is ﬁ
n(n —

1
attained when z; = 2o = -+ = z, = —. Indeed, by using the lemma, it
n

follows that the left-hand side is greater than or equal to

(54

n
Ziﬂi(iﬂl+--'+$i—1+$i+1+'--+$n)
i=1

But it is not difficult to observe that

2
n n
Z$i($1+"'+$i—l+$i+1+"'+l‘n): (Z%) -1

i=1
So, proving that

R B
Tot+T3+- -+, T1+ITz+:-+ZTn Ti1+To+ -+ Tp1

1
~n(n—1)

reduces to proving the inequality

n 2
3 i=1
DE) JER A,
(i:l ) n(n —1)
But this is a simple consequence of the Power-Mean inequality. Indeed, we

have .

=1 i=1 1=1
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With this identity, we infer that the intermediate inequality is in fact

2 2 2 2 2 2
(8% —aj — a3 — a3 — ag — a3),

] ot

(a1 + ag + az + a4 + as)? >

equivalent to 5(a? + a2 + a% + a2 + a2) > S?, which is nothing else then the
Cauchy-Schwarz inequality.

Another question arises: is there a positive real number such that for any
positive real numbers aj,as,...,a, and any n > 3 the following inequality

holds:
a as an

az +ag " a3 + a4 o a1+ az = e

This time, the answer is positive, but finding the best such constant is an
extremely difficult task. It was first solved by Drinfield (who, by the way, is
a Fields’ medalist). The answer is quite complicated and we will not discuss
it here (for a detailed presentation of Drinfield’s method the interested reader
can consult the written examination given at ENS in 1997). The following
problem, given at the Moldavian TST in 2005, shows that ¢ = /2 — 1 is such
a constant (not optimal). The optimal constant is quite complicated, but an
approximation is 0.49456682.

For any aj,as,...,a, and any n > 3 the following inequality holds:

a az Qn,
+ +e ot
az+az a3+ a4 a1 + ag

> (V2 - 1)n.

The proof is completely elementary, yet very difficult to find. An ingenious
argument using- the arithmetic-geometric means inequality does the job: let
us write the inequality in the form

ai + az + a az + a a an, + a1 + a
1+ad2+d3 G2 3+ LRI e Sk N
az + as az +aq a1 + az

Now, using the AM-GM inequality, we see that it suffices to prove the stronger
inequality:

ai+azx+az az+as+ag an+a1+az>(ﬁ)n
az + a3 ast+ag  artay '
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Observe that

a; ait1 2
(ai + a;41 + a¢+2)2 = (ai + z;—l + z—;—- + a¢+2)
) a:
> 4(a¢+ agl) ( gl +ai+2>

(the last inequality being another consequence of the AM-GM inequality).
Thus,

n n n
H(ai + i1 + aige)’ > H(zai + ait1) H(2ai+2 + aiy1)-

=1 =1 i=1

Now, the real trick is to rewrite the last products appropriately. Let us observe
that

n

n
[T@air2 + aia) = [[(2ai41 + a2),

i=1 i=1

)
n

[]2a: +ais1) [[2air2 +aia) = [1l2a: + ais1) (@i +2ai11)]

i=1 =1 i=1

n

" 2
> H(2(a¢ +ai1)?) = 2" (H(ai + ai+1)> ‘
i=1

=1

The conclusion now follows.

This lemma came handy even at the IMO 2005 (problem 3). In order to prove
that for any positive real numbers z,7,z such that zyz > 1 the following
inequality holds
Z 22 £y + 22
— <3,
x5+ y? + 22
a few students successfully used the above mentioned lemma. For example, a
student from Ireland applied this result and called it “SQ Lemma”. During the






104 5. T2’S LEMMA

In this form, the inequality is more than monstrous, so we try to see if a
simpler form holds, by applying the AM-GM inequality to each denominator.
So, let us try to prove the stronger inequality

2(a+b+c)(ct+b—a) +2(a+b+c)(c+a—b)
4a? + b2 + 2 4% + c? + a?

2(a+b+c)a+b—c)

> 3.
4c? + a2 + b2

Written in the more appropriate form

c+b—-a n c+a-b a+b—c S 3
da? +b2+c2 42+ c2+a? 42+ a?+b2 T 2a+b+c)

we see that by T2’s lemma the left-hand side is at least

(a+b+c)?
(b+c—a)da?+b02+ )+ (c+a—b)(4b2 + a2+ )+ (a+b—c)(4c + a® + b2)”

Basic computations show that the denominator of the last expression is equal
to
4a%(b + c) + 4b%(c + a) + 4c*(a+ b) — 2(a® + b° + %)

and consequently the intermediate inequality reduces to the simpler form
3@+ 8+ +(a+b+¢)®>6[a?(b+c) + b2 (c+a) +Z(a+ b))
Again, we expand (a + b + c)® and obtain the equivalent inequality
4(a® + b* + c) + 6abe > 3[a(b + ¢) + b*(c + a) + Z(a + b)),
which is not difficult at all. Indeed, it follows from the inequalities
4(a® + b3+ ) > 4[a*(b+ ¢) + b*(c + a) + ?(a + b)] — 12abc

and
a?(b+ c) + b (c+ a) + c*(a + b) > 6abe.
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Hence it is enough to prove the inequality

(x+y+2z—3)>
2492+ 2243

3
> —.
-5
But this is equivalent to

(z+y+2)°—15(z+y+2) +3(xy+yz+2z) +18 > 0.

This is not an easy inequality. We will use the proposed problem 6 from the
chapter Two Useful Substitutions to reduce the above inequality to the

form
(z+y+2)?2 -9 +y+2)+18 >0,

which follows from the inequality z + y + 2 > 6. And the problem is solved.
But heére is another original solution.

Alternative solution. Let us apply T3’s lemma in the following form:

(b+c—a)? (c+a—-b?2 (a+b—c)?
a2+ (b+c)? B2+ (c+a)? 2+ (a+b)?
_((6+9?—a(b+¢)® | ((c+a)*—blc+a))®  ((a+b)~cla+b))
a?b+c)2+ b+t bct+a)P+(c+a)t  Aa+b)?+ (a+b)?
S 4(a? + 8% + ¢%)?
T a?(b+ )2+ (c+a)+ca+ b2+ (a+b)r+(b+e)t+ (c+a)t

Consequently, it suffices to prove that the last quantity is greater than or equal

to 3 This can be done by expanding everything, but here is an elegant proof

using the observation that
a?(b+c)? + b (c+a)l+ca+b)%+ (@+b)+ B+t +(c+a)
=[(@a+b?+(d+c)?+ (c+a)?(a®+b* + )
+2ab(a + b)? + 2bc(b + ¢)? + 2ca(c + a)?.

Because
(a4 82+ (b+ )2+ (c+a)? < 4(a® + b + ¢?),
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Solution. How can we get to ajag + azas + - - - + ana1? Probably from

2 2 2

a a a
et SO SISt
a1as asas anal

after we use the lemma. So, let us try the following estimation:

2 2 2

a1 ap an a a a 1

— 4=t +—=—"L ¢ 2 4.4 2 > :
az ag a; aiaz aza3 ana1 — a18z +agzaz +---+anay

The new problem, proving that

aj as Qn, n aj as Qn,
5 + ot — > (—+—+m+~>
as+az a3z+as a¢+a;  n+1l\ax a3 a
seems even more difficult, but we will see that we have to make one more
step in order to solve it. Again, we look at the right-hand side and we write
ay | a2

2
a a a
(_1+__2+...+_">
az as ax

ai az an
S W A L
az as ai

After applying T5’s lemma, we find that

a3 + as a§+a3 ai +a a1+ﬂ az+% an+a—"
a9 as ai
ay [25)] a 2
(—+—+ +l>
a9 as ay
= ay _ a a
1+ 2424 42
a2 as a
. . ai an t2 nt
We are left with an easy problem: if t = — + .-+ — then

as ay 1+t " n+1’
or ¢t > n. But this follows immediately from the AM-GM inequality.
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5.2 Problems for training

1. Let a, b, c,d be positive real numbers with a + b+ ¢+ d = 1. Prove that
a2 N b2 N 02 N d2
a+b b+c c+d d+a

1

> —.

-2
Ireland 1999

2. Let a, b, ¢, be positive real numbers with a? + b% + ¢ = 3abe. Prove that

a n b n c 9
b2¢2  c2a?  a?b2 T a+b+c

India

3. Let z1,22,...,Zn,Y1,Y2, - .-, Yn be positive real numbers such that

T1+xe+ -+ 2p 2 T1Y1 + XYz + -+ ZrYn.

Prove that

1 | 22 Tn
Tttt < —+—+-- 4+ —.
U Y2 Yn

Romeo llie, Romania 1999

4. For arbitrary positive real numbers a, b, ¢ prove the inequality

L b n c oy
b+2¢c c¢c+2 a+2b7 7

Czech-Slovak Competition 1999

5. Prove that for all positive real numbers a, b, ¢ satisfying a + b+ ¢ =1,
the following inequality holds

a n b n c >3
14+bc 14+ca 1+4+ab ™ 10
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6. Prove that for any positive real numbers a, b, ¢, d satisfying ab+ bc+cd+
da = 1 the following inequality is true
ad b3 3 d?
b+c+d+c+d+a+d+a+b+ a+b+ec

1
> —.
-3
IMO 1990 Shortlist

7. Prove that if the positive real numbers a, b, ¢ satisfy abc = 1, then

a b c

> 1.
b+c+1+c+a+1+a+b+1 -

Vasile Cirtoaje, Gazeta Matematica

8. Prove that for any positive real numbers a, b, c,

a? + be F+m+3+w

>a+b+ec
b+c¢ c+a a+b

Cristinel Mortici, Gazeta Matematic3

9. Prove that for any nonnegative real numbers z1, z2,. .., Zn,

z Z2 Tn

+ o — > 9
Tn+22 1+ T3 Tn-1+T1

Tournament of the Towns 1982

10. Prove that for any positive real numbers a, b, ¢ the following inequality

holds
a \?2 b \?2 c \°_ 3 a2+b2+¢2
+ + >,
b+ec¢ c+a a+b 4 ab+bc+ ca

Gabriel Dospinescu
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11.

12.

13.

14.

15.

Prove that for any positive real numbers a, b, ¢, d, e satisfying abcde = 1,

a+ abc b+ bed c+ cde
l1+ab+abed 1+bc+bede 1+ cd+ cdea
d + dea e+ eab >E

l1+de+deadb 1+ea+eabc — 3

Waldemar Pompe, Crux Mathematicorum

Let n > 4 an integer and let a;, as, ..., a, be positive real numbers such
that a? + a2 + -+ + a2 = 1. Prove that
ai ) Qp, 4

4+ 4 > —(ah/al+a2\/a2+---+am/an)2.

+ .
a2 +1 a2+1 a?+175

Mircea Becheanu, Bogdan Enescu, Romanian TST 2002

Determine the best constant k,, such that for all positive real numbers

ai1,09, ..., an satisfying aqas ... a, = 1 the following inequality holds
a1a9 aqa3 anal

@+ o) ta) | (@ ta)e]+a) (a2 +ar)al+a)

< ky.

Gabriel Dospinescu, Mircea Lascu

Prove that for any positive real numbers a, b, c,

(2a+b+c)2  (2b+c+a)?  (2c+a+b)? <8
202+ (b+c)?2 202+ (c+a)? 22+ (a+b)2 " 7

Titu Andreescu and Zuming Feng, USAMO 2003

Let n > 13 be a positive integer and suppose that the positive numbers
a1, a2, ...,an satisfy the relations ¢y +as+---4+a, =1 and a3 +2a2+-- -+
na, = 2. Prove that (a2 —a1)v2+ (a3 —a2)v3+ -+ (an—an_1)v/n < 0.

Gabriel Dospinescu
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Solution. Suppose not and take an arbitrary vertex V3. Then

k—2
cwl > |-,
so there exists V, € C(V4). Moreover,
|C(V)) NC(Va)| = d(V1) + d(V2) — [C(V1) U C(V2))|

k—2
> — .
_2<1+{k_1nJ) n >0

Pick a vertex V3 € C(V1) N C(Vz2). A similar argument shows that

[C(V1) NC(Va) N C(V5)| > 3 <1 + U: — ?nJ) —2n.

Repeating this argument, we find

Vae C(Vi)NC(Vy) N C(Va)

k-2
Vk—] c ﬂ C(Vz)

=1

QC(V%) 2j<1+ U::inD G-

This can be proved easily by induction. Thus

Also,

S k—2
ﬂC(Vi) >(k-1) <1+ {k—an) —(k—2)n >0,
i=1
and, consequently, we can choose
k-1
Vi€ [)CVa).

i=1
But it is clear that V4, V3, ..., Vi form a complete k graph, which contradicts
the assumption that G is k-free.
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Solution. The answer is not obvious at all, so let us start by making a few
remarks. If the graph is complete of order n then the problem reduces to

finding the maximum of > x;z; knowing that z3 + 2 + -~ + 2, = 1.
1<i<j<n
This is easy, since

1 ld 1 1
=1

1<i<i<n

The last inequality is just the Cauchy-Schwarz inequality and we have equality
when all variables are % . Unfortunately, the problem is much more difficult in
other cases, but at least we have an idea of a possible answer: indeed, it is easy
now to find a lower bound for the maximum: if H is the complete subgraph
with maximal number of vertices k, then by assigning these vertices %, and
to all other vertices 0, we find that the desired maximum is at least (1 — ).
We still have to solve the difficult part: showing that the desired maximum
is at most %(1 - %) Let us proceed by induction on the number n of vertices
of G. If n = 1 everything is clear, so assume the result true for all graphs
with at most n — 1 vertices and take a graph G with n vertices, numbered
1,2,...,n. Let A be a set of vectors with nonnegative coordinates and whose
components add up to 1 and E the set of edges of G. Because the function
f(z1,z2,...,2n) = 2, ;x; is continuous on the compact set A, it attains its
(G.j)eE

maximum in a point (zi,z2,...,Z,). Denote by f(G) the maximum value of
this function on A. If at least one of the z; is zero, then f(G) = f(G1) where
(31 is the graph obtained by erasing vertex ¢ and all edges that are incident
to this vertex. It suffices to apply the induction hypothesis to G; (clearly,
the maximal complete subgraph of G; has at most as many vertices as the
maximal complete subgraph of G ). So, suppose that all z; are positive. We
may assume that G is not complete, since this case has already been discussed.
So, let us assume for example that vertices 1 and 2 are not connected. Choose
any number 0 < a < z; and assign to vertices 1,2,...,n of G the numbers
z1 — a,Z2 + a,x3, ...,Ty. By maximality of f(G), we must have

E%’S Exi,

1€Cq 1€Cy
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By symmetry, we can assume that ¢(y) > ¢(z). By maximality of ¢(G), we
must have ¢(G(z,v)) < ¢(G), which is the same as ¢(y) = ¢(z) and a(z) = 0.
Therefore G(z,y) also has f(n) complete maximal subgraphs. In the same
way, we deduce that ¢(G(z,vy)) = ¢(G(y,x)) = ¢(G). Now take a vertex z and
let 1,2, ..., % be the vertices not adjacent to x. By performing the previous
operations, we change G into G; = G(z1,), then into Gy = G1(z2,z) and
so on until Gy = Gg_1(zk,z), by conserving the number f(n) of maximal
complete subgraphs. Observe now that G has the property that z, x4, ...,z
are not joined by edges, yet V{(z1) = V(zg2) = --- = V(zx) = V(z). Now, we
know what to do: if V(z) is void, we stop the process. Otherwise, consider a
vertex of V(z) and apply the previous transformation. In the end, we obtain
a complete multipartite graph G’ whose vertices can be partitioned into r
classes with ni,na, ..., n, vertices, two vertices being connected by an edge if
and only if they do not belong to the same class. Because G’ has f(n) maximal
complete subgraphs, we deduce that

f(n) = max max niNg...Ny.

T n1tnztee+ne=n

(6.2) can be easily computed. Indeed, let (nq,ng,...,n,) the r-tuple for which
the maximum is attained. If one of these numbers is at least equal to 4, let
us say ny, we consider (2,n1 — 2,ngs,...,n,) for which the product of the com-
ponents is at least the desired maximum. So none of the n; exceed 3. Even
more, since 2 -2 -2 < 3 -3, there are at most two numbers equal to 2 among
ni,ng, ..., ny. This shows that f(n) = 33 if n is a multiple of 3, f(n) = 4.3
if n — 1 is a multiple of 3 and f(n) =2- 3"5% otherwise.



128

6. SOME CLASSICAL PROBLEMS IN EXTREMAL GRAPH THEORY

6.2

Problems for training

. In a country there are 1998 cities. At least two out of each three cities

are not directly connected. What is the greatest possible number of
direct flights?

Japan 1998

n2

Let z1,x2,...,z, be real numbers. Prove that there are at most T
pairs (4,7) € {1,2,...,n}% such that 1 < |z; — ;| < 2.

MOSP

2

o n
Prove that if » points lie on a unit circle, then at most 3 segments

connecting them have length greater than v/2.

Poland 1997

. Let A be a subset of the set S = {1,2,...,1000000} having exactly 101

elements. Prove that there exist t1,t2,...,%100 € S such that the sets
A; = {x + tj|z € A} are pairwise disjoint.

IMO 2003

k
. Prove that a graph with n vertices and k edges has at least 3—(4k —n?)
n

triangles.
APMO 1989

We are given 5n points in a plane and we connect some of them so that
10n2 + 1 segments are drawn. We color these segments in 2 colors. Prove
that we can find a monochromatic triangle.
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10.

11.

There are 1999 people participating in an exhibition. Out of any 50
people, at least two do not know each other. Prove that we can find at
least 41 people who each know at most 1958 other people.

Taiwan 1999

. There are n aborigines on an island. Any two of them are either friends

or enemies. One day they receive an order saying that all citizens should
make and wear a necklace with zero or more stones so that i) for any
pair of friends there exists a color such that each of the two persons has
a stone of that color; ii) for any pair of enemies there does not exist such
a color. What is the least number of colors of stones required?

Belarus 2001

. Let G be a graph with no triangles and such that no point is adjacent

to all other vertices. Also, if A and B are not joined by an edge, then
there exists a vertex C such that AC and BC are edges. Prove that all
vertices have the same degree.

APMO 1990

Let G be a regular graph of degree k (every vertex is adjacent to k other

vertices) with n vertices. Prove that G and its complementary graph
n(n—lg(n——2) _ nk(n;k—l) triangles.

contain together at least

G is a finite graph such that it does not contain a complete subgraph
with 5 vertices, and any two triangles have at least point in common.
Show that there is a set of at most two points whose removal leaves no
triangles.

IMO 2001 Shortlist
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12.

13.

14.

15.

16.

Prove that for every n one can construct a graph with no triangles and
whose chromatic number is at least n.

A graph with n2 41 edges and 2n vertices is given. Prove that it contains
two triangles sharing a common edge.

Chinese TST 1987

What is the least number of edges in a connected n-vertex graph such
that any edge belongs to a triangle?

Paul Erdés, AMM E 3255

A graph with n vertices and k edges has no triangles. Prove that we
can choose a vertex such that the subgraph induced by the remaining

vertices has at most k <1 — %) edges.
n

USAMO 1995

Let n =1 (mod 3) be an integer greater than 3 and consider n? points
in the plane. Find the least number of segments connecting pairs of
these points such that no matter how we choose n points there exist four
among them any two of which are connected by a line segment.

Emil Kolev, Bulgaria 2002
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7.1 Theory and examples

When reading the title, you will perhaps expect a difficult unit, reflecting the
complexity of combinatorics. But, this was not our intention. We just wanted
to discuss some combinatorial problems that can be solved elegantly by using
complex numbers. At this moment, the reader will probably say that we are
crazy, but we will support our idea and prove that complex numbers can play
a significant role in solving counting problems, and also in problems related
to tilings. They also have numerous applications in combinatorial number
theory, so our purpose is to illustrate a little bit from each of these situations.
After that, you will surely have the pleasure of solving the proposed problems
using this technique. To avoid repetition, we will present in the beginning of
the discussion a useful result

Lemma 7.1. Ifp is a prime number and ag, a1, ... ,ap—1 are rational numbers
satisfying
ag + a1€ + age® + -+ ap_16P7t = 0,
where
2r . 27w 2mi
E=COS— +1SIM— —¢€ P ,
thenag=a1=--- = ap-1.

Proof. We will just sketch the proof, which is not difficult. It is enough to
observe that the polynomials ag+ai X +a X2 +- - -—i—a;,,_lXp_1 and 1+ X+ X2+
-+« + XP~1 are not relatively prime-because they share a common root-and
since 1+ X + X?+-.-+ XP~ ! is irreducible over Q (you can find a proof in the
chapter concerning the irreducibility of polynomials), 1+ X + X%+ ... 4 XP~1
must divide ag + a1 X + aoX? + -+ + ap—1X P~1 which can only happen if
ap =ay = -+ = ap_1. Therefore, the lemma is proved and it is time to solve
some nice problems. O

Note, in the following examples, m(A) will denote the sum of the elements of
the set A. By convention m(#) = 0.
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Consequently,
m

Zxke ( — l)m

On the other hand, it is not dlfﬁcult to justify that

Pyl tetl=0s

1
p— :—5(6”_2%—25”—3%—--~+(p—2)e+p—1).

Considering
(XP242XP 2 4 (p=2)X +p— 1) = b+ 01X + -+ +bpypgy X P72,

we have
nm

m
—_(_" -1
m— <—E> (co+cre+ - +cpo16P77),

Cp = Z bj.

j=k (mod p)

where

m
Setting r = (—E> , we deduce that
p

ro—rco+ (x1 —re)e+ -+ (Tp_1 — rcp_l)ep_l = 0.

From the lemma, it follows that xg —rco =) —rc1 = - = 2p_1 —rep1 =
k. Because clearly cg,c1,...,cp—1 are integers, it remains to prove that r|k.
Because

pk:x0+x1+...+xp_1—T(CO+CI+"'+C17_1)
=(1424 - +n)™—r(bo+ b1+ +bip_g))

() o ()"

it is clear that r|k. Here we have used the conditions in the hypothesis. The
problem is solved.
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for all z1, ..., Zn, not all multiples of p. Now fix i1,42,...,in. By multiplying
both sides of the equality by e %1222 ~~inZn we deduce that

n

3

glari—i)z1++H(arm—in)zn _ ()

=
Il

1

By making the sum of all these equalities corresponding to all (21, x2, ..., 2,) €
{0,1,...,p—1}" and by taking into account that for (z1, z2,...,z,) = (0,0,...,0)
the left-hand side equals p™, we deduce that

= E H E g’rJ Qg 1]) (71)

Because the sum in the right-hand side of (7.1) is not zero, at least one term
is not zero. Observe however that every term of the sum equals 0 or p™.
Therefore there exists an unique k such that ax; = i; (mod p) for all j. This
is just another way of saying that

{(ak1,--,an)lk=1,...,p"} ={(41,.. ., 8)|t1,- -1 tn =0,...,p— 1}

The following problem, communicated by Vesselin Dimitrov, is a very special
one. It concerns a concept introduced by Erdés in a paper dating back to
1952: the covering systems of congruences. More precisely, the family of
ordered pairs (al,dl),(az,dz),...,(ak,dk), where 1 < di < do < -+ < dp,
is called a covering set of congruences if x = a; (mod d;) is solvable for any
integer . Erd&s immediately realized that this new concept can be a source
of difficult questions, and that became source of intensive research. FErdés
conjectured that there exists no covering set of congruences in which all the
moduli are odd. This remains open. On the other hand, Erdés used covering
sets (more precisely, the set (0,2), (0,3), (1,4), (3,8),(7,12), (23, 24)) to prove
the existence of an infinite arithmetic progression of odd positive integers,
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If we manage to prove that the same relation (7.2) holds for any integer y
instead of x, we are done, since it would follow that any integer belongs
to at least one member of F. If we consider z; = €I, then we know that
> Oqu”” =0 for all 0 <t < 2% — 1. Define u, = Y-y arz} and observe that
un satisfies a linearly recurrent relation of order 2%, the coefficient of u,, being
nonzero. Indeed, consider the polynomial []; (X — z7), which has degree 2%
and nonzero free term (because all z; are nonzero), and write it in the form
X% + Agr_ 1 X214 ...+ A1 X + Ao. Then we know that

Z?k + Azk_IZ?k_l + et + AO = 0

By multiplying this relation by ay - 2] (we allow here negative exponents as
well) and by adding up these relations, we obtain a recurrence relation

Up ok + Agk_jUnioe y +---+ Ao = 0.

And now... we are done: from the hypothesis, 2¥ consecutive terms of this
sequence vanish. Since the sequence satisfies a recurrence relation of order 2%
with nonzero free term, it follows by a trivial induction that all terms are zero.
This finishes the proof.



148

7. COMPLEX COMBINATORICS

7.2

1.

Problems for training

Can we tile a 9 x 9 table from which we remove the central unit square
using only 1 x 4 or 4 x 1 rectangles?

Three persons A, B, C play the following game: a subset with k elements
of the set {1,2,...,1986} is selected randomly, all selections having the
same probability. The winner is A, B, or C, according to whether the
sum of the elements of the selected subset is congruent to 0, 1, or 2
modulo 3. Find all values of k for which A, B, C have equal chances of
winning.

IMO 1987 Shortlist

We roll a regular die n times. What is the probability that the sum of
the numbers shown is a multiple of 57

IMC 1999

Let ak,bk;ck be integers, k = 1,2,...,n and let f(z) be the number of
ordered triples (A, B, C) of subsets (not necessarily nonempty) of the set

S =1{1,2,...,n} whose union is S and for which
Z a; + Z b; + Z ¢ =3 (mod x).
ieS\A i€S\B ies\C

Suppose that f(0) = f(1) = f(2). Prove that there exists i € S such
that 3 I a; +b; + ¢;.

Gabriel Dospinescu

How many 100-element subsets of the set {1,2,...,2000} have the sum
of their elements a multiple of 57

Qihong Xie
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6. There are 2000 white balls in a box. There is also an unlimited supply
of white, green, and red balls, initially outside the box. At each step,
we can replace two balls in the box by one or two balls as follows: two
whites or two reds by a green; two greens by a white and a red; a white
and a green by a red or a green; and a red by a white.

a) After a finite number of steps, there are exactly three balls in the box.
Prove that at least one of them is green.

b) Is it possible that after a finite number of steps there is only one ball
in the box?

Bulgaria 2000

7. A 7x7 table is tiled by sixteen 1 x 3 rectangles such that only one square
remains uncovered. What are the possible positions of this square?

Tournament of the Towns 1984

8. Let k be an integer greater than 2. For which odd positive integers n
can we tile a n x n table by 1 X k or k x 1 rectangles such that only the
central unit square is uncovered?

Gabriel Dospinescu

9. Let n > 2 be an integer. At each point (i, ) having integer coordinates
we write the number ¢ + j (mod n). Find all pairs (a,b) of positive
integers such that any residue modulo n appears the same number of
times on the sides of the rectangle with vertices (0, 0), (a,0), (a,b), (0,b)
and also any residue modulo n appears the same number of times in the
interior of this rectangle.

Bulgaria 2001
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10.

11.

12.

13.

14.

Let F be the family of subsets of the set A = {1,2,...,3n} having the
sum of their elements a multiple of 3. For each member of F, compute
the square of the sum of its elements. Compute in a closed form the sum
of the numbers obtained in this way.

Gabriel Dospinescu

Let p be an odd prime. Prove that the 2% numbers £1+24. ..+ p—;l
represent each nonzero residue class mod p the same number of times.

R. L. McFarland, AMM 6457

Suppose that Aj, A, ..., A, are n sets of p integers where p is a prime

n
such that the p™ sums ) a; with a; € A; are all distinct mod p". Then
i=1
the n sets, with appropriate ordering, can be described as follows: the
elements of A;, taken mod p’ are the numbers ¢;+jp* ! for a fixed integer

cand j=0,1,...,p— 1.
S. W. Golomb, AMM

Prove that the number of subsets with n elements of the set of the first
2n positive integers whose sum is a multiple of n is

e (5) ()

din

Let p be an odd prime and n > 2. For a permutation o of the set
{1,2,...,n} define S(o) = 0(1) +20(2) + - - +no(n). Let A; be the set
of even permutations o such that S(o) = j (mod p) and B; be the set
of odd permutations o for which S(0) = j (mod p). Prove that n > p if
and only if A; and B; have the same number of elements for all ;.

Gabriel Dospinescu
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15.

16.

Let p > 3 be a prime number and let h be the number of sequences

p—1
(a1,a2,...,ap-1) C {0,1,2}P~1 such that p | Zjaj. Also, let k be the
3=0
p—1
number of sequences (b, ba, ..., by—1) C {0,1,3}P 1 such that p | Zjbj.

3=0
Prove that h < k and that the equality holds only for p = 5.

IMO 1999 Shortlist
Let p be an odd prime and let a, b, ¢, d be integers not divisible by p such
that {Z¢} + {%b} +{7}+ {%d} = 2 for all integers  not divisible by p
(here {% is the fractional part). Prove that at least two of the numbers
at+ba+ca+db+ecb+d c+dare divisible by p.

Kiran Kedlaya, USAMO 1999
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8.1 Theory and examples

We start with a riddle and a challenge: what is the connection between the
following problems?
1. The set of nonnegative integers is partitioned into n > 1 infinite arithmetical
sequences with common differences r1,7s, ..., 7, and first terms ag, a9, ..., an.
Then

@ 02 O _n_l

Ty T2 T 2
2. The vertices of a regular polygon are colored such that each set of vertices
having the same color is the set of vertices of a regular polygon. Prove that

there are two congruent polygons among them.

The first problem was discussed during the preparation of the USA IMO team,
but it seems to be a classical result. As for the second one, well, it is a
famous problem given at a Russian Olympiad, proposed by N. Vasiliev. If
you have no clue, then we will give you a small hint: the methods used to
solve both problems are very similar and can be included into a larger field,
that of formal series. What are those? Well, given a commutative ring A,
we can define another ring, called the ring of formal series with coeflicients in
A and denoted A[[X]]. An element of A[[X]] is of the form Z an X", where
n>0

an € A, and it is also called the generating function of the sequence (an)n>0.
The addition and multiplication are the natural ones, defined as the similar
operations with polynomials: '

San X"+ | Db X" | =D (an +b)X"

n>0 n>0 n>0
and
Saxr] - (Dhxr) = Yex
n>0 n>0 n>0
wherec, = Y apby. Yet, for an entire function g(2) = > gn2" and a formal
p+q=n n20

series f(X) = > a, X" we can define the formal series g(f(X)) = 3 b, X"

n>0 n>0
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for all £ > n + 1. It suffices to add these relations and to prove the statement
by strong induction. Now, let us consider the function

o)=Y 7.
i=1 l

Developing it by using

1 =1+4+z+2%2+ .- (for |z| < 1),

11—z
we obtain that f(z) = n for all sufficiently small z (meaning for such z that
satisfy |z| maxi<i<n{]a:|} < 1). Assume that not all numbers are zero and
take ai,...,as (1 < s < n) to be the collection of numbers of maximal ab-
solute value among the n numbers and let this maximal absolute value be r.

1
By taking a sequence z, — — such that |z, - | < 1, we obtain a contradiction
r

n
1
with the relation E T =n (indeed, it suffices to observe that the left-
Y
i=1 P

hand side is unbou_nded, while the right one is bounded). This shows that all
numbers are equal to 0.

We are going to discuss a nice number theory problem whose solution is prac-
tically based on the same idea. This result is an important step in proving
that the order of any finite subgroup of GL,(Z) divides (2n)!. Indeed, it is
not difficult to prove that if G is a finite subgroup of GL,(Z) then |G| divides

> Tr(g) (all you need is to note that TclTl >~ g is idempotent, which is an
geG geqG
immediate consequence of the fact that in a finite group the translations are

actually permutations; or, the trace of an idempotent matrix is just its rank,

and thus an integer). Working with the tensorial product matrices A ® A

where A € G and repeating the above argument yields |G| | 3. (Tr(g))* for
geG

all k£ > 0. Now, all we need is to apply the result below in order to conclude
that

|G| | (n = Tr(g1))(n — Tr(g2)) - - (n — Tx(gs)),
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Some comments about these two relations are necessary. First of all, using a
beautiful and difficult result due to Erdds, we can say that the relation

1 1 1

T1 T2 Tn
implies that max(ri,72,...,7n) < 22""' " Indeed, this remarkable theorem
due to Erdds asserts that if x1,x2,...,x; are positive integers whose sum of

reciprocals is less than 1, then

1 1 1 1 1 1
—+—+ =< —+ =+,
T I2 Tk Uy U2 Uk
where u; = 2, up41 = uﬁ — Uy + 1. But the reader can verify immediately by
induction that

1 1 1 1
—_t 4t —=1-—
U U2 Uk UIUL .. U
Thus we can write ) )
1-—<1- ,
Tn UIU2 Un—1

or, even better, 7, < ujus -+ up—1 = u, — 1 (the last relation following again
by a simple induction). Another inductive argument proves that u, < 22",
Hence max(ry,72,...,mn) < 22""' Using the relation proved in example 4, we
also deduce that

max(ay, as, . . .,an) < (n—1)- 22" 71,

This shows that for fixed n not only is there a finite number of ways to parti-
tion the set of positive integers into n arithmetical progressions, but we also

have some explicit (even though huge) bound on the common differences and
first terms.

It is now time to solve the remarkable problem discussed at the beginning
of this chapter. We will see that using the previous results proved here, the
solution becomes natural. However, the problem is still really difficult.
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Solution. Here is the very nice answer: 9817030729. Let A = {ag,a1,...}
and let b, = 1 if n € A and 0 otherwise. Next, consider the formal series
flx) = anx”, the generating function of the set A (we can write it in a

n>0
more intuitive way f(z) = Zxan). The hypothesis imposed on the set A
n>0
translates into 1
F@)fa)f ) =

Replace z b xzk. We obtain the recursive relation
p y

£ P f(

k42 1

Now, observe that

[1/6) = [T (75 1) = [T e
k>0 k>0 iso 1%

and

[T #6*) = [T (5776 ) = 1] ;e

k>1 k>0 k>0

Therefore (you have observed that rigor was not the strong point in establish-
ing these relations),

1— 22"

f@)=1] T = la+2%)

k>0 k>0

This shows that the set A is exactly the set of nonnegative integers that use
only the digits 0 and 1 when written in base 8. A quick computation based
on this observation shows that the magical term asked for by the problem is
9817030729.

The following problem is an absolute classic. It has appeared under different
forms in Olympiads from all over the world. We will present the latest one,
given at the 2003 Putnam Competition:
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Proof. Indeed, there are n! ways to fill in the elements of all cycles, but observe
that every cycle of length j can be rotated around j ways and be the same
cycle (so we must divide n! by j*) and also there are k;! ways to permute
the cycles of length j in order to obtain the same permutation. All these
operations being independent, the statement of the lemma follows. O

Thus the sum we need to evaluate is

m! k1+ko+-4km
Eiok k n :
1R12k2 - b kK] - - Fopg]

k14+2ko+--+mkm=m
You will probably say that this is much more difficult than the initial problem,
but you are not right, because the latter sum can also be written as

EO Y BN =R O RORSC

P k14+2ky+-+mkp=m
ki+ke+-+km=p

Now, observe that the multinomial formula implies that

Y wmt @@ @)

k142ky+---+mkm=m
kitko++km=p

p

is the coefficient of X™ in the formal series (% + "T)p 4+ ”—iim— + -

Therefore the sum to be evaluated is the coefficient of X™ in the formal series

2 m p 2 m
m!.zi<z¥_+nX TS +) I i

Finally, observe that %X + 2X* ... 4 nX™ 4 ... — 5n(1 - X), so

m

2
6%4—%4_“.4—%4—” _ )
(1-Xx)"
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But using the binomial formula for (1 — x)™™ we easily find the coefficient of
X™ in (—1—_11—),1 to be ("*7~!). This finishes the solution.

We should also mention the beautiful solution using group theory. Remember
that when a group G is acting on a set Y (that is, we can define for all g € G
and x € Y an element g-x € Y such that for all g, h, z we have g-(h-z) = (gh)-z
and 1-z = z), the number of orbits for the action of G on Y, that is the number
of distinct sets of the form {g- z|g € G}, is equal to

ﬁ -3 [Fix(g)),

g€G

where Fix(g) is the set of € Y such that g-x = . This is called Burnside’s
lemma and it is very useful, even though its proof is really simple: all you need
to do is to count in two ways the pairs (g, z) such that g- = z. Now, consider
Y the set of the first m positive integers, and G the set of permutations of
its elements. G acts obviously on the set of colorings of Y with n colors
C1,Cs, ..., Cyp, (that is, on the set Y of functions from Y to {1,2,...,n}). The
number of orbits is just the number of pairwise inequivalent classes of colorings,
where two colorings are equivalent if they can be obtained by a permutation
of G. Clearly, there are (n+2_1) such classes of equivalence (because they
are determined by the nonnegative integers (k1, k2, ..., kn) which add up to m,
where k; is the number of objects colored with the color Cj; there are (n+m_1
solutions of the equation k1 +k2+- - -+k, = m in nonnegative integers). On the
other hand, we can use Burnside’s lemma to count these pairwise inequivalent
colorings. Observe that a permutation g fixes a coloring if and only if the
numbers belonging to the cycles of g have the same color. Therefore, Fix(g)
is the set of colorings which are constant on each cycle of g. There are n¢(9
such colorings. Thus, there are

L‘ 3 el
m

" geG

classes of colorings, and this finishes the proof of the identity.

In order to see whether you understood this type of argument, try to show
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n

(using this technique) that n divides 3 N&d(®:) for all integers N. (Hint:
k=1

count the number of classes of colorings of the vertices of a regular n-gon,

two colorings being equivalent if they are obtained by a rotation keeping the
polygon invariant.)
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8.2

1.

Problems for training

Let z1,29,...,2, be arbitrary complex numbers. Prove that for any
€ > 0 there are infinitely many numbers & such that

Y0k + 2+ -+ 25 > max((zal, |zal, .. Jow]) — .

Find the general term of the sequence (2, )n>1 given by
Tptk = QTntk—1+ -+ AkTn

with respect to z1,...,zx. Here ay,...,ar and z3,...,2 are arbitrary
complex numbers.

Let a1, ao,...,a, be relatively prime positive integers. Find in closed
form a sequence (xx)k>1 such that if yi is the number of positive integral

solutions to the equation a1z1 4+ agx2+- - -+ anx, = k, then khm 2k 1.
—00 Yk

Prove that if we partition the set of nonnegative integers into a finite

number of infinite arithmetical sequences, then there will be two of them
having the same common difference.

Is there an infinite set of nonnegative integers such that all sufficiently
large integers can be represented in the same number of ways as the sum
of two elements of the set?

D. Newman

How many polynomials P with coefficients 0, 1, 2, or 3 satisfy P(2) = n,
where n is a given positive integer?

Romanian TST 1994
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10.

11.

Prove that for each positive integer k,

> 1 =,
ning - - ng(ng +ng + -+ +ng)

where the summation is taken after all k-tuples (n1,ng, ..., ng) of positive
integers with no common divisor except 1.

D. J. Newman, AMM 5336

Let n and k be positive integers. For any sequence of nonnegative inte-
gers (a1, as, ..., ar) which adds up to n, compute the product ajas - - - ag.
Prove that the sum of all these products is

n(n? —12)(n? — 22)---(n? — (k — 1)?)
(2k —1)! '

In how many different ways can we parenthesize a non-associative prod-
uct ajasg...an?

Catalan
Let A be a finite set of nonnegative integers and define a sequence of
sets by Ag = A and for all n > 0, an integer a is in A, if and only if
exactly one of the integers a — 1 and a is in A,. Prove that for infinitely

many positive integers k, Ay is the union of A with the set of numbers
of the form k + a with a € A.

Putnam Competition

Let A; =0, B; = {0} and Ap41 = {1 +z| z € Bp}, But1 = (A, \ Bn)U
(Bn \ Ap). Find all positive integers n such that B, = {0}?

AMM
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12.

13.

14.

15.

16.

For which positive integers n can we find real numbers aj,ag,..., ay
such that
. n
{|a¢—aj| |1<i<j<n}= {1,2,..., (2)}?
Chinese TST 2002
Let f(r,n) be the number of partitions of n of the form n = bg+ - - - + b,

where b; > 7b;41 for all 0 < ¢ < s — 1, and let g(r,n) be the number of
partitions of n where each part has the form 1 + 7 + .- + 7* for some
nonnegative integer 7. Prove that f(r,n) = g(r,n) for all r and n.

D. R. Hickerson, AMM

Is it possible to partition the set of all 12-digit numbers into groups of
four numbers such that the numbers in each group have the same digits
in 11 places and four consecutive digits in the remaining place?

St. Petersburg Olympiad
Determine whether there is a subset X of the integers with the following
property: for any integer n there is exactly one solution of a + 2b = n
with a,b € X.

Richard Stong, USAMO 1996

Let F(n) be the number of functions f: {1,2,...,n} — {1,2,...,n} with
the property that if 7 is in the range of f, then so is 7 for all j < i. Prove

that o
k>0

L. Lovasz, Miklos Schweitzer Competition
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17.

18.

19.

20.

21.

22.

Suppose that every integer is colored using one of 4 colors. Let m,n
be distinct odd integers such that m + n # 0. Prove that there exist
integers a, b of the same color such that ¢ — b equals one of the numbers
m,n,m-—n,m+n.

IMO 1999 Shortlist

Find all positive integers n with the following property: for any real
numbers ay,as, ..., ap, knowing the numbers a; + a;, ¢ < j, determines
the values a3, ag, . . ., a, uniquely.

Erdés and Selfridge

Suppose that ap = a1 = 1 and (n + 3)any1 = (2n + 3)a, + 3na,— for
n > 1. Prove that all terms of this sequence are integers.

Komal

Let « and y be noncommutative variables. Express in terms of n the
constant term of the expression (z +y +z ! +y~ )™

M. Haiman, D. Richman, AMM 6458

Consider (by)n>1 a sequence of integers such that by = 0 and define
a1 =0 and a, = nb, + a1b,_1 + - + an—1b1 for all n > 2. Prove that
plap for any prime number p.

Prove that there exists a subset S of {1,2,...,n} such that 0,1,2,...,n—1
all have an odd number of representations as ¢ — y with z,y € S, if and
only if 2n — 1 has a multiple of the form 2 - 4% — 1.

Miklos Schweitzer Competition
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23.

24.

25.

Suppose that (an)n>1 is a linearly recursive sequence of integers (that
is, there exist integers r and 21, x3, ..., r such that apyr = z10n4r—1 +
22Gn4r—2 + + -+ + Zrapn for all n) such that n divides a, for all positive

integers n. Prove that (%") is also a linearly recursive sequence.

Polya

A set A of positive integers has the property that for some positive
integers b;, c;, the sets A + ¢;, 1 < i < n, are disjoint subsets of A.

Prove that
n
i=1

| —

<1
i

o

IMO 2004 Shortlist

Let f(n) be the number of partitions of n into parts taken from its
divisors. Prove that

(1+0(1)) <¥ - 1) Inn <lnf(n) <(1+ 0(1))7-—(2@ Inn,
where 7(n) is the number of divisors of n.

D. Bowman, AMM 6640
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9.1 Theory and examples

We have already seen some topics where algebra, number theory and combi-
natorics were mixed in order to obtain some beautiful results. We are aware
that such topics are not so easy to digest by the unexperienced reader, but
we also think that it is fundamental to have a unified vision of elementary
mathematics. This is why we have decided to combine algebra and number
theory in this chapter. Your effort and patience will be tested again. The
purpose of this chapter is to survey some classical results concerning algebraic
numbers and their applications, as well as some connections between number
theory and linear algebra.

First, we recall some basic facts about matrices, determinants, and systems of
linear equations. For example, the fact that any homogeneous linear system

a1171 + a12z2 + - -+ aipZn =0
@211 + ag2xa + - - + GonZyp =0

p1T1 + Q2T + - + Ty = 0

in which
ail; a2 A1n
az1 a2 a2n #
0
an] Qn2 ann

has only the trivial solution. Second, we need Vandermonde’s identity
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are good values for k? This can be seen by noticing that ¥/27-1. {2 =2 ¢ Z.
So, the values (k1, ks, ..., kn) = (1, ¥/2,..., ¥27~1) are good, and the system

becomes
a0+a1.W.{-..._{_an_l.\n/zn—lzo
ao- V2+ay- V2244 2a,-1=0

Viewing (1, ¥/2, ..., ¥/2n=1) as a nontrivial solution to the system, we conclude
that

ao a1 an—1
2an-1 ag an—2 | _ 0
20,1 20,2 ag

But what can we do now? Expanding the determinant leads nowhere. As
we said before passing to the solution, we should always work in the most
appropriate field. This time the field is Z/2Z, since in this case the determinant
can be easily computed; it equals @} = 0, where Z means the residue class of
the integer £ modulo 2. Hence ag must be even, that is ag = 2bg and we have

bo a1 ap-1
n—1 Q0 An-2 | _ 0
a1 2a9 ao

Now, we interchange the first two lines of the determinant. Its value remains
0, but when we expand it in Zo, it yields af = 0. Similarly, we find that all
a; are even. Let us write a; = 2b;. Then we also have by + by - /2 + .- +
b1+ "V2r—1 = 0 and with the same reasoning we conclude that all b; are
even. But of course, we can repeat this as long as we want. By the method of
infinite descent, we find that ag =a; =--- = ap—1 =0.

The above solution might seem exaggeratedly difficult compared with the one
using Eisenstein’s criterion, but the idea was too nice not to be presented here.
The following problem can become a nightmare despite its apparent simplicity.
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Solution. The given condition can be written in the form det A = 1, where

A=

o o9
(SIS
g€ e g

So, let us prove a much more general result.

Theorem 9.3. Any vector v whose integer components are relatively prime is
the first column of an integral matriz with determinant equal to 1.

Proof. We induct on the dimension n of the vector v. Indeed, for n = 2
it is exactly Bezout’s theorem. Now, assume that it is true for vectors in

Z" ! and take v = (v1,v2,...,v,) such that v; are relatively prime. Con-
. V1 V2 Un—1 . ..
sider the numbers —, ==, ... === where ¢ is the greatest common divisor of
9 g

v1,v2,...,Un_1. They are relatively prime and the matrix

U1

— a2 a1n—1

g

Un—1
An—1,2 Gn—-1,n—1

has determinant equal to 1. We can find «, 3 such that ag + Bv, = 1 and
verify that the following matrix has integral entries and determinant 1:

1,01
m aio a1,n-1 (_1)n 1,6’—
g
n Un—1
Un—1 GQn-1,2 an—1,n—1 (_1)n lﬁ .
Up 0 0 ()" la

O

In the chapter Look at the Exponent we have seen a rather complicated
solution for the following problem. This one is much easier, but difficult to find:






188

9. A BRIEF INTRODUCTION TO ALGEBRAIC NUMBER THEORY

And now we recognize the form

(
(

1
ai
1

ai
2

ax

)
)

5

n—1

| (-

(
(

1
az

1
a2
2

az

n-1

)

(

an
n—1

)

a
which can be proved easily by subtracting lines. Because each number (jz>

is an integer, the determinant itself is an integer and the conclusion follows.

At this point, you might be disappointed because we did not keep our promise:
no trace of algebraic numbers appeared until now! Yet, we considered that a
small introduction featuring easy problems and applications of linear algebra
in number theory was absolutely necessary. Now, we can pass to the real
purpose of this chapter, a small study of algebraic numbers. But what are
they? Let us start with some definitions: we say that a complex number z is
algebraic if it is a zero of a polynomial with rational coefficients. The monic
polynomial of least degree, with rational coefficients and having = as a zero
is called the minimal polynomial of z. Its other complex zeros are called the
conjugates of z. Using the division algorithm, it is not difficult to prove that
any polynomial with rational coefficients which has x as zero is a multiple of the
minimal polynomial of z. Also, it is clear that the minimal polynomial of an
algebraic number is irreducible in Q[X]. We say that the complex number z is
an algebraic integer if it is zero of a monic polynomial with integer coefficients.
You can prove, using Gauss’s lemma, that an algebraic number is an algebraic
integer if and only if its minimal polynomial has integer coeflicients. In order
to avoid confusion, we will call the usual integers “rational” integers in this
chapter. There are two very important results concerning algebraic integers
that you should know:



THEORY AND EXAMPLES 189

Theorem 9.4. The sum or product of two algebraic numbers is algebraic. The
sum or product of two algebraic integers is an algebraic integer.

Proof. This result is extremely important, because it shows that the algebraic
integers form a ring. Denote this ring by AI. None of the known proofs
is really easy. The one that we are going to present first uses the funda-
mental theorem of symmetric polynomials. Consider two algebraic numbers
z and y and let x1,x2, ...,2, and y1,¥2, ..., ym be the conjugates of x and y
n o m
respectively. Next, look at the polynomial f(z) = [] [] (X —a; —y;). We
i=1j=1

claim that it has rational coefficients. (The fact that « + y is a zero of f
being obvious.) This follows from the fundamental theorem of symmetric
polynomials applied twice. Let R = Z[y1,ys,...,Ym| be the ring considered
in the statement of the Theorem 9.2. Because the coefficients of f are sym-
metric polynomials in x1, 22, ..., Zn, it follows that every coefficient of f is of
the form B(o1,09,...,0n,Y1,Y2, .-, Ym), Where o; are the symmetric sums in
x1,2,...,Zn, and B is a polynomial with rational (respectively integer, if z,y
are algebraic integers) coefficients. But the coefficients of f are also symmetric
in y1,y2, .., Ym, SO by taking R = Z[oy, 02, ...,0n} in Theorem 9.2, we deduce
that A is a polynomial with rational (or integer) coefficients in the symmetric
sums in 21,2, ..., £, and y1,Y2,-..,Ym- Thus f has rational coefficients if x,y
are algebraic and f has integer coefficients if x,y are algebraic integers.

|

There is also a solution which uses only the most elementary linear alge-
bra! Indeed, we claim that a complex number z is an algebraic integer if and
only if there exists a finitely generated commutative subring of C containing
z. Indeed, if z is an algebraic integer, the division algorithm immediately
shows that Z|[z] is a finitely generated commutative subring of C. Now, sup-
pose that R is a commutative subring of C which is finitely generated and
contains z. Take vy,v9,...,u, that generate R and observe that the num-
bers zv, zve, ..., zv, are in R, thus they are linear combinations with integer
coefficients of v1,vs, ..., v,. Let zv; = a;1v1 + aov9 + ... + a0, for some in-
tegers a;; and let A be the matrix with entries a;;. The above system of
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equations can be written as (zI, — A)v = o, where v is the vector whose
coordinates are vy, vs,...,vn. Because v is not zero, the last relation implies
det(zI, — A) = 0 and thus z is a root of the characteristic polynomial of
A, (which is unitary and has integer coefficients), because so does A. This
proves the claim. Now, consider two algebraic integers x,y. By the previous
characterization and the fact that clearly y is an algebraic integer over Z[z],
it follows that Z[z,y] = (Z|z])[y] = Z[z]v1 + - - + Z|[z]vum, and since z is an
algebraic integer there exist u1, .., up such that Z[z] = Zuj +- - - 4+ Zu,. There-
fore Z[z,y] C > Zugv,. Because Z[z + y| and Z|zy| are subsets of
1<k<p,1<I<m
Z[z,y], by applying the characterization again it follows that z + y and zy
are algebraic integers. Note however (and it is very important) that the set
of algebraic integers is not a field (the following theorem will make this state-
ment obvious), while the set of algebraic numbers is a field: if P(z) = 0 for
some non-zero polynomial with integer coefficients P, then ¢ (%) = 0, where

QX) = x4=5") . P(%).

The next result is also very important, and we will see some of its applications
in the following examples.

Theorem 9.5. The only rational numbers which are also algebraic integers
are the rational integers.

Proof. The proof of this result is much easier. Indeed, suppose that = = 'g
is a rational number (with ged(p,q) = 1) which is also a zero of the monic
polynomial with integer coefficients f(X) = X™ + 1 X" 4+ a1 X + ag.
Then p" + an—1p""tq+ - - + aypg™~ ! + apgg™ = 0. Therefore ¢ divides p™ and
since ged(q,p"™) = 1, we must have ¢ = £1, which shows that x is a rational
integer. Clearly, any rational integer x is an algebraic integer.

O

Here is a very nice and difficult problem that appeared in AMM in 1998, and
which is a consequence of these results. We prefer to give two solutions, one
using the previous results and another one using linear algebra. A variant of
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of all, let us prove by induction that if a1, as, ..., @, are algebraic integers then
% ((a1+ag+--+ay)? — (&) +ab + -+ ah)) is also an algebraic integer.
For n = 2, this follows from the binomial formula % -((a+ b —a? —bP) =

j;l 1—1) - (?) - aP7'b". Indeed, %- (®) is an integer, and we obtain a sum of products
of algebraic integers, which is an algebraic integer. Now, if the assertion is true
for n—1, consider ay, ag, ..., a, algebraic integers. By the inductive hypothesis,
(a1 +az+ - +an1)? — (@) +ab+---+af_,) € p- AI. The case n = 2
shows that (a1 + a2 + - +an)? — (ay +az + -+ an-1)? —ah € p- AL
Therefore, (a1 +az + -+ ap)? — (] +ab + -+ ab) € p- AI (as being the
sum of the above expressions), which is exactly what we needed to finish the
inductive step. Now, finishing the proof of the theorem is easy: we know that
% (a1 + a2+ +an)? — (@} + ab + -+ + ah)) is a rational number which is
also an algebraic integer. By theorem 4, it must be a rational integer.

O

Solution 2. Let us consider the matrix

OO = O
o= OO
-0 O O
OO = =

and let Tr(X) be the sum of the entries of the main diagonal of the matrix X.
We will first prove that x, = Tr(A") (here A% = I;). This is going to be the
easy part of the solution. Indeed, for n = 1,2, 3 it is not difficult to verify it.
Now, assume that the statement is true for all ¢ = 1,2,...,n — 1 and prove
that it is also true for n. This follows from

Tn = Tpn—dq4+ Tpn-3 = TI'(An_4) + TI'(An_E‘) = TI'(An_4(A + I4)) = TI'(An)

We have used here the relation A* = A + I4, which can be easily verified by a
simple computation. Hence the claim is proved.

Now, let us prove an important result-that is, Tr(AP) = Tr(A) (mod p) for
any integral matrix and any prime p. The proof is not trivial at all. A
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possible advanced solution is to start by considering the matrix A obtained
by reducing all entries of A modulo p, then by working in a field in which
the characteristic polynomial of A has all its zeros A1, Ag,..., Ay. This field
clearly has characteristic p (it contains Z,) and so we have (using the binomial

formula and the fact that all coefficients (Z), 1 <k <p—1 are multiples of

p)
AP) =" = (ZA) (TrA)?
=1

from where the conclusion is immediate, using Fermat’s little theorem.
But there is a beautiful elementary solution. Let us consider two integral
matrices A, B, and write

(A+ B)P = > A1Az. .. Ay
Ar,..,Ap€{A,B}

Observe that for any A, B we have Tr(AB) = Tr(BA), and, by induction, for
any X1, Xe,..., X, and any cyclic permutation o,

TH(X1 Xz .. Xn) = To(Xo(1)Xo(2) - - - Xo(n)-

. 9w _9
Now, note that in the sum Z A4y ... A, we can form
Al,...,APE{A,B} p
groups of p-cycles and that we have two more terms, AP and BP. Thus

Y Tr(A4y... Ap) = Tr(AP) + Te(BP)
Ar,...,Ap€{A,B}

modulo p (you have already noticed that Fermat’s little theorem comes in
handy once again), since the sum of Tr(A; Az ... A;) is a multiple of p in any
cycle. Thus we have proved that

Tr(A + B)P = Tr(A4P) + Tr(BP) (mod p)
and by an immediate induction we also have

Tr(A; + -+ Ag)P = Tr(A])) + -« + Tr(A})  (mod p).
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real part of a, and consider aj, as, ..., a; the conjugates of a. We claim that
the conjugates of b are distinct numbers among Re(a1), Re(az), ..., Re(ag). In-
-1
deed, the polynomial ﬁ <X - %) has b as a zero and its coeflicients are
j=1
symmetric polynomials in a; (because aﬁ-v = 1 for a suitable N), and rational
by the theorem of symmetric polynomials. Thus all conjugates of b are among
the zeros of this polynomial. On the other hand, if a* # 1 then a? #£ 1 for all
J and so 0 < |Re(a;)| < 1, which means that the absolute value of the product
of all conjugates of b is smaller than 1. Let A be the minimal polynomial of
b over Q. Because b is an algebraic integer, h has integer coefficients, thus
h(0) is an integer. But |h(0)| is also the absolute value of the product of all
conjugates of b, which is smaller than 1. It follows that h(0) = 0, and because
h is irreducible in Q[X], it follows that A(X) = X and so b = 0, which is
impossible if a* # 1. Now b) is not so difficult. We will take a a zero of a
polynomial of the form (X + 1)* — uX? for some integer u. We need to have
la] = 1 and also Re(a) needs to be an algebraic integer. If we also manage
to ensure that a* # 1, then we are done by a). You can easily check that by

taking u = 8 all conditions are satisfied, and so v2 — 1 + i3/2v/2 — 2 is an
algebraic integer on the unit circle which is not a root of the unity.

Some more comments on the previous examples are needed. First of all, it
is not difficult to deduce from this result that the only monic polynomi-
als with integer coefficients whose Mahler measure is 1 are products of X
and some cyclotomic polynomials. A famous conjecture of Lehmer says that
there exists a constant ¢ > 1 such that if a polynomial with integer coeffi-
cients has Mahler measure greater than 1, then its Mahler measure is actually
greater than ¢. The polynomial with least Mahler measure found up to now
is X104+ X9 - X7-X6_ X5_ X%_ X3+ X +1, whose Mahler measure is
about 1.176. For some upper bounds of the Mahler measure in terms of the
coefficients of the polynomial, we refer the reader to example 16 of chapter
Pigeonhole Principle Revisited.

Showing that a sum of square roots of positive integers is not a rational number
is not difficult as long as the number of square roots is less than 3. Otherwise,
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with integer coefficients which vanishes at aj,as, ..., ax. Clearly, braq, ..., brax
are algebraic integers. But then

be(Yag + Yag + -+ Yag) = \"/b;}_l-(,"/bral—i— Vbraz + -+ Vbrag)

is also an algebraic integer. Because it is also a rational number it follows
that it is a rational integer. Consequently, (b,( {/ay + /az + -+ + ¥ak))n>1
is a sequence of positive integers. Because it converges to kb,, it eventu-
ally becomes equal to kb, (from a rank). Thus there is n such that {/a; +
Yag + -+ {Yag = k. Since ay - az- - - ax = 1, the AM-GM inequality implies
a1 = a3 =--- = a; = 1 and the problem is solved.
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9.2

1.

Problems for training

Let Fi =1, F, =1and F,, = F,,_1+ F,,_2 for all n > 3 be the Fibonacci
sequence. Prove that

Foy1Fyo1 — F2 = (—1)" and Fypqn = FuFo1 + Fpi1 Fop.

. Compute the product H (g5 — €1)?, where

0<l<j<n—1

2km

km .
€k = COS — + 181N —
7 n

for all k € {0,1,...,n — 1}.

. Let ay,ag,...,a, € R. A moveis transforming the n-tuple (z1,z2,...,z,)

into the n-tuple

(:c1+sc2 T2 + 3 Tp—1+ Tn xn+x1>

2 7 2 7 2 ’ 2
Prove that if we start with an arbitrary n-tuple (a1, as,...,a,), after
finitely many moves we obtain an n-tuple (A;, Ag,..., Ap) such that

1
max |A4; — Ai|l < =55
1§i<j§n| i = 4] 22005

Let a, b, ¢ be relatively prime nonzero integers. Prove that for any rela-
tively prime integers u, v, w satisfying au+bv+cw = 0, there are integers

m,n,p such that

a=nw-—pv, b=pu—mw, ¢c=mv—nu.

Octavian Stdndsila, Romanian TST 1989
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10.

Prove that for any integers a1, ag,.. ., a, the following number

lem(ag,a2,...,an) H (a;

a1ag - -y

1<i<j<n
is an integer divisible by 1!2!...(n — 2)!. Moreover, we cannot replace

112! .. (n — 2)! by any other multiple of 112! - (n — 2)..

Let A, B,C be lattice points such that the angles of triangle ABC are
rational multiples of . Prove that triangle ABC is right and isosceles.

Let P be a regular polygon with 2001 sides, inscribed in the unit circle.
Prove that the lengths of all sides and diagonals of P are irrational.

AMM

Find all non-isosceles triangles with at least two sides rational numbers
and having all angles rational numbers, when measured in degrees.

Ron Evans, AMM E 2668

Let p be a prime and let a;, a9, ..., apy1 be real numbers such that no
matter how we eliminate one of them, the rest of the numbers can be
divided into at least two nonempty pairwise disjoint subsets each having
the same arithmetic mean. Prove that a; = a2 = -+ = ap41.

Marius Radulescu, Romanian TST 1994

Let a,b,c be integers. Define the sequence (zn)n>0 by zo = 4, 21 = 0,
To = 2¢, 3 = 3b and Tny3 = arp—1 + 0Ty + CTny1. Prove that for any
prime p and any positive integer m, the number z,m is divisible by p.

Calin Popescu, Romanian TST 2004



202

9. A BRIEF INTRODUCTION TO ALGEBRAIC NUMBER THEORY

11.

12.

13.

14.

15.

Let a,b be two positive rational numbers such that for some n > 2 the
number {/a + /b is rational. Prove that {/a is also rational.

Marius Cavachi, Gazeta Matematica

Prove that the polynomial X™ — 1 is divisible by a cubic monic polyno-
mial, with integer coefficients if and only if 3|n or 4|n.

Marcel Tena, Gazeta Matematicd Contest

Prove that each of the numbers v/n + 1 — y/n for positive integers n can
be the written in the form 2 cos (2’“7”) for some integers k, m.

Chinese Olympiad

Prove that if ai,as,...,a,, are positive integers, none of which is di-
visible by the square of a prime number, and all having prime divi-
sors in the set S = {p1,p2,...,Pn}, then there exist nonzero integers
C1,C2, .., Ce, A1, da, ..., de such that ¢; > 0, all prime divisors of ¢jc...ce
are in S and

(dl\/EI+d2\/E§++de\/E;)(b1\/a+b2\/a—2—f—+bn an)

is a nonzero integer. Thus, the set of square roots of the square-free pos-
itive integers is linearly independent over the field of rational numbers.

Kvant

Let a be an algebraic number, and denote by K = Q[a] the field gen-
erated by a over Q. Prove that there exists a positive integer m and
algebraic integers a1, as,...,a, € K such that any other algebraic inte-
ger in K is a linear combination, with rational integer coefficients, of
ai,az, ..., am.
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16.

17.

18.

19.

Let a1, aq, ..., ay, be algebraic integers linearly independent over the field
of rational numbers. Prove that there exists a positive constant C' and
a positive integer N such that for all rational numbers q1, go, ..., ¢, not
all zero,

C
(lg1] + lg2| + - + gn)V”

lq1a1 + g2a2 + - - + gran| >

John Mc Carthy, AMM 4798

Let m,n be relatively prime numbers and z > 1 be a real number such
that 2™+ gla and 2"+ an are integers. Prove that £E+% is also an integer.

Consider 5 roots of order n of unity whose sum is not 0. Prove that the
absolute value of their sum is at least 57".

Gerald Myerson, AMM

Find all solutions in rational numbers to the equation

a?b+ b%c+ Ad + d%a = 0.
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of f. Because f(n?) does not vanish, a; must be odd. This means that there
exists a polynomial g with integer coefficients and a rational number r such
that f(X) = 7(4X — a?)g(X). Of course, g has the same property as f, and
applying the previous arguments finitely many times we deduce that f must
be of the form c(4X — af)(4X — a3)...(4X — a}) for a certain rational number
¢ and odd integers ay,az, ..., ax. But do not forget that all coefficients of f are
integers! Therefore the denominator of ¢ is a divisor of both 4™ and a%a%...a%,
thus it is 1. This shows that ¢ is an integer and the solution finishes here.

The next problem, which uses Schur’s theorem, also needs a classical result,
a very particular case of Hensel’s lemma. Let us first state and prove this
result and then concentrate on the following problem. So, let us first prove
the following:

Lemma 10.1 (Hensel’s lemma). Let f be a polynomial with integer coeffi-
cients, p a prime number and n an integer such that p divides f(n) and p does
not divide f'(n). Then there exists a sequence (ng)g>1 of integers such that
ny = n, p* divides nyr1 — nyg and p* divides f(ny).

Proof. The proof is surprisingly simple. Indeed, let us suppose that we have
found i and search for n; 11 = n;+b-pt such that p**! divides f (nit+1). Because
2i > i+ 1, using the binomial formula yields

f(ni+b-9") = f(ng) +bp'f'(n:) (mod p).

Let f(n;) = cp® for some integer c¢. Because n; = n (mod p), we have f'(n;) =
f'(n) (mod p) and so f/(n;) is invertible modulo p. Let m be the inverse
of f'(n;) modulo p. It is enough to choose b = —mc in order to finish the

inductive step.
0

We can now discuss a difficult problem used for the preparation of the Iranian
IMO team:
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Solution. Clearly, constant polynomials can be eliminated. We will prove
that the only polynomials with this property are those of the form X" and
—X™", with n a positive integer. Because changing f with its opposite does
not modify the property of the polynomial, we can assume that the leading
coefficient of f is positive. Hence there exists a constant M such that f(n) > 2
for all n > M. From now on, we consider only n > M. Let us prove that
we have ged(f(n),n) # 1 for any such n. Suppose that there is an n > M
such that ged(f(n),n) = 1. The sequence (f(n + kf(n)))k>0 would contain
at least two relatively prime numbers. Let them be s and r. Because f(n) |
kf(n) = kf(n)+n—n| f(kf(n)+n) — f(n), we have f(n) | f(n+kf(n)) for
any positive integer k. It follows that s and r are both multiples of f(n) > 2,
which is impossible. We have shown that ged(f(n),n) # 1 for any n > M.
Thus for any prime p > M we have p|f(p) and so p|f(0). Because any nonzero
integer has a finite number of divisors, we conclude that f(0) = 0. Hence
there is a polynomial ¢ with integer coefficients such that f(X) = Xq(X).
It is clear that ¢ has positive leading coefficient and the same property as f.
Repeating the above argument, we infer that if ¢ is nonconstant, then ¢(0) = 0.
and ¢(X) = Xh(X). Because f is nonconstant, the above argument cannot
be repeated infinitely many times, and thus one of the polynomials g and A
must be constant. Consequently, there are positive integers n,k such that
f(X) = kX™. But since the sequence (f(2n + 3))n>0 contains at least two
relatively prime integers, we must have k = 1. We obtain that f is of the form
X™. Because f is a solution if and only if —f is a solution, we infer that any
solution of the problem is a polynomial of the form +£X™.

Now let us prove that the polynomials of the form X™, —X™ are solutions. It
suffices to prove it for X™ and even for X; but this follows from Dirichlet’s the-
orem. There is another more elementary approach. Suppose that z1, 2, ...,z
are chosen such that the numbers az; + b are pairwise relatively prime. We
prove that we can add z, so that ax1 +b,ax2+b,...,azpy1 +b are pairwise
relatively prime. Clearly, ax1+b,az2+0b,...,ax,+b are relatively prime to a,
so we can apply the Chinese remainder theorem to find an z,; greater than
1,2, .., Tp, such that z,41 = (1 — b)ai_1 (mod ax; +b), i € {1,2,...,p},
where a;! is a’s inverse in Zy, .y Then ged(azpy1 + bazi +b) = 1 for
i € {1,2,...,p} and thus we can add z,41.
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Solution. Of course, before counting such polynomials, it would be better to

find an easier characterization for them.

Let p1,p2,...,pr be all the prime numbers not exceeding n, and consider

the sets A, = {f € M| pi|f(m), V m € N*}, where M is the set of monic

polynomials of degree n with coefficients in the set {1,2,...,n!}. We will
T

prove that the set T of special polynomials is exactly M \ U 4;. Clearly,
i=1
TCM\ U A;. The converse, however, is not that easy. Let us suppose that
i<r

-
f € Z]X] belongs to M \ U A; and let p be a prime number greater than
n. Because f is monic, Lagzralbnge’s theorem ensures that we can find m such
that p is not a divisor of f(m). It follows that for any prime number ¢ at
least one of the numbers f(1), f(2), f(3),... is not a multiple of ¢q. Let k& > 1
and let q1,qo,...,qs be its prime divisors. Then we can find uq,...,us such
that ¢; does not divide f(u;). Using the Chinese remainder theorem, there is
a positive integer z such that z = u; (mod ¢;). Consequently, f(z) = f(w;)
(mod ¢;) and thus ¢; does not divide f(z), so ged(f(z),k) = 1. The equality
of the two sets is now proved.

Using a raw estimation, we obtain

r

U

i=1

7] = |M| -

> (M| = Al
=1

nn
Let us now compute |A;|. Actually, we will show that |4;] = (ZPB . Let f be
i

a monic polynomial in A;,
FX)=X"4+ap 1 X" 1+ +arX +ao.
Then, for any m > 1,
0= f(m)=ao+ (a1 +ap+agp-1+tap-2+..)m

+(ag +apr1 +agp+ ... )mP 4+ -+ (ap_1 + agp—2 + azp—3 +...)mP"1 (mod p),
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where, for simplicity, we put p = p;. Again, using Lagrange’s theorem it
follows that p | ap, p|a1+ap+ag_1+ -, ,p|ap1+agp o+ .
We are going to use this later, but a small observation is still needed. Let
us count the number of s-tuples (z1,z2,...,2s) € {1,2,...,n!}* such that
z1+z2+ -+ 25 =u (mod p), where u is fixed. Let

2r . . 2w
€ =C0S — +18In —
b b

and observe that
0=(e4+€e24.- &™)

p—1
=Y {1, 22, ms) €{1,2,...,n1} | 21+ -+ 2=k (mod p)}.
k=0

A simple argument related to the irreducibility of the polynomial 14+ X + X2+
.-~ 4+ XP~1 shows that all numbers that appear in the above sum are equal,

n!)s
and that their sum is (n!)®, thus each number equals (n) .
We are now ready to finish the proof. Assume that among the numbers
ai,0p,G2p—1,.-. there are exactly v; numbers, and so on, finally there are
Up—1 Numbers among ap—1,a2p—2, - . - . Using the above observations, it follows
that
4] nt (nh"r ()1 (nl)?
“Tp o op 7 p pp
Hence I
n!
7> @y 2
p prime
But

1+i+ <i 1+1+1+ < !
55 77 55 5 52 1000

and so the percent of special polynomials is at least

1 1 1 100 1
_ e — — = — = _—_—— = — 1.
100(1 > 75 57 10>7
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the inductive hypothesis, there is n such that at least r prime divisors of f(n)
have exponent 1. Let these prime factors be p1,p2,...,pr. But it is clear that
n + kp?p3...p? has the same property: all prime divisors p1,p2,...,p, have
exponent 1 in the decomposition of f(n+kp?p3 . ..p2). Because at most a finite
number among them can be zeros of f, we may assume from the beginning that
n is not a zero of f. Consider now the polynomial g(X) = f(n+(p; ...p,)2X),
which is obviously nonconstant. Thus using again the result in Example 1, we
find a prime number g > max{|c|,p1,-..,Pr, |p(n)|} and a number u such that
qlg(u). If vg(g(u)) = 1, victory is ours, since a trivial verification shows that
¢,P1, - - -, Pr are different prime numbers whose exponents in f(n+(p; . .. p,)%u)
are all 1. The difficult case is when v,(g(u)) > 2. In this case, we will consider
the number
N=n+u(p:.. ~p7‘)2 + uq(p1 .. -pr)z-

Let us prove that in the decomposition of f(N), all prime numbers g, p1,. .., pr
have exponent 1. For any p;, this is true since f(N) = f(n) (mod (p; ...p-)?).
Using once again the binomial formula, we obtain

fIN)=f(n+ (p1.. .pr)zu) + uq(p: .. .pr)zf'(N) (mod ¢?).

Now, if vg(f(n)) > 2, then since vy(f(n + (p1...pr)%u)) = ve(g(u)) > 2, we
have glu(py ... pr)2f (V). Recall that the choice was ¢ > max{|c|,p1,.-.,Pr,
|p(n)|} so necessarily g|u (if ¢|f'(N) = q|(f(N), f'(N))|c = ¢ < |c|, contradic-
tion). But since g|g(u), we have ¢|g(0) = f(n). Fortunately, we ensured that
n is not a zero of our polynomial and also that ¢ > max{|c|,p1,...,pr, [p(n)|}
so the last divisibility cannot hold. This finishes the inductive step and solves
the problem.

Did you like Erdés’s Corner in chapter Look at the Exponent? We repeat
the experience, with a series of difficult problems related to prime divisors
of polynomials. When we say difficult, we say however solvable, because one
should know that most of the problems concerning quantitative estimates for
prime divisors of polynomials are still unsolved and will probably remain so
for very long time. Let us recall a few terrible results that have been obtained
so far, of course without proofs. Let P(n) be the greatest prime divisor of n.
Even the fact that P(f(n)) tends to oo for any polynomial f of degree at least
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exists a common nontrivial divisor, it must have a complex root z, so first of all
we should see whether we can find g; with rational coefficients and some z such
that f;(g:(X)) have common root z. In this case, g;(z) would be all the zeros
of f;, so it is more than natural to start by fixing some roots z1, xs,...,z, of
f1, f2,. .., fn respectively and trying to find some z and some g; with g;(z) =
z;. And now, a very useful theorem from algebraic number theory (but whose
proof is completely elementary) helps us: actually, any finite extension of the
field of rational numbers is generated by one element. T hat is, if a1, a9, ..., a
are algebraic numbers (over the field of rational numbers), then there exists an
algebraic number a such that Q(az, as, . ..,a;) = Q(a). We will leave the proof
of this theorem as a beautiful exercise for the reader (in case you do not manage
to solve it alone, any introductory book to algebraic number theory gives a
proof of this result). Now, z; are clearly algebraic, since they are roots of f;.
Thus there exists some algebraic number z for which Q(z1, z2, . .., z,) = Q(2).
By multiplying z by a suitable integer, we may assume that z is actually an
algebraic integer. This means that each z; can be written in the form g;(z)
for some polynomial g; with rational coefficients. Of course, there exists some
integer N for which h; = Ng; have integer coeflicients and there exists some
large d for which F;(X) = Nef; (h—l(Ni)) also has integer coeflicients. Now, all
F; are divisible by P, the minimal polynomial of z in Q[X]|. Because z is an
algebraic integer, P is a monic polynomial with integer coefficients, and thus
primitive. From Gauss’s lemma, it follows that F; are divisible by P in Z[X].
Finally, let us apply Schur’s theorem to this polynomial. There are infinitely
many prime p > N for which F has a zero n, in Z/pZ. Fix such a prime p
and note that z = n,. Let f;(X) = A, X° + 4,1 X1+ - + Ag. We know
that p divides

ANO5hi(2)° + Asyf N5 R (2)5 71 4 -+ + AgN<.
Of course, p is relatively prime to N, so p will actually divide
Aghi(z)® + Ag_1Nhi(z)*" 1 + ... + AgN®.

Thus, if N’ is the inverse of N in Z/pZ, N'h;(x) is a zero of f; modulo p. Since
i was arbitrary, it follows that all f; have a zero in Z/pZ for any such prime
p. The conclusion follows.
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Part b) is actually a fairly immediate consequence of a). The idea is that for
n > 1, any prime divisor of ¢,(a), the n'* cyclotomic polynomial, is either
congruent to 1 modulo p or divides n. The proof of this result is not very
difficult. Indeed, consider p such a prime divisor. Then p|a™ — 1 and thus, if d
is the order of a modulo p, we have d|n and d|p — 1. Clearly, if d = n, we are
done, so assume that d < n. Then since pla? — 1 = Hk|d ¢r(a), there exists a
divisor k of d such that p|¢x(a). However, X™ — 1 is the product of all cyclo-
tomic polynomials whose orders divide n, so it is a multiple of ¢ (X) - ¢p(X).
Therefore, X™ — 1 will have a as a double root in Z/pZ. This is impossible
unless p|n, because in this case a would be a root of nX™1 and thus p|n
(since p is not a divisor of a). This proves the claim. Now, using a) for the
polynomials ¢x(X) and f(X), we know there are infinitely many primes p
such that both these polynomials have roots in the field with p elements. But
the observation made in the beginning of b) shows that only finitely many of
these prime numbers are not congruent to 1 modulo k. Thus, infinitely many
are of the form 14 kg and the proof finishes here.

The next example concerns the very classical problem of square free numbers
among polynomial values. More generally, one defines k-free numbers as non-
zero integers which are not divisible by any k-th power of a prime. One can
prove (the idea is exactly the same as in the problem that we will discuss)
that if f is a primitive polynomial of degree d and if f is not the d-th power
of a linear polynomial, then a positive proportion of positive integers n have
the property that f(n) is d-free. A more difficult result was proved by Erd6s:
under some natural conditions imposed on f, there are infinitely many n for
which f(n) is d—free. Needless to say, the proof if highly nontrivial. We will
discuss a closely related problem concerning square free numbers of a special
form.

The next result is a lot stronger than the one proved by Laurentiu Panaitopol,
stating that there are infinitely many triples of consecutive numbers, all square
free. The solution is adapted from a beautiful argument due to Ravi Boppana.
Before passing to this problem, let us give a definition: we say that a set A of
positive integers has positive density if there exists a constant ¢ > 0 such that
for all sufficiently large = there are at least cx elements of A less than z.
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we infer that the number of “bad” k is at most % + o(N). We used here the

classical fact that w(x) = o(z), where w(z) = ) 1 is the counting function of
p<zx

the prime numbers (for a proof of this result, see the chapter At the Border
between Analysis and Number Theory).

Therefore, the number of 1 < k¥ < N for which all numbers n,n+1,n+2,n%+1
(where n = 180k+1) are squarefree is at least % +o(N). For any such number
k, n(n+1)(n + 2)(n? + 1) is squarefree (the only common prime divisors of
two numbers among n,n+1,n+2,n2+1 are 2,3, 5 and we saw that the choice
of n ensures that 4,9, 25 are not divisors of $n(n+1)(n+2)(n?+1)). Thus, the
number of n < 181N such that in(n+1)(n+2)(n?+1) is squarefree is at least
& + o(N), which means that the set of n for which 3n(n + 1)(n + 2)(n? + 1)
is squarefree has positive density.
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10.2 Problems for training

1.

Given a finite family of polynomials with integer coeflicients, prove that
for infinitely many integers n they assume at n only composite numbers.

Let f and g € Z[X] be nonzero polynomials. Consider the set Dy, =
{ged(f(n),g(n))| n € N}. Prove that f and g are relatively prime in
Q[X] if and only if Dy 4 is finite.

Gazeta Matematics 1985
Prove that there are no polynomials f € Z[X] with the property that

there exists an n > 3 and integers z1,...,Z, such that f(z;) = z;_1,
it =1,...,n (indices are taken mod n).

Let f € Z[X] be a polynomial of degree n > 2. Prove that the polynomial
F(f(X)) — X has at most n integer zeros.

Gh. Eckstein, Romanian TST

. Find all integers n > 1 for which there is a polynomial f € Z[X] such

that for any integer k we have f(k) congruent with either 0, or 1 modulo
n and both these congruences have solutions.

Find all polynomials f with rational coefficients such that f(n)|2" — 1
for all positive integer n.

Polish Olympiad

Let f be a polynomial with integer coeflicients and let ¢ = 0 and
an, = f(ap—1) for all n > 1. Prove that (a,)n>0 is a Mersenne sequence,
that is gcd(am, an) = @ged(m,n) for all positive integers m and n.
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10.

11.

12.

13.

Let p be a prime number. Find the greatest degree of a polynomial
f € Z[X] having coefficients in the set {0,1,...,p — 1}, such that its
degree is at most p and if p divides f(m) — f(n) then it also divides
m—n.

Find all integers k such that if a polynomial with integer coefficients f
satisfies 0 < f(0), f(1), ..., f(k) < k then f(0) = f(1) =--- = f(k).

IMO 1997 Shortlist

Let f be a polynomial with integer coefficients. Prove the equivalence of
the following two properties: i) for any integer n one has f(n) € Z; i)
There exist integers n and ag, a1, az, ..., an such that f(X) =ag+ a1 X +

XX g, XX )

Let n be a positive integer. What is the least degree of a monic polyno-
mial f with integer coefficients such that n|f(k) for any integer k.

Let f be a polynomial with rational coefficients such that f(n) € Z for
all n € Z. Prove that for any integers m,n the number

f(m) - f(n)

lem(l,2, ..., deg(f)] - .

is an integer.

MOSP 2001

Let P(X1, X, ..., X;) be a polynomial with real coefficients. Give a nec-

essary and sufficient condition for P to send Z' in Z. Deduce that for
any integers a1, ag, ..., a, the number  [] 5% is integer.
1<i<j<n
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14.

15.

16.

17.

18.

Let f(z) = ao + a1z + -+ + apz™, with m > 2 and ap, # 0, be a
polynomial with integer coefficients. Let n be a positive integer such
that:

i) ag,as, ..., an are divisible by all prime factors of n;

ii) a1 and n are relatively prime.

Prove that for each positive integer k there is a positive integer ¢ such
that f(c) is divisible by n*.

Romanian TST 2001

Find all quadratic polynomials f € Z[X] with the property that for any
relatively prime integers m,n, the numbers f(m), f(n) are also relatively
prime.

St. Petersburg Olympiad

Let d,r be positive integers with d > 2. Prove that for any nonconstant
polynomial f with real coefficients of degree smaller than 7, the numbers
£(0), f(1),..., f(d" — 1) can be divided into d disjoint sets such that the
sum of the elements of each set is the same.

J. O. Shallit, AMM E 3032

Let a, b, c,d, k,m be integers such that a,c > 0. Suppose that m is rel-
atively prime to both ¢ and k. Prove that there exists a polynomial f
of degree d with integer coefficients such that f(n) = k-c®*® (mod m)
for all nonnegative integers n if and only if m is a divisor of (c® — 1)1+

Let f € Z[X] be a nonconstant polynomial. Prove that the sequence
f(83™) (mod n) is not bounded.
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19.

20.

21.

22.

23.

a) Prove that for each positive integer n there is a polynomial f € Z[X]
such that all numbers f(1) < f(2) < --- < f(n) are prime numbers.

b) As above, except the numbers now need to be powers of 2 rather than
primes.

Are there polynomials p, g, r with positive integer coeflicients such that

2 oz
p(z) + (2° — 3z + 2)g(z) and ¢(z) = (2—0 -5t 1%) r(z)?

Vietnamese Olympiad

Let (an)n>1 be an increasing sequence of positive integers such that for
some polynomial f € Z[X] we have a, < f(n) for all n. Suppose also
that m — n|ay, — a, for all distinct positive integers m,n. Prove that
there exists a polynomial g € Z[X] such that a, = g(n) for all n.

USAMO 1995

We call a sequence of positive integers (an)n>1 pairwise relatively prime if
ged(am, an) = 1 for any different positive integers m, n. Find all integer
polynomials f € Z[X] such that for any positive integer ¢, the sequence
(fM(c))n>1 is pairwise relatively prime. Here fI™ is the composition of
f with itself taken n times.

Leo Mosser

Suppose that f € Z[X] is a nonconstant polynomial. Also, suppose that
for some positive integers r, k, the following property holds: for any pos-
itive integer n, at most r prime factors of f(n) have exponent at most
equal to k. Does it follow that any zero of this polynomial has multi-
plicity at least & + 17
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24. Prove that for all n there exists a polynomial f with integer coefficients

25.

26.

and degree not exceeding n such that 2" divides f(z) for all even integers
z and 2™ divides f(z) — 1 for all odd integers z.

P. Hajnal, Komal

Find all polynomials f with integer coefficients and such that f(p)|2P —2
for any prime number p.

Gabriel Dospinescu, Peter Schoelze

Prove that for any ¢ > 0 there are infinitely many n such that the largest
prime divisor of n? 4 1 is greater than cn.

Nagell
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11.1 Theory and examples

Almost everyone knows the Chinese Remainder Theorem, which is a remark-
able tool in number theory. But does everyone know the analogous form for
polynomials? Stated like this, this question may seem impossible to answer.
Then, let us make it easier and also reformulate it: is it true that given some
pairwise distinct real numbers xg, z1, Z2,. .., Zn and some arbitrary real num-
bers ag, a3, az,...,a,, we can find a polynomial f with real coeflicients such
that f(z;) = a; for i € {0,1,...,n}? The answer turns out to be positive,
and a possible solution to this question is based on Lagrange’s interpolation
formula. It says that an example of such polynomial is

(In what follows along this unit, a product like the above one will be written,
for simplicity, just as [], %)

Indeed, it is immediate to see that f(z;) = a; for i € {0,1,...,n}. Also, the
above expression shows that this polynomial has degree less than or equal to
n. Is this the only polynomial with this supplementary property? Yes, and
the proof is not difficult at all. Just suppose we have another polynomial g of
degree less than or equal to n and such that g(z;) = a; for ¢ € {0,1,...,n}.
Then the polynomial g— f also has degree less than or equal to n and vanishes
at zg,Z1,--..,Zn. Thus, it must be null, and the uniqueness is proved.

What is Lagrange’s interpolation theorem good for? We will see in the follow-
ing problems that it helps us to immediately find the value of a polynomial
in a certain point if we know the values in some given points. And the reader
may have already noticed that this follows directly from the formula (1), which
shows that if we know the value in 1+ deg f points, then we can find the value
in any other point without solving a complicated linear system. Also, we will
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1 1-
V5 + and b =

try a direct approach:

where a = . Bearing this in mind, we can of course

990
991
Z( k )Fk+992(_1)k

k=0
990 990
_ % LZ:O (921) 992 (L1 )k _ kZ:O (921)bk+992(_1)k] '

But using the binomial theorem, the above sums vanish:

990 990
991 991
§ : ( . )ak+992(_1)k — a992 § : ( . )(_a)k — a992[(1 _ a)991 _+_a991]'
k=0

k=0

2

Since a® = a + 1, we have

a992[(1 _ a)991 + a991] — a(a _ a2)991 + a1983 = —a 4 a1983_

Since in all this argument we have used only the fact that a? = a+ 1 and since
b also satifies this relation, we find that

990
991 1
> ( )Fk+992(_1)k = —(al%3 —p193 _ 4 1 p)
k=0 k V5

g1983 _pl983 . g
= - = Fiog3 — 1.

V5 V5

And this is how, with the help of a precious formula and with some smart
computations, we could solve this problem and also find a nice property of the
Fibonacci numbers.

The following example is a very nice problem proposed for IMO 1997. Here,
the steps following the use of Lagrange’s interpolation formula are even better
hidden in some congruences. It is the typical example of a good Olympiad
problem: no matter how much the contestant knows in that field, one may
have great difficulties in solving it.
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Solution. The presence of H |z; — x;| is the only hint to this problem. But
J#L
even if we know it, how do we choose the polynomial? The answer is simple:
we will choose it to be arbitrary, and only in the end we will decide which
n—1
one is optimal. So, let us proceed by taking f(z) = Zakxk an arbitrary

k=0
polynomial of degree n — 1. Then we have

" r— T4
=;f($k)ka_;j-

ik

Combining this with the triangle inequality, we get

n

<],

k=1 j#£k

xk——xJ

Only now comes the beautiful idea, which is in fact the main step. From the
above inequality we find that

" |f ()| L
2 el
J#k

f=)

n— m—1

and since this is true for all non-zero real numbers x, we may take the limit
when z — oo and the result is pretty nice:

|f(f'3k

|zx —

lan—1| <Z
=

This is the right moment to decide what polynomial to take. We need a poly-
nomial f such that |f(z)| < 1 for all z € [-1,1] and such that the leading
coefficient is 2" ~2. This time our mathematical culture will decide. And it says
that Chebyshev polynomials are the best, since they are the polynomials with
the minimum deviation on [—1, 1] (the reader will wait just a few seconds and
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Now, repeating the argument in the previous problem and using the fact that
the leading coefficient is 1, we find that

n
|f (k)| >1
k=0 H lzK — ]
i#k

It is time to use the fact that we are dealing with integers. This will allow us
to find a good lower bound for H |zx — ;| This is easy, since
i#k

H lzy — 5] = |(zk — z0) (k. — 1) -+ (T — Tp—1) (Tr41 — Tk) - (Tn — )|
itk

>k(k—1)(k=2)--2-1-1-2---(n—k) = kl(n — k).

And yes, we are done, since using these inequalities, we deduce that

n Flz
2 k!'(n( —k)kl)! =1
k=0

Now, since
n

1 1 - /n 2n
gk!(n—k)!_ﬁg(k)_ﬁ’

it follows that
n!

HENEES

for some 0 < k < n.
The following example is an answer to a conjecture of F. J. Dyson (1962). The

elegant proof presented here, based on an identity obtained by Lagrange’s in-
terpolation formula, is due to I. J. Good (1970): '
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‘We have then

|9/ (z:)| = |[ [ (zi — 25)]|-
J#e

n
1
Now, we would like, if possible, to have |z;| = 1 and also E m <1.1In
k
k=0

n
this case it would follow from Z M— > 1 that at least one of the
k=0 H |k — 41
i#k
numbers |f(xk)| is greater than or equal to 1 and the problem would be solved.
Thus, we should find a monic polynomial g of degree n + 1 with all roots of

— |g'(zx))
to consider g(z) = 2" — 1. The conclusion follows.
We have an explanation to give: we said the problem follows trivially with a

n
1
modulus 1 and such that Z ——— < 1. This is trivial: it suffices, of course,
k=0

n
little bit of integration theory tools. Indeed, if we write f(z) = Z axz”® then
k=0

one can check with a trivial computation that

_ LT ke
ax = f(e¥)e " dt
2m 0

and from here the conclusion follows since we will have

27
f(eit)e—intdt
0

2r =

27 )
< [ 1A lde < 2mmax (2|

Of course, knowing this already in 10" grade (since the problem was given to
10tP grade students) is not something common...

Before passing to the next more computational problem (which does not mean
less interesting, of course), let us recall some properties of the Chebyshev’s
polynomials of the first kind. They are defined by T,,(z) = cos(n arccos(z)),
or, equivalently, 77, (cosz) = cos(nz). You can easily check by induction, us-
ing the obvious relation Tp,4+1(z) = 22T,(z) — T,—1(z) that this gives you a
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polynomial of degree n, having leading coefficient 2"~ and all of whose coef-
ficients are integers. Among hundreds of interesting and useful properties of
these polynomials, let us state a few, the proof of which is left as a very useful
exercise for the interested reader.

Theorem 11.1. The polynomials T, have the following properties:
e An explicit formula for T, is

(24 V@1 + (s = V= 1)
: .

Tn(x) =

o The polynomials T, and Ty, commute, that is Tp(Tm(z)) = Tm(Th(z))
for all m,n and all x.

o The generating function of these polynomials is given by:

3 Tu(z)e" = _2z—2)

_ 2
= 1—2z2x+ 2

for all|z] <1 and |z| < 1.

e They form an orthogonal system on the interval [—1,1] for the weight
v(z) = ——L=; that is for all i # j positive integers the following relation

Vi
holds )
[ B,
1 V1—22

The following problems will be based on a very nice identity that will allow
us to prove some classical results about norms of polynomials, to find the
polynomials having minimal deviation on [—1,1], and also to establish some
new inequalities. In order to do all this, we need two quite technical lemmas,
which are not difficult to establish, but very useful.
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k
Lemma 11.2. If we let t; = cos —7r, 0 <k<mn, then
n

n

f@) =] -t = ( T+ Ve — (- vz -1

k=0

Proof. The proof is simple. Indeed, if we consider
VT
9(@) = @+ Va1 = (o= Ve~ 1))

using the binomial formula we can establish immediately that it is a polyno-

mial. Moreover, from the obvious fact that lim i(—_& = 1, we deduce that it
z—00

is actually a monic polynomial of degree n + 1. The fact that g(tx) = 0 for
all 0 < k < n is easily verified using de Moivre’s formula. All these prove the
first lemma. O

A little bit more computational is the second lemma.

Lemma 11.3. The following relations are true:

k
i) [[ e —t) = nz fl<k<n-1;
J#k
’N) I__[(to _t]) 277,—2’
] 1

(=1)"n
2’”) H — t] W

Proof. Simple computations, left to the reader, allow us to write:

f(2) = gal(@+Va? = 1" + (z = Va? = )"+
e LAY | O S

Using this formula and de Moivre’s formula we easily deduce i).
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Then for any polynomial f € R[X] of degree n the following inequality is
satisfied:
|f (@) < |Tn(@)| - 1 f1| for all |2| > 1.

Proof. Using Lagrange’s interpolation formula and the triangle inequality, we
deduce that for all u € [—1,1], u # 0, we have:

()]s T

k=0 j#k i
The brilliant idea is to use the Lagrange interpolation formula again, this time
for the polynomial T;,. We shall then have (also for u € [—1,1],u # 0)

T(_)’_iz": kHl—utj ZHl—ut]
" Jul™ s ety ul lte — 4

k=0 k=0 j#k

(the last identity being ensured by lemma 11.2). By combining the two results,

we obtain
1 1
‘f (—)‘ <|r, (—)\ ]l for all w € [~1,1],u £ 0
U U
and the conclusion follows. O
Coming back to the problem and considering the polynomial f(z Z axz”,

the hypothesis says that || f|| < 1 and so by the lemma we have
|f(z)| < |Tn(x)] for all |z| > 1.

We will then have for all x € [-1,1], z # 0:

TLI_

lan + an—12 + - - + apx
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Solution. a) Let us write the Lagrange interpolation formula for P with the
points x1, %2, ..., Tn, where z; = cos((ﬁ%)f) are the zeros of the nth Cheby-
shev’s polynomial 7,,. We obtain the important identity

P(CE) — l . z”l: (_l)i—l . 1— :EZ i P(:E) i Tn(CE)
n = v Yo —ux
Take now z € [—1 1] Observe that if € [zn,x1] = [-21,21] then by the

hypothesis |P(

— < n, the last inequality being equivalent

to sin(L) > L, wh1ch is clear by a convexity argument. So, assume that
x > x1, the case £ < —x; being identical. In this case the triangle inequality
applied to the previous identity shows that

But the last sum is exactly 177 (z). Because Tp,(cosu) = cos(nu), we have
T)(cosu) = n% However, an easy induction shows that |sin(nu)| <n <
|sinu| for all u and all positive integers n. This implies that |T}(z)| < n?
for all z € [—1,1]. Combining this with the inequality |P(z)| < 1 .T/(z) we
deduce that |P(z)| < n for all z > x;. This finishes the proof of the first part.

b) First of all, let us see what happens when all a; are zero, that is
f(z) = by sinz + besin(2z) + - - - + by sin(nz).

Observe that in exactly the same way as you could have proved the existence
of the polynomial T7, (that is, by induction), you can prove the existence of a
polynomial R, of degree n — 1 such that R,(cosz) = Sl;glnf) Therefore there
exists a g)olynormal P of degree at most n — 1, with real coefficients, and such
that 5{1 nmz P(cosz). Observe that this polynomial satisfies the conditions
of a), because |sinz - P(COS z)| < 1 for all real z. Therefore we can apply a)
to deduce that |P(z)| < n for all z € [—1,1], that is |f(z)| < n - |sinz]| for

all z. Dividing by = and letting £ — 0 we deduce that |f’(0)| < n. Now,
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Solution. Let us denote
I fllap) = Jax, | f(z)]

for a polynomial f and let, for simplicity,

_ (3+2v2)" + (3-2v2)"
5 .

We thus need to prove that || f||j0,2) < cnll flljo,1) where

n

f(@) =] - a)-

i=1

We shall prove that this inequality is true for any polynomial f, which allows
us to suppose that ||f|ljo,) = 1. We shall prove that for all z € [1,2] we have

1+¢
|f(z)] < ¢p. Let us fix z € [1,2] and consider the numbers z; = + k

where t;’s are as in Lemma 11.2. Using the Lagrange interpolation formula,
we deduce that

|f(z)] < Z

N |

k=0 |jk ~ ko;;ék| ’“_xfl
n n
2—.’1:]' 3—t]

NIy

k=0 j#k J k=0 j#k J

Using Lemma 11.3, we can write

n 2n_1 n—1
e R 9| RN
k=0 j#£k k=1j#k

2n—2 n—1 n
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Based on the expression of the derivative from the proof of Lemma 11.3, we

obtain:
ZH(3—t] +H(3—t)+H(3—t)—

k=1j#k
n
— n _ n 2 2 n _ _ n .
5 (34 2vV2)" + (3 - 2v2)"] + +1\/5[(3+ V2)" — (3 —2V2)"]
All we have to do now is to compute
n—1

H(3—t]) + H(3—t] = H(3—tj).

But, according to Lemma 11.2, we deduce immediately that
n—1
[I6-t) == +=[B+2v2)" - (3-2v2)"].
e on +1\/—

Putting all these observations together and making a small computation, that
we leave to the reader, we easily deduce that |f(z)| < ¢,. This proves that
Il fllo,21 < cnll fllfo,1) and solves the problem.
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11.2 Problems for training

1. A polynomial of degree 3n takes the value 0 at 2,5,8,...,3n — 1, the
value 1 at 1,4,7,...,3n — 2 and the value 2 at 0,3,6,...,3n and it’s
value at 3n 4+ 1 is 730. Find n.

USAMO 1984

2. A polynomial p of degree n satisfies p(k) = 2* for all 0 < k < n. Find
its value at n + 1.

Murray Klamkin

3. Prove that for any real number a we have the following identity

Tepper’s identity

AMM

5. Prove that

and evaluate
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10.

11.

Prove the identity

Z(—nk—l@(n — k)" =n" zn:
k=2

n
k=1

x|~

Peter Ungar, AMM E 3052
Let a,b,c,d € R such that |az® + bz? +czx +d| < 1forallz € [-1,1].
Prove that
laf + [0] + |c| +|d| < 7.

IMO Shortlist 1996

. Define F(a,b,c) = max |23 — ax? — bz — c|. What is the least possible

z€(0,3]
value of this function over R3?

Chinese TST 2001

. Let a,b,¢,d € R such that |az® + b2? + cx +d| < 1for all z € [-1,1].

What is the maximal value of |¢|? For which polynomials is the maximum
attained?

Gabriel Dospinescu

Let a > 3 be a real number and p be a real polynomial of degree n.
Prove that
L p(i)] > 1.
i:O,IE.a..),(n+l " = p(i)] 2
Find the maximal value of the expression a?+b%+c? if [az? + bz +c| < 1
for all z € [-1,1].

Laurentiu Panaitopol
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12.

13.

14.

15.

Let f € R[X] a polynomial of degree n that verifies |f(z)| < 1 for all

z € [0,1], then
‘f ( 1)
n

Let a,b,c be real numbers and let f(z)
max{|f(£1)|,|f(0)|} < 1. Prove that if |z|

1
2 (1) <2

< 2'n+1 —1.

= az? + bz + ¢ such that
< 1 then

7)< 3 and

Spain 1996
1
Let A = {p € RIX]| degp <3, [p(x1)| < 1, [p (ia)‘ < 1}.
Find supmax |p
peglxlﬂl @l
IMC 1998

a) Prove that for any polynomial f having degree at most n, the following
identity is satisfied:

3

(@) = 3100+ S S g

where 2z, are the roots of the polynomial X™ + 1.
b) Deduce Bernstein’s inequality: || f'|| < n|| f|| where

[ Il = max [f(z)|

|z|<1

P. J. O’Hara, AMM
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16.

17.

Let f be a complex polynomial of degree at most n, and let 2y, 21, ..., 24
be the zeros of the polynomial X%+! — 1, where d > n. Define ||f|| as
the maximum of | f(z)| over all complex numbers z on the unit circle of
the complex plane.

a) Prove that if there exist n + 1 pairwise distinct zeros zg,x1, ..., Zn
among zg, 21, ---, 2¢ such that | f(z;)| < 2% then || f]| < 1.

b) Deduce that ||f]| - [lgl| < 4% || fgll-

Gelfand
Let f be a complex polynomial of degree n such that |f(z)| < 1 for all

z € [—1,1]. Prove that for all k and all real numbers z such that |z| > 1,

|f%) (z)] < IT, (k) (z)]. Prove that Chebyshev’s theorem is a consequence
of this result.

W. W. Rogosinski
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where
[ +1, if o€ A,
e() ‘{ 1, if 0€Bn

reminds us about the formula

det A = Z E(U)ala(l)a2a(2) " Ong(n)-
O'ESn

We have taken here S, = A, U B,. But we have no product in our sum!
This is why we take an arbitrary positive number z and consider the matrix
A= (-Tli_ﬂ)lgi,jgn- We have

det A = Z (1)@ gh—o @I .. zln—om)l —

O'ESn
L . noo .
22 li—o (i) 2 lima(d)l
= Z Tri=1 — ri=1
0EA, o€By

This is how we obtain the identity

1 .’E2 xn—2 xn—l
T 1 T zn3  gn?
z? T 1 g4 gnd
xn—l xn—2 T 1
35 li-o ()| 3 li—o (i)l
= ) = = o= . (12.1)
oESH o€Sn
o even o odd

Anyway, we do not have the desired difference yet. The most natural way
is to differentiate the last relation, which is nothing other than a polynomial
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using A,, B, from Example 1, observe that this reduces to computing the
determinant of the matrix T = (t;;)1<s,j<n, Where

{ 1, if i#7
tij =

0, if i=y
That is,
0 1 1 1
1 0 1 1
’C’rbl - ’Dnl - .. e
1 1 1 0

But computing this determinant is not difficult. Indeed, we add all columns
to the first and factor n— 1, then we subtract the first column from each of the
other columns. The result is |C| — |Dy| = (—=1)""!(n~ 1), and the conclusion
is:

1 1 1 -1 n—2
|aA:§%(1_5+5_”“+&3%!

)+ 0P

In the following problems we will focus on a very important combinatorial
tool, that is the incidence matrix. Suppose we have aset X = {z1,z2,...,2,}
and X1, Xa,..., X, a family of subsets of X. Now, define the matrix A =

(@ij)1<i<n, where
1<5<k

o 1, if xiEXj
WEL0, i mg X,

This is the incidence matrix of the family X3, Xo,..., Xk and the set X. In
many situations, computing the product AT - A helps translate the conditions
and the conclusion of certain problems. From this point, we turn on this
machinery, and solving the problem is on its way.

Let us discuss first a classical problem. It appeared at the USAMO 1979,
Tournament of the Towns 1985 and in the Bulgarian Spring Mathematical
Competition 1995. This says something about the classical character and
beauty of this problem.
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Solution. Indeed, if T is the incidence matrix of the family Ay, As, ..., Ay,
we obtain as in the previous problem the following relation

| A1] | A1 N Ag| |A1 N Ay
7. T = (12.2)
|AnﬂA1| |AnﬂA2| |An|

Now, let us suppose that all the numbers |A; N A;| are odd and interpret the
above relation in the field Z/2Z. We find that

0 1 1 71
T T=| .. .. A I
1 1 1 0

which means again that det ‘T - T is odd. Indeed, if we work in Z/2Z, we

obtain L L
0 1 1 1

I
)

1 1 1 0

The technique used is exactly the same as in the previous example. Note that
this is the moment when we use the hypothesis that n is even. Now, since
det *T - T = det® T', we obtain that detT is also an odd number. Hence we
should try to prove that in fact detT is an even number and the problem will
be solved. Just observe that the sum of elements of the column ¢ of T' is | 4;],
hence an even number. Thus, if we add all lines to the first, we will obtain
only even numbers on the first line. Because the value of the determinant does
not change under this operation, it follows that det 7" is an even number. But
a number cannot be both even and odd, so our assumption is wrong and the
problem is solved.
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So we must find all values of m and n for which there exist a binary matrix T'
such that

m m m
T2 _ m m m

m m m

Let us consider

m m m

m m m
B =

m m ... m

and find the eigenvalues of B. This is not difficult, since if x is an eingenvalue,

then
m-—-z m m
m

m m-x
=0
m m m—z

If we add all columns to the first and then take the common factor mn — z,
we obtain the equivalent form

1 m m
]_ —

(mn —2x) m-e ™=
1 m m—x

In this last determinant, we subtract from each column the first column mul-
tiplied by m and we obtain in the end the equation " !(mn — ) = 0, which
shows that the eigenvalues of B are precisely 0,0,...,0,mn. But these are
——
n—1 times
exactly the squares of the eigenvalues of 7. Hence T has the eigenvalues
0,0,...,0,4/mn, because the sum of the eigenvalues is nonnegative (being
1
n—
equal to the sum of the elements of the matrix situated on the main diagonal).
Since Tr(T') € Z, we find that mn must be a perfect square. Also, because
Tr(T) < n, we must have m < n.
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Now, let us prove the converse. Suppose that m < n and mn is a perfect
square and write m = du?, n = dv?. Let us take the matrices

I=(1...1), O0=(0...0).
dv times dv times
Now, let us define the circulant matrix
I...10...0
U v—Uu
OI1...10...0
S N —
S = U v—u—1 € Mv,n({o’ 1})
I...I10...01
u—1 U
Finally, we take
S
S
A= € M,({0,1}).
S
It is not difficult to see that
m m m
A2 m m m
m m m

which concludes the proof.

The last idea that we present here (but certainly these are not all the methoc.
of higher mathematics applied to combinatorics) is the use of vector spaces.
Again, we will not insist on complicated concepts from the theory of vector
spaces, just the basic facts and theorems. Maybe the most useful fact is that
if V' is a vector space of dimension n (that is, V has a basis of cardinality n),
then any n+1 or more vectors are linearly dependent. As a direct application,
we will discuss the following problem, which is very difficult to solve by means
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Solution. Let us consider the matrix A = (a;;) where

a0 = [ 1 if Bi knows F;
1 0, otherwise

We have considered here that By, Bs,. .., Bsg are the boys and F1, Fs, ..., Fy
are the girls. Now, consider the matrix T = A - A. Observe that all the

elements of the matrix T, except those from the main diagonal, are even
20

(because t;j; = E a;xa;k is the number of common acquaintances among the

k=1 :
girls of the boys B;, B;). Each element on the main diagonal of T' is precisely
the number of girls known by the corresponding boy. Thus, if we consider
the matrix T in (Z/2Z,+,-), it will be diagonal, with exactly nine nonzero
elements on its main diagonal. From now on, we will work only in Z/2Z. We
have seen that rank(7T") = 9. Using Sylvester’s inequality, we have

9 = rank(T) > rank(A) + rank (4%) — 20 = 2 - rank (A4?) — 20
hence r = rank (A%) < 14. Let us consider now the linear system in (Z/2Z, +, -):

a11Z1 + a2172 + - -+ + aszp,1730 = 0
a12Z1 + ageTo + - -+ + azp2x30 = 0

a1,20Z1 + a2,20T2 + - - + azp,20730 = 0

The set of solutions of this system is a vector space of dimension 30 — r > 16.
This is why we can choose a solution (z1,z2,...,230) of the system, hav-
ing at least 16 components equal to 1. Finally, consider the set M = {3 €
{1,2,...,30}] 2; = 1}. We have proved that [M| > 16 and also Z aj; =0
jeM
for all i = 1,2, ...,20. But observe that Z aj; is just the number of boys By
EM

with k£ € M such that B, knows F;. ’Ij‘hus, if we choose the group of those
boys By, with k € M, then each girl is known by an even number of boys from
this group, and the problem is solved.
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which can be also written as
n
2
E (aij + aji):ci:cj + E ATy = 0.
1<i<j<n i=1

The matrix is symmetric, so the first sum is 0. Also, we have z? = z; and
a;; = 1, so we infer that 3 + 22+ - - - + z, = 0, which means that z is orthog-
onal to v. This finishes the proof.
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12.2 Problems for training

1.

The squares of an n by n board are filled with 0 or 1 such that any two
lines differ in exactly & positions. Prove that there are at most n - /n
ones on the board.

Consider 2n + 1 real numbers with the property that no matter how
we eliminate one of them, the rest can be divided into two groups of
n numbers, the sum of the numbers in the two groups being the same.
Then all the numbers must be equal.

A handbook classifies plants by 100 attributes (each plant either has a
given attribute or does not have it). Two plants are dissimilar if they
differ in at least 51 attributes. Show that the handbook cannot give 51
plants all dissimilar from each other.

Tournament of the Towns 1993

Let Ay, Ao, ..., Ay, be distinct subsets of a set A with n > 2 elements.
Suppose that any two of these subsets have exactly one element in com-
mon. Prove that m <n.

The edges of a regular 2"-gon are colored red and blue. A step consists of
recoloring each edge which has the same color as both of its neighbors in
red, and recoloring each other edge in blue. Prove that after 277! steps
all of the edges will be red and that need not hold after fewer steps.

Iran Olympiad 1998
Is there in the plane a configuration of 22 circles and 22 points on their
unjon (the union of their circumferences) such that any circle contains

at least 7 points and any point belongs to at least 7 circles?

Gabriel Dospinescu, Moldova TST 2004
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7.

10.

Let p be an odd prime and let n > 2. For any permutation ¢ € S, we
consider

n
S(o) =Y _ka(k).
k=1
Let A; and B; be the set of even and odd permutations o for which
S(o) = j (mod p) respectively. Prove that n > p if and only if A; and

B; have the same number of elements for all j € {0,1,...,p—1}.

Gabriel Dospinescu

. A number of teams compete in a tournament, and each team plays

against any other team exactly once. In each game, 2 points are given
to the winner, 1 point for a draw, and 0 points for the loser. It is known
that for any subset S of teams, one can find a team (possibly in S) whose
total score in the games with teams in S is odd. Prove that n is even.

D. Karpov, Russian Olympiad 1972

. Let n > 2. Find the greatest p such that for all k € {1,2,...,p} we have

" k " k
5 (Dm) - (zifm) ,
oCAn =1 o€B, i=1

where A,, B, are the sets of all even and odd permutations of the set
{1,2,...,n} respectively.

Gabriel Dospinescu

Let r be the number of disjoint cycles in the decomposition of a per-
mutation o of the set {1,2,...,n}. Prove that o cannot be written as
the product of fewer than n — r transpositions. Determine the minimal
number of transpositions that generate the symmetric group of order n.
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11.

12.

13.

14.

15.

A simple graph has the property: given any nonempty set H of its
vertices, there is a vertex x of the graph such that the number of edges
connecting z with the points in H is odd. Prove that the graph has an
even number of vertices.

In an m by n table, real numbers are written such that for any two
lines and any two columns, the sum of the numbers situated in the
opposite vertices of the rectangle formed by them is equal to the sum
of the numbers situated in the other two opposite vertices. Some of the
numbers are erased, but the remaining ones allow us to find the erased
numbers using the above property. Prove that at least n4+m —1 numbers
remained on the table.

Russian Olympiad 1971

Find the least m such that it is possible to decompose the complete
graph on n vertices into m complete subgraphs such that every edge
belongs to exactly one such subgraph.

Let A;, As, ..., Ap, Bi, Ba, ..., By, be subsets of {1,2,...,n} such that:

a) for any nonempty subset T of A, there is an ¢ € A such that |4; N T
is odd, and

b) for any i,j € A, A; and B; have exactly one common element.
Prove that B = By =--. = B,,.

Gabriel Dospinescu

Let xj,x9,...,2, be real numbers and suppose that the vector space
spanned by z; — x; over the rationals has dimension m. Then the vector
space spanned only by those x; — x; for which x; —x; # xx —x; whenever
(4,7) # (k,1) also has dimension m.

Strauss’s theorem



PROBLEMS FOR TRAINING 285

16.

17.

18.

19.

20.

Light bulbs L1, Lo, ..., Ly, are controlled by switches 57, S, ..., S,. Switch
S; changes the on/off status of light L; and possibly the status of some
other lights. Suppose that if S; changes the status of L; then S; changes
the status of L;. Initially all lights are off. Is it possible to operate the
switches in such a way that all the lights are on?

Uri Peled, AMM 10197

Let s be a function defined by s(ay, as, ..., ar) = (Ja1—az|, |ag—as], ..., |ar—
a1|). Prove the equivalence of the following statements: i) for all non-
negative integers aj, as, ..., a,, there exists n such that the n-th iterate
of s evaluated at (a1, as,...,a,) is (0,0, ...,0); ii) r is a power of 2.

Ducci’s problem

Let A be a finite set of real numbers between 0 and 1 such that for all
z € A there exist a,b different from z, which belong to A or which are
equal to 0 or 1, such that z = “TH’ Prove that all elements of A are
rational.

Bay Area Competition

Let X be a set of n prime numbers and let m be a positive integer. Find
the number of subsets A of X having the following properties: i) A has
m elements, all of them being square-free. ii) the product of the elements
in any subset of A is not a perfect square. iii) any prime divisor of an
element of A is in A.

Iran 1998

In a contest consisting of n problems, the jury defines the difficulty of
each problem by assigning it a positive integral number of points (the
same number of points may be assigned to different problems). Any



286

12. HIGHER ALGEBRA IN COMBINATORICS

21.

22.

23.

participant who answers the problem correctly receives that number of
points for the problem; any other participant receives 0 points. After
the participants submitted their answers, the jury realizes that given any
ordering of the participants (where ties are not permitted), it could have
defined the problems’ difficulty levels to make that ordering coincide with
the participants’ ranking according to their total scores. Determine,
in terms of n, the maximum number of participants for which such a
scenario could occur.

Russian Olympiad 2001

In a society, acquaintance is mutual and even more, any two persons
have exactly one common friend. Then there is a person who knows all
the others.

Universal friend theorem

Let Ay, Asz,..., Am be subsets of {1,2,...,n}. Then there are disjoint
sets I, J such that UAi = U Aj and ﬂAi = ﬂ Aj.
i€l jeJ el jeJ

Lindstrom’s theorem

On an m x n sheet of paper a grid dividing the sheet into unit squares is
drawn. The two sides of length n are taped together to form a cylinder.
Prove that it is possible to write a real number in each square, not all
zero, so that each number is the sum of the numbers in the neighboring
squares, if and only if there exist integers k, ! such that n + 1 does not
divide k& and

km 1

coszlﬂ+ 0
— + cos =_.
m n+1 2

Ciprian Manolescu, Romanian TST 1998



PROBLEMS FOR TRAINING 287

24.

25.

Let Ay, As,...,Am and By, By, ..., B, be subsets of {1,2,...,n} such
that A; N B; is an odd number for all 4 and 4. ' Then mp < 271,

Benny Sudakov

A figure composed of 1 by 1 squares has the property that if the squares
of a fixed m by n rectangle are filled with numbers the sum of all of
which is positive, the figure can be placed on the rectangle (possibly
after being rotated by a multiple of 7) so that the numbers it covers also
have positive sum (however, the figure may not have any of its squares
outside the rectangle). Prove that a number of such figures can be placed
on the rectangle such that each square is covered by the same number
of figures.
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13.1 Theory and examples

It may seem weird, but geometry is really useful in number theory, and some-
times it can help in proving difficult results with some extremely simple argu-
ments. In the sequel we are going to exhibit a few applications of geometry in
number theory, almost all of them revolving around the celebrated Minkowski’s
theorem. This theorem will give a very efficient criterion for a centrally sym-
metric convex body to contain a nontrivial lattice point. The existence of this
point has important consequences in the theory of representation of numbers
by quadratic forms, and in the approximation of real numbers by rational
numbers. As usual, we will present only a mere introduction to this extremely
well-developed field of mathematics. You will surely have the pleasure of con-
sulting some reference books about this fascinating area of research.

First of all, let us define the notion of convex body (or convex set; in what
follows we will call bodies sets in R™). A subset A of R will be called a convex
body if it is convex, that is A contains the segment {tz+(1—%)y|0 < ¢ < 1} once
it contains two points z,y. A is called centrally symmetric if it is symmetric
with respect to the origin, that is —z € A if z € A. We will take for granted
that convex bodies have volumes (this is more delicate than it seems, actually).
We start by proving the celebrated Minkowski’s theorem.

Theorem 13.1 (Minkowski). Suppose that A is a bounded centrally symmetric
convex body in R™ having volume strictly greater than 2". Then there is a
lattice point in A different from the origin.

Proof. The proof is surprisingly simple. Indeed, begin by making a partition of
R™ into cubes of edge 2, having as centers the points that have all coordinates
even integers. It is clear that any two such cubes have disjoint interiors and
that they cover all space. That is why we can say that the volume of A is
equal to the sum of the volumes of the intersections of A with each cube
(because A is bounded, it is clear that the sum will be finite). But of course,
one can bring any cube into the cube centered around the origin by using a
translation by a vector all of whose coordinates are even. Since translations
preserve volume, we will have now an agglomeration of bodies in the central
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assume that a and b are nonzero (otherwise the conclusion follows trivially);
and more, a classical argument allows us to assume that a and b are each
relatively prime (which implies that a and b are each relatively prime to n,
too). We try again to find a pair (z,y) € Z*\{(0,0)} such that z2+zy+1? < 2n
and such that n divides 24 zy+ 2. In this case we will have 22 +zy+ 1% = n
and the conclusion follows.

First, let us look at the region defined by z2 + zy + y? < 2n. Again, simple

7
computations show that it is an elliptical disc of area —3n Next, consider

the lattice formed by the points (x,y) such that n divides az —by. The area of
the fundamental parallelogram is clearly at most n. By Minkowski’s theorem,
we can find (z,y) € Z2\ {(0,0)} such that 2% + zy + y? < 2n and n divides
az — by. We claim that this yields an integer solution to the equation. Ob-
serve that ab(z? + zy 4 y?) = A2zyn + (az — by)(bz — ay) and so n also divides
z?+2y+y? (since n is relatively prime with a and b) and the conclusion follows.

Before continuing with some more difficult problems, let us recall that for any
symmetric real matrix A such that

Z Qi TiT5 > 0
1<i,j<n
for all z = (z1,22,...,2n) € R™\ {0} the set of points satisfying

Z Ay < 1

1<i,j<n

Vol(B,,)
vdet A

Vol(By,) =

has volume equal to , Where

o3

™
n\ ’
r(1+3)
+2
[e 0]

where B, is the n'* dimensional Euclidean ball (and I'(z) = e %4t is

0
Euler’s gamma function). There are explicit formulae for I'(1 + %) because
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the convex body C = {(t,u,v,w) € R*| t2 + u2 + v? + w? < 2p} is equal to
2m2p? > 16Vol(P). Thus CN L is not empty. It suffices then to choose a point
(t,u,v,w) € CNL and we will clearly have t2 +u? +v% +w? = p. This finishes
the proof for prime numbers.

Of course, everything would be nice if the product of two sums of four squares
is always a sum of four squares. Fortunately, this is the case, but the proof is
not obvious at all. It follows form the miraculous identity:

(@2 + b2+ + d*)(z? + y? + 2% + 1) = (az + by + cz + dt)?
+(ay — bz + ct — dz)? + (az — bt + dy — cx)? + (at + bz — cy — dz)?

This is very nice, but how could one answer the eternal question: how on earth
should I think of such an identity? Well, this time there is a very nice reason:
instead of thinking in eight variables, let us reason only with four. Consider
the numbers z; = a + bi, 2o = ¢+ di, z3 = ¢ + yi, 24 = z + i and introduce

the matrices
M:( & ) N:( % )
—22 <1 —<24 23

det(M) = |21 + |22)? = a® 4+ b* + % + &2

‘We have

and similarly
det(N) = 2% 4 y% + 22 + ¢2.

It is then natural to express (a? +b? + ¢ +d?)(z? + y% + 22 +t2) as det(MN).
But surprise! We have

2123 — 29Z. 2124 + 222,
MNz( 1723 24_ 124 2_3)
—Z124 — 2923 2123 — 2224

and so det(M N) is again a sum of four squares. The identity is now motivated.

Let us concentrate a little bit more on approximations of real numbers. We
have some beautiful results of Minkowski that deserve to be presented after
this small introduction to the geometry of numbers. The following one is ex-
tremely important while studying algebraic number fields.
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Solution. It is clear that f(2") is just the number of nonnegative integer
solutions of the equation ag + 2a1 + - -- + 2"a, = 2", which is the same as
the number of solutions in nonnegative integers of the inequation 2a; + 4as +
.-+ + 2"a, < 2™ For any such solution different from (0,0, ...,0,2") we have
an = 0 and we will consider the hypercube H(a1,a2,...,an-1) = [a1,a1 + 1) X
[a2,a2+1) X ... X [ap-1,an-1+1). It is clear that these hypercubes are pairwise
disjoint for distinct solutions (a1, ag, ..., an—1). So the number of solutions of
the inequation is the total volume of these hypercubes. Now, observe that any

such hypercube is included in the set of points (1, 2, ..., Zn—~1) With z; > 0 and
n—1
> 2%(z; — 1) < 2™ Also, the union of these cubes covers the region consisting
i=1

n—1

of those points (21, 22, ..., Zn—1) With ; > 0 and > 2'z; < 2", Indeed, take a

iz
point (21, Za, ..., Tn—1) in this region. Then ([z1], [x2], ..., [£n—1],0) is a solution
of the inequation and the point belongs to the corresponding hypercube. Now,
let us consider more generally the region R(ai,as,...,an, A) defined by the
inequations z; > 0 and a1z1 + agza + - - + apxy < A. Its volume is

Vol(R(a1, ..., an, A)) = / dridzs...dz, =
z; 20,0121+ Fanzn<A
/ / dil?l...da?n_l
Oﬁmnﬁﬁ 21, yTn—120,01214+Fan_12n_1<A—anTn
A
an
= Vol(R(ai, ..., an-1, A — anZn))dzn, =
0

A

— Vol(R(a1, ..., an_1,1)) - / " (A = anzn)" \dan =

0

n

A
= —-Vol ety U1, 1)).
nay, o (R(al’ ; On—1, ))

This relation easily implies by induction that Vol(R(a1, ag, -..,an)) = n'allgﬁ

Thus, because the sum of the volumes of the hypercubes is between the vol-
ume of R(2,4,...,2771,2") and R(2,4,...,2" 1,2+ 22 + ... + 2771 4 om) =
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R(2,4,...,2"1 27+l _2) counting the solution (0,0, ...,0,2"), we deduce that
the number of solutions satisfies the inequalities

n2—n

2 2n+1 -9 n—1
1r 2 ey <1y o T
(n—1)! 275" . (n — 1)
Now, note that
nz—n
2T _ 5mom)-logy((n-1))
(n—1)!

and that

log,((n — 1)) = 1—;—2((71 —1)In(n — 1) + O(n)) = nlogy(n) + O(n)

by Stirling’s formula. Similarly,
(2n+1 _ 2)11—1 TL2

2n2_n : R =5~ nlogy(n) + O(n).

The existence of the two constants is now obvious.

We end this chapter with some difficult problems concerning representations
of solutions of some Diophantine equations. We will show, using Minkowski’s
theorem, that if n < 4 and A is a symmetric and positive matrix (that is,
btz Az > 0 for all vectors z € R"™) in SL,(Z) (the set of integer n x n matrices
with determinant 1), then there exists a matrix B with integer coefficients
such that A = B - B? (a result which actually holds for n < 7, for n = 8 being
false). This will have some nice applications in the study of some Diophantine
equations. Let us start with some notations and easy observations. A bases of
Z™ will be a family B = (v1,v2,...,vp) of vectors in Z", such that any vector
x € Z™ can be uniquely expressed as k1v1 + kava + - - - + kpvp for some integers
ki,k2,...,kp. For instance, it is clear that the canonical bases (ej, e, ..., ep)
of R™ is a basis of Z", where ¢; is the vector which has 1 on position i and
0 otherwise. But there are many other bases of Z™. Actually, in the chapter
A Little Introduction to Algebraic Number Theory we proved that
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éﬁ)ﬂn) For n < 4, using the fact that I'(n) = (n — 1)! and I'(n + %) =
2

w - /7, you can easily verify that (%)n > T (14 %))2 This shows
that the volume of the ellipsoid is greater than 2" and thus it contains a
nontrivial lattice point, which we call v;. Because fa(v1) > 0 (4 is invertible
and positive) and fa(v1) € Z, it is clear that v; is a good choice.

O

Now, we will extend this vector v; to a basis B = (v1, v, ..., Un) 80 as to have
the first line and column of G constructed:

Lemma 13.4. Let v; be a vector as found in lemma 13.1. Then there exist
integer vectors vy, V3, ..., vn Such that B = (v1,v2,...,Un) 8 a basis of Z™ and
ga(vi,v;) =0 for all i > 2.

Proof. The proof is very beautiful. Consider H = {z € Z"|ga(vi,z) = 0}.
Clearly, H is a submodule of Z™, thus it is of the form Zwvg + -+ 4 Zuv, for
some linearly independent integer vectors wvq,vs,...,vr. We claim that B =
(vi,ve,...,0y) is a basis of Z". Indeed, take x € Z™. We need to study the
equation z = k1v1 +v, where v € H. All we need is g4(v1,z—kjv1) = 0, which
is the same as k1 fa(v1) = ga(v1,z), thus k1 = ga(v1,z). Thus k; exists and is
uniquely determined. This means (because va, ..., vr are linearly independent)
that there exist unique integers ki, ko, ..., k- such that ¢ = kjv; + kove +-- - +
krvr. Thus B is a basis of Z", and consequently we also have r = n. This
finishes the proof of lemma, 2.

O

Now, we can proceed to an inductive proof. We will prove that the assertion
holds for » > 1 by induction. Of course, the case n = 1 is trivial, so assume
that the result holds for n— 1. Using lemma 1 and lemma 2, we know that for
10

0 A
clearly A’ is a symmetric positive matrix in SL,_1(Z). Applying the inductive
hypothesis, we can write A’ = B"*B’ for some matrix B’ with integer entries.

some matrix S with integer coefficients we have 4 = S*- -5, where
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Clearly, M is

8 o w
O 8w

a
Solution. Let us consider the matrix M = z
Yy

symmetric. The condition
2 2 2 _
az” + by” + cz* = abc+ 2zyz — 1

implies that M € SL3(Z). Now, let us prove that A is positive. Because M is
symmetric and invertible, it is enough to prove that its eigenvalues are positive.
Let these eigenvalues be u,v,w. Then we know that u,v,w are real numbers
(because M is symmetric), that uvvw = 1 and u+v+w = tr(M) = a+b+c > 0.
On the other hand, it is not difficult to see that

uv+vw+wu=ab—z2+bc—x2+ac—y220,

the sum of the principal second-order minors. Thus u,v,w are zeros of a
polynomial of the form X3 — UX? 4 VX — 1 for some nonnegative U, V.
Clearly, such a polynomial can have only nonnegative zeros, thus u,v,w > 0.
Because det(M) = 1, it follows that M satisfies all conditions of the previous
theorem, so M is of the form !NN for some integer matrix N. If we write

ay az ag
N = | b by b3 |, we deduce that a = ||A4|%, b = ||B||?, ¢ = ||C||?,
c1 €2 €3
z={(A,B), y=(A,C) and finally z = (B, C) for some integer vectors A, B, C
(here [|-]| and (-) are the Euclidean norm and inner product respectively) that

form a basis of Z3 (they are the rows of the matrix N). All these triples found
are actually solutions. Indeed, if A, B, C form a basis in Z2, then the matrix
N whose rows are A, B, C is in GL3(Z), that is its determinant is —1 or 1, so
det(!NN) = (det(N))? = 1. Thus det(A) = 1 and

ax? + by? + c2® = abe + 2zyz — 1.

Also,
x2+y2+z2 <ab+ bc+ ca

is a consequence of the Cauchy-Schwarz inequality, because

z? =(B,C)* < ||BII*-||C|I*.
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and the fact that 0 < |la — b]| < 1 show that [|a — b]|2 = % for a cer-
tain positive integer A smaller than d. Therefore, A = %({|b||> — n) and
c=b+ MIZ;%(U — db) = % for an integer vector w. This shows that the
pair (¢, w) contradicts the minimality of (a,v) and proves the result.
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13.2 Problems for training

1.

Consider a lamp (a point) in space. Prove that no matter how we place
a finite number of closed spheres of equal radius, the light of this lamp
will be able to go to infinity (that is, there exists a direction in which
the light will not hit any of these spheres). The spheres must not touch.

Iran 2003
Suppose that a and b are rational numbers such that the equation az?+
by? = 1 has at least one rational solution. Then it has infinitely many
rational solutions.

Kurschak Competition

Is there a sphere in R? which has exactly one point with all coordinates
rational numbers?

Tournament of the Towns
In the plane consider a polygon of area greater than n. Prove that it
contains n + 1 points A;(z;, ;) such that z; — z;,v; — y; € Z for all

1<ij<n+1

Chinese TST 1988

. Let S = {p1,p2, ..., pn} be a set of prime numbers and let f(S,z) be the

number of integers not exceeding z, all of whose prime divisors are in S.
Prove that
(Inz)"

S, z)~
1(8,2) n!-Inpy -Inps---Inp,

Deduce that there are infinitely many primes.

Michael Rubinstein
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10.

Suppose that a, b, ¢ are positive integers such that ac = b + 1. Prove
that the equation axz? + 2bxy + cy?® = 1 is solvable in integers.

Let A = (a;;) where a;; (1 < 4,5 < n) are rational numbers such that
Z a;jziz; > 0 for all z = (z1,...,2,) € R™\ {0}. Prove that there
1<ij<n
are integers. z1,...,Z, (not all zero) such that
Z aijziz; < nvdet A.

1<4,5<n
Minkowski

Prove that if A = (ay;) is an n x n invertible matrix with real entries
then there exist integers 1, 3, ..., 5, not all zero, such that

ﬁ iaz]:c] S — - |detA].

i=1]j=1
Product Theorem for Homogeneous Linear Forms

Consider a disc of radius R. At each lattice point of this disc, except
for the origin, one plants a circular tree of radius r. Suppose that r
is optimal with respect to the following property: if you look from the
origin, you can see at least one point situated at the exterior of the disc.
Prove that

1 1
— < r< —=.
vVRZ+17 R

George Polya, AMM

Let f: R™ — R be an even function such that f(z) > 0 for all z € R",
different from 0, f(az) = af(z) for all @ > 0 and all z € R", and
flx+y) < f(z) + f(y) for all z,y. Prove that there exists an open,
bounded, convex set B = {z € R"|f(z) < 1} such that f(z) is the gauge
of B, that is f(x) = inf{\ > 0|% € B}.
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11.

12.

13.

14.

15.

Let B be a convex, open and bounded set in R”, and let f be its
gauge (defined in the previous problem). Prove that mingezn 40 f(z) <
2 where V(B) is the volume of B.

YV (B)’

Minkowski

Let a,b,c,d be positive integers such that there are 2004 pairs (z,y)
with z,y € [0,1] for which az + by, cx + dy € Z. If ged(a,c) = 6, find
ged(b, d).

Nikolai Nikolov, Bulgarian Olympiad 2005

Prove that there is no position in which an n by n square can cover more
than (n + 1)? integral lattice points.

D.J.Newman, AMM E 1954

Let n > 5 and let a1,...,an,b1,...,b, be integers such that that all
pairs (a;,b;) are different and |a:bit1 — aip1bs| = 1, 1 < i < n (here
(an+1,bnt1) = (a1, b1)). Prove that we can find 1 < | — j| < n— 1 such
that |aibj — ajbz-| = 1.

Korean TST

Let us denote by A(C,r) the set of points w on the unit sphere in R

with the property that |w - k| > for any nonzero vector k € Z"

<
&I
(here w - k is the usual dot product and ||k|| is the Euclidean norm of
the vector k € Z™). Prove that if > n — 1 there exists C' > 0 such that

A(C,r) is nonempty, but if r < n — 1 there is no such C.

Mathlinks Contest (after an ENS entrance exam problem)



312

13. GEOMETRY AND NUMBERS

16.

17.

18.

Prove that for a positive integer n the following assertions are equivalent:
a) n is the sum of three squares of integers; b) the set of points with
all coordinates rational on the sphere centered at the origin and having
radius 4/n is dense in this sphere.

Suppose that zi,z9,...,x, are algebraic integers such that for each
1 < i £ n there is at least one conjugate of z; which is not among
T1,Z2,...,Tn. Prove that the set of n-tuples (f(z1), f(z2),..., f(zy))
with f € Z[X] is dense in R™.

Let f(X) = (X —z1)(X — z2)--- (X — z,) be an irreducible polynomial
over the field of rational numbers, with integer coeflicients and real zeros.
Prove that

n

n
I lei-—zl= pri

1<i<j<n

Siegel
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We have seen that the order of a modulo n is a divisor of ¢(n). Therefore a
natural question appears: given a positive integer n, can we always find an
integer a whose order modulo n is exactly ¢(n)? We call such a number a a
primitive root modulo n. The answer to this question turns out to be negative,
but in some cases primitive roots exist. We will prove here that primitive roots
mod p" exist whenever p > 2 is a prime number and n is a positive integer.
The proof is quite long and complicated, but breaking it into smaller pieces
will make it easier to understand. So, let us start with a lemma due to Gauss:

Lemma 14.1. For each integer n > 1, 3 p(d) = n.
din

Proof. One of the (many) proofs goes like this: imagine that you are trying

to reduce the fractions %, %, ..., 2 in lowest terms. The denominator of any

new fraction will be a divisor of n and it is clear that for any divisor d of n we
obtain ¢(d) fractions with denominator d. By counting in two different ways

the total number of fractions obtained, we can conclude. O

Take now p > 2 a prime number and observe that any element of Z/pZ has
an order which divides p — 1. Consider d a divisor of p — 1 and define f(d) to
be the number of elements in Z/pZ that have order d. Suppose that z is an
element of order d. Then 1,z,...,2% ! are distinct solutions of the equation
u? = 1, an equation which has at most d solutions in the field Z /pZ. Therefore
1,z,...,z% ! are all solutions of this equation and any element of order d is
among these elements. Clearly, z* has order d if and only if ged(i,d) = 1.
Thus at most ¢(d) elements have order d, which means that f(d) < ¢(d) for
all d. But since any nonzero elements has an order which divides p — 1, we

deduce that
Z fld)=p-1= Z o(d)
dlp—1 dlp—1

(we used in the last equality the lemma above). This identity combined with
the previous inequality shows that f(d) = ¢(d) for all d|p — 1. We have thus
proved the following:
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Theorem 14.2. For any divisor d of p— 1 there are exactly o(d) elements of
order d in Z/pZ.

The above theorem implies the existence of primitive roots modulo any prime
p (the case p = 2 being obvious). If g is a primitive root mod p, then the p
elements 0,1, g, ¢%,...,g°~2 are distinct and so they represent a permutation
of Z/pZ. Let us fix now a prime number p > 2 and a positive integer k and
show the existence of a primitive root mod p*. First of all, let us observe that
for any 7 > 2 and any integer z we have (1 + a:p)p’_2 =1+ zp’~! (mod p).
Establishing this property is immediate by induction on j and the binomial
formula. With this preparatory result, we will prove now the following:

Theorem 14.3. If p is an odd prime, then for any positive integer k there
exists a primitive root mod p*.

Proof. Indeed, take g a primitive root mod p. Clearly, g +p is also a primitive
root mod p. Using again the binomial formula, it is easy to prove that one of
the two elements g and g + p is not a root of X?~1 — 1 mod p?. This shows
that there exists y a primitive root mod p for which y?~! #Z 1 (mod p?).
Let ¥»~! = 1+ zp. Then by using the previous observation we can write
yP -1 = (1 4+ 2p)P" ™" = 1 + zp* ! (mod p*) and so p* does not divide
y?° =1 _ 1. Thus the order of y mod p* is a multiple of p — 1 (because
y is a primitive root mod p) which divides p*~1(p — 1) but does not divide
p*2(p — 1). So, y is a primitive root mod pF.

k—2(

a

In order to finish this (long) theoretical part, let us present a very efficient
criterion for primitive roots modulo p*:

Theorem 14.4. Each primitive root mod p and p? is a primitive root modulo
any power of p.

Proof. Let us prove first that if g is a primitive root mod p and p? then it is also
a primitive root mod p3. Let k be the order of g mod p®. Then k is a divisor of
p*(p—1). Because p? divides g* —1, k must be a multiple of p(p—1). It remains
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14.2 Problems for training

1. Let a,n > 2 be integers such that nja” ! — 1 and n does not divide any
of the numbers a® — 1, where x < n — 1 and z|n — 1. Prove that n is a
prime number.

2. Let p be a nonzero polynomial with integral coefficients. Prove that
there are at most finitely many numbers n for which p(n) and 22" + 1
are not relatively prime.

1
is of the

2P
3. Let p > 3 be a prime. Prove that any positive divisor of -+
form 2kp + 1.

Fermat
4. Find all positive integers m,n for which n|m?3" +m3" + 1.
Bulgaria 1997
5. Find the least multiple of 19 all of whose digits are 1.
Gazeta Matematica

6. Let ¢ be a prime such that ¢ divides at least one Mersenne number
2P — 1 with p a prime number. Prove that ¢ > 3 -10°. You may take it
for granted that the only primes ¢ such that ¢?|29~! — 1 and which are
smaller than 3 - 10° are 1093 and 3511.

7. Prove that there exists a function f with integer values such that 27197 (n)
97 for any positive integer n.

Vietnamese TST 1997
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10.

11.

12.

13.

14.

15.

Let p be a prime and let ¢ > 5 be a prime factor of 2P + 3P. Prove that
q>p.

Laurentiu Panaitopol, Romanian TST

. Prove that 3 is a primitive root mod p for any prime p of the form 2™ +1.

Let p be a prime number and let d be a positive divisor of p — 1. Prove
that there is a positive integer n such that op(n) = d.

Prove that for any prime number p > 3 we have (2;’) =2 (mod p?).

Let m > 1 be an odd number. Find the least n such that 2!198%|m™ — 1.
IMO 1989 Shortlist

Let m,n be two positive integers. Prove that the remainders of the
numbers 17,2", ..., m™ modulo m are pairwise distinct if and only if m
is square-free and 7 is relatively prime to ¢(m).

Find all positive integers n with the property that for any positive inte-
gers a, b such that nja?b + 1 we also have n|a? + b.

Bulgaria

Let a be an integer greater than 1. Prove that the function

p—1
op(a)

f:{2,3,5,7,11,...} = N, f(p) =
is unbounded.

Jon Froemke, Jerrold W Grossman, AMM E 3216
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16.

17.

18.

19.

20.

21.

22.

Let f(n) be the greatest common divisor of the numbers 2" — 2, 3" —
3,4™ — 4, .... Determine f(n) and prove that f(2n) = 2.

AMM

Let f be a polynomial with integer coefficients such that for some prime
number p we have f(i) =0 (mod p) or f(i) =1 (mod p) for any integer
i. If f(0) =0 and f(1) = 1, prove that deg(f) > p— 1.

IMO 1997 Shortlist

Let f be a polynomial with integer coefficients, having degree p — 1,
where p > 2 is a prime number. Suppose that for all integers a,b, if a—b
is not a multiple of p, then f(a) — f(b) has the same property. Prove
that p divides the leading coefficient of f.

A Carmichael number n satisfies n|a™ — a for all integers a. Find all
Carmichael numbers of the form 3pg with p, ¢ prime numbers.

Romanian TST 1996

Using the existence of Carmichael composite numbers, prove that there
are infinitely many pseudo-primes, that is composite numbers n such
that n|2™ — 2.

Find all prime numbers p, ¢ such that pq|2P + 29.

Find the sum of the m-th powers of the primitive roots mod p for a given
prime p and a positive integer m.
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23.

24.

25.

26.

27.

Let N > 2 be an integer and suppose that N — 1 = RF, where F =

71,72

91" ¢5*...q;* (g being distinct primes). Suppose that (R,F) = 1 and
R < F. If there exists a positive integer a such that a1 =1 (mod N)

and a % — 1 is relatively prime to N for all 4, then N is prime.
Proth, Pocklington, Lehmer Test

Let p be a prime number and m,n be integers greater than 1 such that
p|mP™~1 — 1. Prove that ged(m™ ! —1,n) > 1.

MOSP 2001

Let n be a positive integer, and let A, be the the set of all a such that
n|(a"+1),1<a<nandac€Z.

a) Find all n such that A, # 0.
b) Find all n such that |A,| is even and non-zero.

¢) Is there n such that |A4,| = 1307
Italian TST 2006

Let n be an odd integer and let C(n) be the number of cycles of the
permutation f of {0,1,...,n—1} sending 7 to 2¢ (mod n) for all . Prove
that C(3(2" — 1)) = C(5(2"™ — 1)) for all odd positive integers n.

James Propp, Mathematics Magazine

Let A be a finite set of prime numbers and let a be an integer greater
than 1. Prove that there are only finitely many positive integers n such
that all prime factors of a™ — 1 are in A.

Iran Olympiad
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28.

29.

30.

31.

Prove that for any prime p there is a prime ¢ that does not divide any
of the numbers n? — p, with n > 1.

IMO 2003

Let @ be an integer greater than 1. Prove that for infinitely many n the
greatest prime factor of a™ — 1 is greater than nlog, n.

Gabriel Dospinescu

Let p be an odd prime. Prove the existence of a positive integer £ < p—1
which is a primitive root mod p and which is also relatively prime to p—1.

Richard Stanley, AMM E 2488

Let € > 0. Prove the existence of a constant ¢ such that ﬁor all odd
primes p there exists a primitive root mod p smaller than cp2 .

Vinogradov
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Solution. For integers the solution is well-known and not difficult: it suffices
to note that in this case all numbers z; have the same parity, and the use of
infinite descent solves the problem (either they are all even and in this case we
divide each number by 2 and obtain a new set with smaller sum of magnitudes
and the same properties; otherwise, we subtract 1 from each number and then
divide by 2). Now, assume that they are real numbers, which is definitely a
more subtle case. First of all, if they are all rational, it suffices to multiply
by their common denominator and apply the first case. Suppose at least one
of the numbers is irrational. Consider € > 0, a positive integer m, and some
integers p1,p2,..-,Den+1 such that |mz; — p| < € for all i. We claim that
if € > 0 is small enough, then p1,ps,...,pont1 have the same property as
T1,%2,...,Ton+1. Indeed, take some 7 and write the given condition as

Zaijmxj =0or Zaij(ml‘j —-pj) =— Zaijpj
i i "

(where a;; € {—1,1}). Then

Zaijpj = Zaij(ml”j —pj)| < 2ne.
JFi G

1
Thus if we choose ¢ < o’ then Zaijpj = 0 and so p1,p2,...,P2n+1 have
i
the same property. Because they are all integers, p1, D2, ..., Dan+1 must be all

equal (again, because of the first case). Hence we have proved that for any

1
N > 2m there are integers ny, py such that |nyz; — py| < N
Because at least one of the numbers z1,z9,...,Zo,+1 18 irrational, it is not

2
difficult to prove that the sequence (ny)ny>2m is unbounded. But N

|nn| max |z; — 25|, hence max; j |z; — z;| = 0 and the problem is solved.
z)J

If you thought the last problem was too classical, here is another one, a little
bit less known, but with the same flavor:
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therefore have p; = py = - -+ = pago7. Thus 2¢ > nla; — a;| for all ¢, 5 and all
€ < j513- Clearly, this implies a1 = ap = - = agqo7 and finishes the proof.

Now, let us turn to more quantitative results about the set of fractional parts
of natural multiples of different real numbers. The following criterion, due to
Weyl, deserves to be discussed because of its beauty and apparent simplicity.

Theorem 15.1 (Weyl’s theorem). Let (an)n>1 be a sequence of real numbers
from the interval [0,1]. Then the following statements are equivalent:
a) For any real numbers 0 <a <b<1,

fo Wil 1< i< m, 0 € fo, 8]}

n—00 n

=b—aq;

b) For any continuous function f:[0,1] — R,

Jli%oﬁzf“k - || s

¢) For any positive integer r > 1,

lim = § :e2z7rrak —
n—oo N

In this case we will say that the sequence is equidistributed.

Proof. We will present just a sketch of the solution, but containing all the
necessary ingredients. First, we observe that a) says precisely that b) is true
for the characteristic function of any subinterval of [0,1]. By linearity, this
remains true for any piecewise constant function. Now, there is a well-known
and easy to verify property of continuous functions: they can be uniformly
approximated with piecewise constant functions. That is, given £ > 0, we
can find a piecewise constant function g such that |g(z) — f(z)| < € for all
z € [0,1]. But then if we write

1 — 1
22 Sl [ o

<231 - sl + [ 150 - o(@lia
k=1
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_+_

1 !
= 9(a) = | g(z)dx
n;g K /Og

and apply the result in b) for the function g, we easily deduce that b) is
true for any continuous function. The fact that b) implies c¢) is immediate.
More subtle is that b) implies a). Let us consider the subinterval I = [a,b]
with 0 < a < b < 1. Next, consider two sequences of continuous functions

1 1
fx, gk such that fx is zero on [0, a], [b,1] and 1 on [a + 7 b— E] (being affine

otherwise), while g has “the same” properties but is greater than or equal to
Ar (the characteristic function of I = [a, b]). Therefore

n n

1 & i|1<i<n, a; €la,b 1
J=1 J

n
<= grlaj).
=1

But from the hypothesis,

1 < 1 1
;;fk(aj)—’/o fk(x)dfC:b—a—E

and
1< 1 1
—ng(aj) — | gu(z)dr=b—a+ —.
n j=1 0 k

Now, let us take £ > 0 and k sufficiently large. The above inequalities show

that actually for all sufficiently large positive integers n

il 1<i<n, a;€[a,b]}]
n

b+al <2

and the conclusion follows. You have already seen how to adapt this proof for
the case a = 0 or b = 1. Finally, let us prove that c) implies b). Of course, a
linearity argument allows us to assume that b) is true for any trigonometric
polynomial. Because any continuous function f : [0,1] — R satisfying f(0) =
f(1) can be uniformly approximated by trigonometric polynomials (this is
a really nontrivial result due to Weierstrass), we deduce that b) is true for
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Solution. This is not an Olympiad problem!!! But mathematics is not just
about Olympiads and from time to time (in fact, from a certain time on) one
should try to discover what is behind such great results. This is the reason we
present a proof of this theorem based on a technical lemma of Van der Corput,
which turned out to be fundamental in studying exponential sums.

Lemma 15.2 (Van der Corput). For any complez numbers 21, zo, ..., 2z, and
any h € {1,2,...,n}, the following inequality is true (with the convention that
z; = 0 for any integer i not in {1,2,...,n}):

h—1 n—r n
<(n+h-1) [2 (h—7)Re (Z%T—H) +h2|2i|2} :
1

r= =1 i=1

n 2

S

i=1

h2

Proof. The simple observation that

n n+h—1h-—1

Y zi= D D %
i=1 i=1 j=0

allows us to write (via Cauchy Schwarz’s inequality):

2 n+h—1|h—1

§(n+h—1) Z Zzi_j

i=1 |[j=0

h2

n
P
=1

n+h—1|h—1
And next? Well, we expand Z Zzi—j and see that it is nothing other
i=1 |[j=0

h—1 n—r n
2 Z(h —7)Re (Z zizi+r> +h Z |2
r=1

i=1 =1

than

‘We will now prove Van der Corput’s theorem, by using this lemma and Weyl’s
criterion.
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Of course, the idea is to show that

lim — E e2imPTE —
n—oo N

for all p > 1. Fix such a p and take for the moment a positive real number h
and € € (0, 1) (h may depend on ¢). Setting z; = e*™% we have

1 nt+h-1 = =
—Zz] < g |kt 2) (k= 9Re | Yoz F
=1 =1

Now, observe that

n—it n—i n—i
§ :Zj %77 | =Re § :e2z7rp(xj—xi+J § : 2imp(T—i45)
j=1 j=1 J=1
Using Weyl’s criterion for the sequences (Tnyi — Tn)n>1 fori=1,2,... A1,

we deduce that for all sufficiently large n we have

n—t

E 2imp(z;—Litj) < en.

Therefore

1 h
_Zz] < "_th_

h—1
hn+25n2(h—z}

i=1

- - <
< (1+¢) < . €
. 2(1+¢)
for n large enough. Now, by choosing h > ———=, we deduce that for all

sufficiently large n we have
1 n
E Z Zj S €.
=1

Hence Weyl’s criterion is satisfied and thus (zn)n>1 is equidistributed. O
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(@, @) has length greater than 1, thus it contains an integer n.,.
It is clear that |nm, -« = P(m), so we have infinitely many solutions (at
least one for each m). The difficult part is when @ > 1. Let us consider
B = =27. By a well-known result of Beaty, the sets A = {|na] | n > 1} and
B = {|nB] | n > 1} give a partition of the set of positive integers. A second
of observation shows that it is enough to prove the statement for polynomials
P whose leading coeflicient is positive. Thus starting from a certain point my,
P(m) is a positive integer, thus belonging to A or to B. Suppose that the
equation P(m) = |na] has finitely many solutions, that is for all sufficiently
large m, P(m) € B. Hence for some N we have the existence of a sequence
of positive integers (nm)m>n such that P(m) = [n,B]. This clearly implies

V_D%J = n,, — 1, that is the fractional part of P([;n) is in (1 — %, 1) for all

sufficiently large m. Or, 1 P clearly satisfies the conditions of Weyl’s criterion,

so the sequence of fractional parts of % is dense in [0, 1}, which is impos-
sible, because all but finitely many terms are in (1 - %, 1). This finishes the

proof of the case @ > 1 and ends the solution.
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15.2 Problems for training

1. Evaluate sup [ min [p — ¢v/3]
n>1 \ PgEN
= \ptg=n

Putnam Competition

2. Find all integers a with the property that for infinitely many positive

integers n,
n2

Radu Gologan

3. Prove that by using different terms of the sequence LnZ 2006J one can
construct geometric sequences of any length.

4. Let z be an irrational number and let f(¢) = min({t}, {1—t}). Prove that
given any € > 0 one can find a positive integer n such that f(n%z) <.

Iran 2004

5. Suppose that A = {nq,ng, ...} is a set of positive integers such that the
sequence (cosng)k>1 is convergent. Prove that A has zero density.

Marian Tetiva
6. Prove that for every k one can find distinct positive integers ni, no, ..., ng
such that [n1v2], |n2v2],...,|nkv2] and |n1v/3], [n2V3] ..., [nkV3]

are both geometrical sequences.

After a Romanian TST problem
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10.

11.

12.

Does the sequence sin(n?) + sin(n3) converge?

A flea moves in the positive direction of an axis, starting from the origin.
It can only jump over distances equal to /2 and v/2005. Prove that
there exists an ng such that the flea will be able to arrive in any interval
[n,n + 1] for each n > ny.

Romanian Contest, 2005

Let z1,23,...,2, be arbitrary complex numbers. Prove that for any
g > 0 there are infinitely many positive integers n such that

€+ f/lzf + 28 + -+ 2k| > max{|z1], |22], - - -, |2nl}-

Prove that the sequence consisting of the first digit of 2™ + 3™ is not
periodical.

Tuymaada Olympiad

Suppose that f is a real, continuous, and periodical function such that

the sequence (Z @ is bounded. Prove that f(k) = 0 for all

k=1 n>1
positive integers k. Give a necessary and sufﬁcient condition ensuring

(k)|

the existence of a constant ¢ > 0 such that Z |f > clnn for all n.

k=1

Gabriel Dospinescu

Let f be a polynomial with integral coefficients and let a be an ir-
rational number. Can all numbers f(k), £ = 1,2,... be in the set
A ={|na] | n > 1}7 Is it true that any set of positive integers with
positive density contains an infinite arithmetical sequence?
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13.

14.

15.

16.

17.

Let a,b be positive real numbers such that {na} + {nb} < 1 for all n.
Prove that at least one of them is an integer.

Let a, b, ¢ be positive real numbers. Prove that the sets
A={lna)| n>1}, B={nb|| n>1}, C={lnc| | n>1}

cannot form a partition of the set of positive integers.
Putnam Competition

Let x > 1 be a real number and a, = |z™]. Can the number S =
0.ajagas... be rational? The expansion is formed by writing down the
decimal digits of a;, ag, ... in turn.

Mo Song-Qing, AMM 6540

Let z1,2,... be a sequence of numbers in [0,1) such that at least one
of its sequential limit points is irrational. For 0 < a < b < 1, let
Ny(a,b) be the number of n-tuples (a1, az,...,an) € {£1}" such that

a1z1 + a2 + - - - + @y € [a,b). Prove that % converges to b — a.

Andrew Odlyzko, AMM 6542

Let a be a nonzero rational number and b an irrational number. Prove
that the sequence nb |na| is uniformly distributed mod 1.

L.Kuipers
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Let n be such a number. Suppose there are positive integers a and b such that
n=a+band s(a) = s(b). The main fact is that when we add a +b = n, there
are no carry overs. This is clear enough. It follows that s(n) = s(a) + s(b) =
2s(a), which is impossible since s(n) is odd.

Now we will prove that any number n which is not one of the numbers above,
can be written as the sum of two positive integers with the same sum of digits.
We will start with the following:

Lemma 16.1. There is a < n such that s(a) = s(n —a) (mod 2).

Proof. If s(n) is even, take a = 0. If s(n) is odd, then n must have a digit
which is not the first one and is not equal to 9, otherwise it would have one of
the forbidden forms mentioned in the beginning of the solution. Let ¢ be this
digit and let p be its position (from right to left). Choose a = 10°~!(c 4 1).
In the addition a + (n — a) = n there is exactly one carry over, so

s(a)+ s(n—a) =9+ s(n) =0mod 2 = s(a) = s(n —a) mod 2

which proves our claim. O

Back to the original problem. All we have to do now is take one-by-one a
“unit” from a number and give it to the other until the two numbers have the
same sum of digits. This will happen because they have the same parity. So,
let us do this rigorously. Set

a=1aias...ax, n—a=bby- b

Let I be the set of those 1 < i < k for which a; + b; is odd. The lemma. shows
that the number of elements of I is even, so it can be divided into two sets
with the same number of elements, say I; and Iy. For i = 1,2, ...,k define
Ay =tbeif g ] atbitl ifj e [y or %thizlif € I, and By = a; + b; — A;.
It is clear that the numbers

A=4A,4;. 4, B=DBBy B


















THEORY AND EXAMPLES 363

We continue our investigations of finding suitable techniques for problems in-
volving sum of digits with a very beautiful result, which has several interesting
and difficult consequences.

Lemma 16.3. Any multiple of 99...99 has sum of its digits at least 9k.
k

Proof. We will use the extremal principle. Suppose by way of contradiction
that the statement is false, and take M to be the smallest multiple of a such
that s(M) < 9k, where a = 99...99. Clearly, M > 10*, hence M = @,a,-1.-.a0,

k
with p > k and ap # 0. Take N = M — 10P"%q, which is a multiple less than

M of a. We will prove that s(N) < 9k. Observe that

N = M—10P4+107"F = (ap—1)-10P+a,_110P 14+ - 4 (ap_+1)10PF 4. . aq,

so that we can write
s(N)<ap—1+4apa1+ -+ (0p_+1)+---+ag=s(M) < 9%.

In this way, we contradict the minimality of M and the proof is completed.
]

We will show three applications of this fact, which might seem simple, but
seemingly unsolvable without it. But before that, let us insist a little bit on a
very similar (yet more difficult) problem proposed by Radu Todor for the 1993
IMO: if b > 1 and a is a multiple of ™ — 1, then a has at least n nonzero digits
when expressed in base b. The solution uses the same idea, but the details
are not obvious, so we will present a full solution. Arguing by contradiction,
assume that there exists A, a multiple of ™ — 1 with less than n nonzero digits
in base b, and among all these numbers consider that number A with minimal
number of nonzero digits in base b and with minimal sum of digits in base b.
Suppose that a has exactly s nonzero digits (everything is in base b) and let
A=a1b™ 4+ agb™ +---+adb™ withng > ne > --- > ns;. We claim that s = n.
First of all, we will prove that any two numbers among n1,n2, ...,ns are not
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Solution. We start with an observation. If ged(max{a,b},10) = 1, then the
problem becomes trivial. Indeed, suppose that a = max{a,b}. Then, by
FEuler’s theorem, allO‘P(a) — 1, so there is an n such that an = 10¥(a) — 1, and
since numbers consisting only of 9-s have a digit sum greater than all previous
numbers, it follows that an = bn, so a = b. Let us now solve the harder
problem. For any k > 1 there is an ng such that 10% < ang < 10F +a— 1. It
follows that s(ang) is bounded, so s(bng) is bounded. On the other hand,

b b
1052 < bny, < 10F= + b,
a a

so, for sufficiently large k, the first p nonzero digits of g are exactly the same
as the first p digits of bng. This means that the sum of the first p digits of
C—I: is bounded, which could only happen when this fraction has finitely many
decimals. Analogously, we can prove the same result about §. Let a = 2*5¥m
and b = 2%5'm/, where ged(m,10) = ged(m/,10) = 1. It follows that m|m’
and m/|m, so m = m/. Now, we can write the hypothesis as

5(2%5%mn2°775°7Y) = s(2°5¥Ymn2°7"57Y) = s(mn)

for all ¢ > max{z,y}. Now, if p = maz{z+c—z,u+c—y} —min{z +c—
z,u + ¢ — y}, we find that there is a k € {2,5} such that s(mn) = s(mkPn)
for all positive integer n. It follows that

s(mn) = s(kPmn) = s(k®®mn) = s(k*mn) = - --
Let t = aP, so logt € R — QQ unless p = 0. Now, we will use the following:

Lemma 16.5. Iflogt € R — Q, then for any sequence of digits, there is a
positive integer n such that t™m starts with the selected sequence of digits.

Proof. If we prove that {{logt"m}|n € Z*} is dense in (0, 1), then we are done.
But logt™m = nlogt + m and by Kronecker’s theorem {{nlogt}ln € Z} is
dense in (0,1), so the proof of the lemma is complete. O

The lemma implies the very important result that s(¢"m) is unbounded for
p # 0, which is a contradiction. Hence p=0and z+c—z=u+c—y, so
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a = 10®7%#b. The main proof is complete. This problem can be nicely extended
to any base. The proof of the general case is quite similar, although there are
some very important differences.

The aforementioned methods are just a starting point in solving such problems
since the spectrum of problems involving the sum of the digits is very large.
The techniques are even more useful when they are applied creatively.
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16.2 Problems for training

1.

We start with a perfect number (which is equal to the sum of its divisors,
except itself) different from 6 and calculate its sum of digits. Then, we
calculate the sum of digits of the new number and so on. Prove that we
will eventually get 1.

Prove that for any positive integer n there are infinitely many numbers
m not containing any zero, such that s(n) = s(mn).

Russian Olympiad 1970

Prove that among any 39 consecutive positive integers there is one whose
digit sum is divisible by 11.

Russian Olympiad 1961
Prove that

3y ——8—(21— = %mm.

0. Shallit, AMM
Are there positive integers n such that s(n) = 1000 and s(n?) = 10000007

Russian Olympiad 1985

Prove that there are infinitely many positive integers n such that
s(n) + s(n?) = s(n®).

Gabriel Dospinescu
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10.

11.

12.

13.

If s(n) = 100 and s(44n) = 800, find s(3n).
Russia 1999

Let a and b be positive integers. Prove that the sequence s(|an + b])
contains a constant subsequence.

Laurentiu Panaitopol, Romanian TST 2002

. Find explicitly a Niven number with 100 digits.

St. Petersburg 1990

Are there arbitrarily long arithmetic sequences whose terms have the
same digit sum? What about infinite arithmetic sequences?

Let a be a positive integer such that s(a” +n) = 1 + s(n) for any
sufficiently large n. Prove that a is a power of 10.

Gabriel Dospinescu

Are there 19 positive integers with the same digit sum, which add up to
19997

Rusia 1999

Call a positive integer m special if it can be written in the form n + s(n)
for a certain positive integer n. Prove that there are infinitely many
positive integers that are not special, but among any two consecutive
numbers, at least one is special.

Kvant
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14.

15.

16.

17.

18.

19.

Find all z such that s(z) = s(2z) = s(3z) = --- = s(2?).
Kurschak Competition 1989
Let a, b, ¢, d be prime numbers such that 2 < a < ¢ and a # b. Suppose

that for sufficiently large n, the numbers an+b and cn+ d have the same
digit sum in any base between 2 and a — 1. Prove that a = c and b = 4.

Gabriel Dospinescu

Let (an)n>1 be a sequence such that s(a,) > n. Prove that for any n
the following inequality holds

Can we replace 3.2 by 37
Laurentiu Panaitopol

Prove that one can find n; < ne < -+ - < nsg such that

ny + s(n1) = ng + s(ng) = -+ = ns. + $(Nsp)-
Poland 1999

Let S be a set of positive integers such that for any a € R — Q, there is
a positive integer n such that |a™| € S. Prove that S contains numbers
with arbitrarily large digit sum.

Gabriel Dospinescu
Find the smallest positive integer which can be expressed at the same

time as the sum of 2002 numbers with the same digit sum and as the
sum of 2003 numbers with the same digit sum.
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20.

21.

22.

23.

24.

25.

26.

Are there polynomials p € Z[X] such that
. 9
Jim_s(p(n)) = oo

Prove that there exists a constant ¢ > 0 such that for all n we have
s(2™) > clnn.

Prove that there are arbitrarily long sequences of consecutive numbers
which do not contain any Niven numbers.

Mathlinks Contest

Define f(n) = n+ s(n). A number m is called special if there is a k such
that f(k) = m. Prove that there are infinitely many special numbers of
the form 10™ + b if and only if b — 1 is special.

Christopher D. Long

Let k be a positive integer. Prove that there is a positive integer m such
that the equation n + s(n) = m has exactly k solutions.

Mihai Manea, Romanian TST 2003

Let z, be a strictly increasing sequence of positive integers such that
v2(zn) — vs(zy,) has the limit oo or —oco. Prove that s(z,) tends to oco.

Bruno Langlois

Is there an increasing arithmetic sequence with 10000 terms such that
the digit sum of its terms forms again an increasing arithmetic sequence?

Tournament of the Towns
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27. Prove that the sum of digits of 9™ is at least 18 for n > 1.
AMM

28. Prove that there exists a constant C such that for all N, the number of

Niven numbers smaller than N is at most C (l_nf)i’ﬁ

29. Is there an infinite arithmetic progression containing no Niven numbers?

Gabriel Dospinescu
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we can choose A such that the polynomial g(X) = f(z + A) has no term of
degree d — 1. Define y, = z, — A and observe that g(y,) = a™. Now, what
really interests us is the asymptotic behavior of the sequence y,. This boils
down to finding the behavior of the solution of the equation g(y) = z when
z is very large. In order to do this, put g(y) = By? + Cy® +--- with B > 0
(the fact that B > 0 is obvious because g(z) remains positive for arbitrarily
large values of z). Now, suppose that C # 0. The choice of A ensures that
e < d — 2. Therefore, if we define z = u® and By® =%, E = B% and finally

m = d — e, then we have u¢ = v%(1 + Ev™™ + o(v™™)). Thus

=

u=v(l+Ev " +o(v™™)d =0 (1 + gv‘m + o(v‘m))

=v+ %vl_m + o(v1™™).
This shows that u =~ v, and combining this observation with the previous
result gives v = u — %ul_m + o(u!~™). Coming back to our notations, we
infer that Biy =i %z_g + o(z_g) where p = m — 1. Finally, this can be
written in the form y = Fzi+ Gz~ + o(2~%) (the definitions of F,G and «
are obvious from the last formula). Coming back to the relation g(y,) = a™

n2
we deduce that y, = Fa't + Ga~*"" 4 o(a=*""). Therefore

n2 2
Ydgn = Fa'a a2n+d +0(a2n+d an )

This shows that if we define z, = yp1q — a>*" %y, then z, = o(1). On the
other hand, by definition of ¥, we obtain that a1 = 2, + A(l — a?"+2+4) ig
an integer. Therefore, the relation

Zngl — G22n = Qpy1 — 620y, + A(a2 -1)

and the fact that z, = o(1) shows that a,41 — a0, is eventually constant,
equal to A(1 — a?). Thus for sufficiently large n we have 2,11 = a%zy,, so we
have proved the existence of a constant K such that z, = Ka?" for sufficiently
large n. Because a > 1 and Z, = o(1), it follows that K = 0 and thus 2, =0
for sufficiently large n. But the assumption C s 0 implies that G # 0 and
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by one of the previous relations we also have z, ~ —Ga2”+d_‘m2, which is
not true if z, = 0 from a certain point on. This contradiction shows that
f(X) = B(X — A)? for some rational numbers A, B (because f takes rational
values for infinitely many rational values of the variable, it is equal to its
Lagrange interpolation polynomial, thus it has integer coefficients). Let B = §

and A = 7. Then p(sz, — r)d = gs¥a™’. By taking n a multiple of d greater
than ng we obtain the existence of integers py, ¢ such that p = p$, ¢ = qf. Thus

p1(8Tn—1) = £q1 sa%, which shows that a™ is a d-th power for all sufficiently
large n. This implies the existence of an integer b such that a = b%. Now,
by taking p1,q1,$ > 0 (we can do that, without loss of generality), we deduce
that for some n; (which we will identify with ng from now on, by eventually

’n2
enlarging ng) we have sz, = r + %. Let a = ged(s,p1) and write s =
71,2
au,p; = av with ged(u,v) = 1. Then auzr, =1 + % thus v|q1b”2 and so
’n2
for alln > ng, cuzy, =r+ qleouan_ng. By taking n = ng we deduce that u|r.

Because uls, it follows that u = 1 and so sz,, = r+#. Note that ged (v, q1) =
1 because v|p1, so v|b”<2). Let b = myv. Thus szn = r +mqi1b™ ~"0. By taking
again n = ng, we obtain that mq, = —r (mod s), so 7(1—b"~"%) = 0 (mod s)
and so " % =1 (mod s) for all n > ny. Applying this relation to n + 1 and
making the division in the group of invertible residues mod s, we infer that
pntl = 1 (mod s) for all sufficiently large n. Repeating this procedure, we
deduce that b2 =1 (mod s) and s0 b =1 (mod s). This implies mv = b =1
(mod s) and since r = —mgq; (mod s) and ged(s,v) = 1, we finally obtain the
necessary condition rv = —¢; (mod s). Now, let us show that the conditions
ged(p1,q1) = ged(r,s) = 1 and p; = sv,ged(s,v) = 1,7v = —¢1 (mod s) are

d
sufficient for the polynomial f(X) = (p—l(X - f)) to be a solution of the

a s
problem. Indeed, using the Chinese Remainder Theorem, we can choose b

such that b = 0 (mod v) and b = 1 (mod s). Thus v|rv + @b and also
slrv + qlbnz. Because ged(s,v) = 1 it follows that there exists a sequence zp,
of positive integers such that rv + qlb’"“2 = svz,. Thus f(z,) = b¥* and the
problem is finally solved.

The idea behind the following problem is so beautiful that any reader who
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. 2z
— Z-%n
clearly converges to a nonzero limit, so does the sequence (T va)hEnD and

therefore the sequence (1 + /2)26n=1=%(2n—1) converges to a nonzero limit.
This sequence having integer terms, it becomes constant from a certain point.
Hence there exists ng > M and an integer v such that 2a, —1-k(2n—1) =u

_1 k N _ ANk u
for all n > ng. Thus g (?f-) =2 (1+v2) +(2 ) \/5) holds for all z of the

form (1++/2)2"~1. Because this equality between two rational functions holds
for infinitely many values of the argument, it follows that it is actually true for
all z. By looking at the leading coefficient in both sides of the equality (after
multiplication by X*) we deduce that (1++/2)* is rational, which cannot hold
unless u = 0. Thus

_ X VXD (X - VXE DR

g(X) 5

The expression in the right-hand side of the last equality is a polynomial with
integer coefficients only for odd values of k. This also gives the expression of

f:
(X +VX2+ 1D+ (X + VX2 +1)*
2VX2 11 '

The solutions of the original problem are easily deduced from f and g by a
translation.

f(X)=

The previous example deserves a little digression. Actually, one can find all
polynomials with real coefficients that satisfy (X2 + 1)f(X)? = g(X)? + 1.
Indeed, it is clear that f and g are relatively prime. By differentiation, the
last relation can be written as (X2 + 1) f(X)f'(X) + X f2(X) = g(X)g'(X).
Thus f divides gg’, and by Gauss’s lemma we deduce that f|g’. The relation
(X2 + 1)f3(X) = g(X)? + 1 also shows that deg(f) = deg(g’) and so there
exists a constant k such that f(X) = kg’(X). Therefore k%(X2 + 1)g'(X)? =
g(X)? + 1. By identifying the leading coefficient of g in the two sides, we im-

mediately find that k2 = n2. This shows that 1?;2?)2;2 = 1f§(2- By changing
g and —g we may assume that ¢’(X) > 0 for sufficiently large z and thus for

such values of the variable we have \/g(l(’)”zﬂ = —=3—= This shows that the
g9(z
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the following statement: for any 7 > 1 the sequence (xg))nzl has the form

b +ci1atUm o e + oo
(a1 —1)(an+—2 - 1) ... (a" — 1)

for some constants ¢gp,c,...,¢. Proving this is not so hard, the hard part
was to think of it. How can we prove the statement other than by induc-
tion? And induction turns out to be quite easy. Supposing that the state-
ment is true for ¢, then the corresponding statement for ¢ + 1 follows from
o = pz{) — aixsfil directly (note that in order to compute the difference,
we just have to multiply the numerator ¢;b™ + cic1at V" 4 L + ¢ by
b and a™** — 1. Then, we proceed in the same way with the second fraction
and the term b"*1a™* will vanish). So, we have found a formula which shows

that as soon as a* > b we have lim xg) = 0. So, lim x%kﬂ) = (0. Another
n—oo n—o00
step of the solution is to take the minimal index j such that lim ng ) = 0.

Tn—00

Clearly, 7 > 1 and the recursive relation xgﬂ) = be) - a"xffll shows that

x%’ ) Y/ f01j all n and 4. Thus, there exis‘qs an M suc;h that whenever n > M
we have x%]) = 0. This is the same as bng_l) = ajxsfjfll) for all n > M, which
b

. n_M .
implies ng_l) = (E) xgl],[_l) for all n > M. Let us suppose that b is not

n—-M
a multiple of a. Because (a—b]) x%’[l) € Z for all n > M, we must have

ng[_l) = 0 and so xslj—l) = 0 for n > M, which means lim x%j_l) = 0. But

n—o00
this contradicts the minimality of j. Thus we must have alb. Let us write

b = ca. Then, the relation a™ — 1|b"™ — 1 implies a™ — 1|c® — 1. And now we are
finally done. Why? We have just seen that a™ — 1|¢" — 1 for all n > 1. But
our previous argument applied to ¢ instead of b shows that a|c. Thus, ¢ = ad
and we deduce again that a|d. Since this process cannot be infinite, b must be
a power of a.

It is worth saying that an even stronger result holds: it is enough to suppose
that a™ — 1™ — 1 for infinitely many n. But this is a much more difficult
problem and it follows from a 2003 result of Bugeaud, Corvaja and Zannier:
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If integers a,b > 1 are multiplicatively independent in Q* (that is log, b & Q
or a™ # b™ for n,m # 0), then for any € > 0 there exists ng = ng(a, b, £) such
that ged(a™ — 1,b™ — 1) < 2°™ for all n > ng. Unfortunately, the proof is too
advanced to be presented here.
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17.2 Problems for training

1.

Let (an)n>1 be an increasing sequence of positive integers such that
aplal +az+ -+ ap—1 for all n > 2002. Prove that there exists ng such
that a, = a1 + a2+ -+ - + an—1 for all n > nyp.

Tournament of the Towns 2002

Let f € Z[X] be a polynomial of degree k such that ¥/f(n) € Z for all
n. Prove that there exist integers a and b such that f(z) = (az + b).

Find all arithmetical sequences (a,)n>1 of positive integers (a,)n>1 such
that a1 + a2 + - - - + a, is a perfect square for all n > 1.

Laurentiu Panaitopol, Romanian Olympiad 1991

. Prove that any infinite arithmetical sequence contains infinitely many

terms that are not perfect powers.

. Let a,b,c > 1 be positive integers such that for any positive integer n

there exists a positive integer k such that a* 4+ b* = 2¢™. Prove that
a=hb.

. Let p be a polynomial with integer coefficients such that there exists a

sequence of pairwise distinct positive integers (an)n>1 such that p(a;) =
0, p(a2) = a1, p(az) = az,. ... Find the degree of this polynomial.

Tournament of the Towns 2003

Find all pairs (a,b) of positive integers such that an + b is triangular if
and only if n is triangular.

After a Putnam Competition problem
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10.

11.

12.

Let a and b be positive integers such that for any n, the decimal repre-
sentation of a 4+ bn contains a sequence of consecutive digits which form
the decimal representation of n (for example, if a = 600, b = 35, n = 16
we have 600 4 16 - 35 = 1160). Prove that b is a power of 10.

Tournament of the Towns 2002

Let a and b be integers greater than 1. Prove that for any given & > 0
there are infinitely many numbers n such that p(an + b) < kn, where ¢
is the Euler totient function.

Gabriel Dospinescu

Let A, B be two finite sets of positive real numbers such that

{Zx”|neN} C {Zx”|neN}.

€A z€B

Prove that there exists a k € R such that A = {z*| = € B}.
Gabriel Dospinescu

Suppose that a is a positive real number such that all numbers 14, 2%,3%, ...
are integers. Prove that a is also integer.

Putnam Competition

Find all a,b,c such that a-4" +b-6™ + ¢- 9" is a perfect square for all
sufficiently large n.

Vesselin Dimitrov


nvthanh1994
Insert Text
422-Putnam and beyond
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13.

14.

15.

16.

17.

Let f and g be two real polynomials of degree 2 such that for any real
number z, if f(x) is integer, then so is g(z). Prove that there are integers
m,n such that g(x) = mf(z) + n for all z.

Bulgarian Olympiad

Let b be an integer greater than 4 and define the number
Tp,=11...122...25
e e —
n—1 n

in base b. Prove that z,, is a perfect square for all sufficiently large n if
and only if b = 10.

Laurentiu Panaitopol, IMO 2004 Shortlist

Let A be a set of positive integers containing at least one number among
any 2006 consecutive positive integers, and let f be a nonconstant poly-
nomial with integer coeflicients. Prove that for sufficiently large n there
are at least vInlnn different primes dividing the number H (k).

1<k<n
keA

Gabriel Dospinescu

Prove that in any increasing sequence (an)n>1 of positive integers satis-
fying a, < 100n for all n, one can find infinitely many terms containing
at least 1986 consecutive 1’s.

Kvant

Find all triplets (a,b,c) of integers such that a - 2™ + b is a divisor of
¢ + 1 for any positive integer n.

Gabriel Dospinescu, Mathematical Reflections
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18.

19.

20.

21.

22.

Let f be a complex polynomial such that for all positive integers n, the
equation f(x) = n has at least one rational solution. Prove that f has
degree at most 1.

Mathlinks Contest

Let f be a polynomial with rational coefficients such that f(2") is a
perfect square for all positive integers n. Prove that there exists a poly-
nomial ¢ with rational coefficients such that f = g2.

Gabriel Dospinescu

Suppose that b1, b, ..., by, are rational numbers and bg,b_1,b_5,... are
real numbers such that the series b,,z2™ + -+ -+ b2+ bg + b‘Tl + bz‘22 +.
converges outside some circle and takes integral values for infinitely many
integers z. Prove that by is rational and b; = 0 for all ¢ < 0.

Skolem

a) Let by,be,...,bm, and by, b_1,b_2,... be real numbers such that the
series f(z) = bypz™ + bp—12™ L 4+ -+ + byz + b + b% + bz;zz 4+ ... is
not everywhere divergent and represents integers for all sufficiently large
integers z. Prove that f(z) is a polynomial.

b) Deduce that a polynomial f with the properties that f(Z) C Z and
f(n) is a k-th power of an integer for all sufficiently large integers n is
the k-th power of a polynomial with rational coefficients.

a) Find all increasing functions defined on the set of positive integers,
with real values and such that f(ab) = f(a)f(b) for all a and &.

b) The same questions if we assume only that f(ab) = f(a)f(b) for all
relatively prime positive integers a and b.

Paul Erdés
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23.

24.

25.

Let f, g be two polynomials with real coefficients such that f(Q) = ¢(Q).
Prove that there exist rational numbers a, b such that f(X) = g(aX +0).

Miklos Schweitzer Competition

Let a1, aq, ..., an and by, bo, ..., by, be positive integers such that any inte-
ger T satisfies at least one congruence z = a; (mod b;) for some 3. Prove
that there exists a nonempty subset I of {1,2,...,n} such that ), ; %
is an integer.

M. Zhang

Suppose that f,g are two nonconstant rational functions such that if
f(20) is integer for some complex number zy then so is g(zp). Show
that there exists a polynomial with rational coefficients P such that
g(z) = P(f(z)). (This is for the die-hards!)

Gary Gundersen, Steve Osborn, AMM 6410
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18.1 Theory and examples

For a prime p, define the function (;%) :Z — {-1,1} by (%) = 1 if the

2

a
equation z* = g has at least one solution in Z/pZ and s = —1 otherwise.

In the first case, we say that a is a quadratic residue modulo p; otherwise we
say that it is a quadratic non-residue modulo p. This function is called Legen-
dre’s symbol and plays a fundamental role in number theory. We will unfold
some easy properties of Legendre’s symbol first, in order to prove a highly non-
trivial result, Gauss’s famous quadratic reciprocity law. First, let us present a

a
useful theoretical (but not very practical) way of computing » due to Euler.

Theorem 18.1. The following identity is true provided pt a:

In particular, we have (%) = (—1)&;_1-

Proof. We will prove this result and many other simple facts concerning quadratic

a
residues in what follows. First, let us assume that (;) =1, and let = be a

2

solution to the equation z* = a in Z/pZ. Using Fermat’s little theorem, we

—_ a —

find that ¢z =2P"1 =1 (mod p). Thus the equality (; =a"T (mod p)

holds for all quadratic residues a modulo p. In addition, for any quadratic
—1

residue we have a*z =1 (mod p). Now, we will prove that there are exactly

-1
— quadratic residues in Z/pZ \ {0}. This will enable us to conclude that

quadratic residues are precisely the zeros of the polynomial X 27 —1 and also

-1
that non quadratic residues are exactly the zeros of the polynomial X 41
(from Fermat’s little theorem). Note that Fermat’s little theorem implies that
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the polynomial XP~! —1 = (X'DE_1 - 1)(X%1 + 1) has exactly p — 1 zeros in
the field Z/pZ. But in a field, the number of different zeros of a polynomial
—1 —
cannot exceed its degree. Thus each of the polynomials X 27 1land X% +1
1
zeros in Z/pZ. These two observations show that in fact

p—1

has at most P—

each of these polynomials has exactly zeros in Z/pZ. Let us observe

-1
next that there are at least ;DT quadratic residues modulo p. Indeed, all

numbers 32 (mod p) with 1 <4 < P are quadratic residues and they are

-1
all different (modulo p). This shows that there are exactly ;DT quadratic
residues in Z/pZ\{0} and also proves Euler’s criterion. O

Euler’s criterion is a very useful result. Indeed, it allows a very quick proof of

the fact that <E) :Z — {-1,1} is a group morphism. Indeed,
p

<%b) = (ab)5 = a5 = <%) <£) (mod p).

b b
The relation <%) = <%) <5) shows that while studying Legendre’s sym-
bol, it suffices to focus on the prime numbers only. Also, the same Euler’s

criterion implies that <%) = <£) whenever a = b (mod p).

It is now time to discuss Gauss’s celebrated quadratic reciprocity law. First
of all, we will prove a lemma (also due to Gauss).

Lemma 18.2. Letp be an odd prime and let a € Z such that gcd(a,p) = 1. De-

fine the least residue of a (mod n) as the integer @’ such that a = a’ (mod n)
n

and =% < o/ < §. Let a; be the least residue of aj (mod p) and | be the

number of integers 1 < j < pT_l for which a; < 0. Then (%) = (—1).
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Proof. The proof is not difficult at all. Observe that the numbers |a;| for
1<j<r= ’%1 are a permutation of the numbers 1,2, ..., . Indeed, we have
1 < |a;| < r and |a;| # |ax| (otherwise, we have either pla(j + k) or pla(j — k)
which is impossible because gcd(a,p) = 1 and 0 < j + k < p). Therefore

a1az- - ar = (=1)%a1|laz| - |a,| = (=1)'r!. By the definition of a; we also
have ajas---a, = a"r! (mod p) and so a” = (—1)! (mod p). Using Euler’s
criterion, we deduce that (%) = (-1 O

Using Gauss’s lemma, the reader will enjoy the proof of the following classical
results.

p2

2 _
Theorem 18.3. The identity (—) =(-1)"s * holds for any odd prime p.
p

Proof. Let us take a = 2 in Gauss’s lemma and observe that [ = 251 — |2]
Indeed, we have a; = 2j if 1 < j < |B| and a; =25 —pif |§] <j < %
Now, the conclusion follows, because [ = p—;—l — L%J and % have the same
parity, as you can easily check.

O

But perhaps the most striking consequence of Gauss’s lemma is the famous:

Theorem 18.4 (Quadratic reciprocity law). For all distinct odd primes p and
q, the following identity holds:

(2) ()=

Proof. The proof is a little bit more involved than that of the previous result.
Consider R the rectangle defined by 0 < = < £ and 0 < y < &, and let
(g) = (=1)! and (%) = (—1)™, where |, m are defined as in Gauss’s lemma.
Observe that | is the number of lattice points (x,y) such that 0 < z < Z and

—2 < pr — qy < 0. These inequalities force y < p—;rl and because y is an
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Using the Chinese remainder theorem, we can find a positive integer b such
that

b=1 (modm), 1<i<k

b=1 (mod 8),

b=1 (modg), 1<i<n

b=s (mod ¢,).

Now, write b = p1 - p2 - pm, with p; odd primes, not necessarily distinct.
Using the quadratic reciprocity law, it follows that

i=1 \Pi i=1
and
m ) i s—1 g._ . L _ b
11 (q_) N (P_)  (c)t (_) - (2)
=1 Dy =1 q: q; q:

for alli € {1,2,...,n}. Hence

n
b
1)~ (2)- @)
el qi dn qn
(We used the following observations in the above equalities: for any odd num-

bers b1,bs,...,bm, if b= b1by- - - b,, then the numbers

m

Z1)3—1_1)2-—1
8 8

i=1

and
m

bi—1 b-1
Z12 2

i=1
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a) Prove that f is divisible by X — 1 but not by (X — 1)? if
and only if p =3 (mod 4);

b) Prove that if p =5 (mod 8) then f is divisible by (X — 1)2
and not by (X — 1)3.

[Calin Popescu} Romanian TST 2004

Solution. The first question is not difficult at all. Observe that
p—1 i
=% (3)=o0
i1 \P
-1
by the simple fact that there are exactly pT quadratic residues modulo p
-1
and pT quadratic non-residues in {1,2,...p — 1}. Also,
p—1 i p—1 i
rw-xa-0(1)=%i(2),
i=1 p i-1 \P

because f(1) = 0. The same idea of summing up in reversed order allows us

to write:
Si(2)-So-0 (=)

(we used again the fact that f(1) =0).
Hence for p = 1 (mod 4) we must also have f'(1) = 0. In this case f is
divisible by (X — 1)2. On the other hand, if p = 3 (mod 4), then

0=55() 2= 02 faay
iz i=1
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and so f is divisible by X — 1 but not by (X — 1)2.
The second question is much more technical, even though it uses the same
main idea. Observe that

ro-Gie-nen()- 50 G) 50

(once again we used the fact that f(1) = 0). Observe that the condition p = 5
(mod 8) implies, by a), that f is divisible by (X — 1), so actually

Let us break this sum into two pieces and treat each of them independently.
We have

p=1 -1
2 . 2 .
2 2
> () -1(2) 2 ().
i=1 p P/ 3 p
Note that
p=1 p—1 p=1
2 e 2 ) 2 pz—l
-] = ¢ = = =1 d?2
' 1 <p) Zz Zz 5 (mod 2)
i=1 i=1 i=1
o)

%;_5(21')2 <%) =44 (mod 8)

2

2

(actually, using the fact that —) = (-=1)"%, we obtain that its value is
b

—4). On the other hand,

p—1 p—1

e (2 =30 (21) moas)

i=1
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Solution. For an odd number n let us define N,;, the number of solutions of
the equation 22 — 23+ 3 — 22 +... + 22 = 1 in (Z/qZ)". By replacing 1 with
21 + 22 we obtain an equation with the same number of solutions:

x%+x§—---+xi—1:—2x1x2.

There exist two kinds of solutions of this last equation: those in which z1 # 0
and those in which x; = 0. The first case is very easy, because for any choice
of x; # 0 and any choice of z3,...,z, there is precisely one x5 such that
(x1,2,...,T,) is a solution. Thus the first case gives ¢"~2(¢q — 1) solutions of
the equation. The second case is even easier, because the equation reduces to
the corresponding one for n — 2, so this second case gives ¢/V,,_» new solutions
(the factor g comes from the fact that any solution of

a:%—a:i+---+a:i=1
gives q solutions of
T3+ i — 42l - 1= 22170,
x2 being arbitrary). Therefore

N, = qn—2(q — 1)+ qNp—2

and an immediate induction shows that N, = ¢! + an_l. The first part of
the problem is now clear.

It is pretty clear that N, can be written as

5 B () (o G ()

because the equation z2 = g has 1+ (%) solutions in Z/pZ by definition of

Legendre’s symbol. On the other hand, imagine that we develop each product
in the previous sum and collect terms. There will be a contribution of ¢P~!
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hand, (g) = :%2) = —(=£1). Consequently, —(+1) = (—I)PE_1 = =£1, which

is the desired contradiction. Therefore the only solution is n = 1.
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18.2 Problems for training

1.

Let p = 2 (mod 3) be a prime number. Prove that the equation 2% +
x’2’ +-+zh+1=(z1+z2+ -+ xn)2 has no integer solutions.

Laurentiu Panaitopol, Gazeta Matematica

. Let z1 = 7 and x4y = 2:10% — 1, for n > 1. Prove that 2003 does not

divide any term of the sequence.
Valentin Vornicu, Mathlinks Contest

Prove that for any odd prime p, the least positive quadratic non-residue
modulo p is smaller than 1+ ,/p.

Prove that the number 3" 4 2 does not have prime divisors of the form
24k + 13.

Laurentiu Panaitopol, Gazeta Matematica

. Let k = 22" +1 for some positive integer n. Prove that k is a prime if

and only if k is a factor of 3% 4+ 1.

Taiwanese Olympiad 1997

. What is the number of solutions to the equation a? + % = 1 in Z/pZ x

Z/pZ? What about the equation a? — b2 = 17

Find all prime numbers ¢ such that 1993|(¢ — 1)9 + 1.

Serban Nacu, Gazeta Matematics
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10.

11.

12.

13.

. Let p = —1 (mod 8) be a prime number and let m, n be positive integers

such that ,/p > 7. Prove that \/p > 7 + %

Radu Gologan

Let a and b be integers relatively prime to an odd prime p. Prove that

S () - (2)

Let p be a prime of the form 8k + 7. Evaluate the following sum

bl
i [kQ 1J
- 4+ .
k=1 p 2
Calin Popescu, AMM

Let A be the set of prime numbers dividing at least one of the numbers
2n’+1 _ 3" Prove that both A and N\ A are infinite.

Gabriel Dospinescu

Let p be a prime number. Prove that the following statements are equiv-
alent:

i) there is a positive integer n such that p|n? — n + 3;

ii) there is a positive integer m such that ;o|m2 —m + 25.
Polish Olympiad

Let p be a prime of the form 4k + 1. Evaluate

(=R
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14.

15.

16.

17.

18.

Suppose that p is an odd prime and that A and B are two different
non-empty subsets of {1,2,...,p — 1} for which

)AUB={1,2,...,p -1}

ii) If a, b are both in A or both in B, then ab (mod p) € 4,
iii) Ifa € A, b € B, then ab € B.

Find all such subsets A and B.

Indian Olympiad
Let m,n be integers greater than 1 with n odd. Suppose that n is a

quadratic residue mod p for any sufficiently large prime number p = —1
(mod 2™). Prove that n is a perfect square.

Ron Evans, AMM E 2627

Let a, b, ¢ be positive integers such that ¥ — 4ac is not a perfect square.
Prove that for any n > 1 there are n consecutive positive integers, none
of which can be written in the form (az? + bzy + cy?)? for some integers
z,y, 2 with z > 0.

Gabriel Dospinescu

Prove that if n is a positive integer such that the equation z3—3zy?+y% =
n has an integer solution (z,y), then it has at least three such solutions.

IMO 1982

Suppose that for a certain prime p a polynomial with integral coefficients
f(z) = az?®+ bz + c takes values at 2p — 1 consecutive integers which are
all perfect squares. Prove that p|b? — 4ac.

IMO Shortlist
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19.

20.

21.

22.

23.

24.

25.

Suppose that ¢(5™ — 1) = 5" — 1 for a pair (m,n) of positive integers.
Here ¢ is Euler’s totient function. Prove that ged(m,n) > 1.

Taiwanese TST

Let a and b be positive integers such that a > 1 and a = b (mod 2).
Prove that 2% — 1 is not a divisor of 3° — 1.

J.L.Selfridge, AMM E 3012

(m+3)"+1 .

Let m, n be positive integers such that A = *—5-—— is an integer. Prove

that A is odd.
Bulgaria 1998
Prove that the numbers 3™ + 1 have no divisor of the form 12k + 11.
Fermat

Let p = —1 (mod 8) be a prime number. Prove that there exists an
integer z such that % is the square of an integer.

Let p = 4k + 3 be a prime number. Find the number of different residues
mod p of (2% + 3?)? where ged(z, p) = ged(y, p) = 1.

Bulgarian TST 2007

Let p be a prime of the form 4k + 1 such that p?|2P — 2. Prove that the
greatest prime divisor ¢ of 2P — 1 satisfies the inequality 29 > (6p)P.

Gabriel Dospinescu
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26. Find all positive integers a, b, ¢, d such that a + b+ d? = 4abc.
Vietnamese TST

27. Let p be a prime number of the form 4k + 1. Prove that
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19.1 Theory and examples

Why are integrals pertinent for solving inequalities? When we say integral,
we say in fact area which is a measurable concept, a comparable one. That is
why there are plenty of inequalities which can be solved with integrals, some
of them with a completely elementary statement. They seem elementary, but
sometimes finding elementary solutions for them is a real challenge. Instead,
there are beautiful and short solutions using integrals. The hard part is to
find the integral that hides behind the elementary form of the inequality (and
to be honest, the idea of using integrals to solve elementary inequalities is
practically nonexistent in Olympiad books). Recall some basic properties.

e For all integrable functions f,g: [a,b] — R and all real numbers a, 3,

/ (af(z)+Bg(x))dz = a/ f(z dx—i—ﬂ/ ) (linearity of integrals).

e For all integrable functions f,g : [a,b] — R such that f < g we have
b b
/ f(z)dz < / g(z)dz (monotonicity for integrals).
a a

e For all integrable function f : [a,b] — R we have

/ab f(z)dz > 0.

Also, the well-known elementary inequalities of Cauchy-Schwarz, Chebyshev,
Minkowski, Holder, Jensen, and Young have corresponding integral inequal-
ities, which are derived immediately from the algebraic inequalities (indeed,
one just has to apply the corresponding inequalities for the numbers

f(w%(b—a)),g<a+§(b—a)),”. where ke {1,2....n}

and to use the fact that

/f x_n1ggo—2f< b—a))
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Solution. Now we will see how easy this problem is if we manage to handle
integrals. Note that

a; a4 1 ii—1

— J. = / aiajt“”_ dt.

1+ 7 0
We have translated the inequality into the language of integrals. The inequal-
ity

is equivalent to
n

1
Z/ a,-ajt’ﬂ_ldtZO,
i,j=1"0

or, using the linearity of the integrals, to

1 n
/ Z aiajt’ﬂ_l dt > 0.
0

i,j=1
This suggests finding an integrable function f such that
n - .
) =) aait™1dt,
4,j=1
This is not difficult, because the formula
n 2 n
(Z (li.’l?z') = Z a;Q;T;T;
i=1 4,g=1

solves the task. We just have to take

and we are done.
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= /01 (:rf(x)lz:;aixi_l> dx = /01 zf%(x)dz.

1
So, if we denote M = E T we infer (using the hypothesis) that
— [ 2anl)
1<i,j<n

1
/ zf?(z)dz < M.
0

On the other hand, we have the identity

z":z":M_Q ﬂ+...+ Gn 4ot 21 _+_...+a_"
—~ i~ 1t 2 n+1 n+1 2n

1
= 2/ (x+ x>+ + 2" f(x)dz.
0
Now, the problem becomes easy, since we must find the maximal value of
1
2/ (x+ 22+ +2") f(z)dx
0

where .
/ zf2(z)dxr < M.
0

The Cauchy-Schwarz inequality for integrals is the way to go:

</01(:r+:r2+~-+:r")f(x)dx)2

= </01 Vzfi(z)y/z(1 +x+"’+xn_1)2dx)2

1 1
=/ :rfz(:r)d:r/ (1+z+-- +2"1)2dx < M2
0 0
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then

St. Petersburg Olympiad, 1996

Solution. The very experienced reader will have already seen a resemblance
to Steffensen’s inequality: for any continuous functions f, g : [a,b] — R such
that f is decreasing and 0 < g <1 we have

/ " fe)de > / ' fle)o(z)de,

k= /abg(x)dx.

So, probably an argument using areas (this is how we avoid integrals and argue
with their discrete forms, areas!!!) could lead to a neat solution. Let us con-
sider a coordinate system XOY and let us draw the rectangles R1, Ra, ..., R,
such that the vertices of R; are the points (i — 1,0), (¢,0), (¢ — 1,a), (4, a;)

(we need n rectangles of heights a1, az, ..., a, and horizontal sides 1, so as to
k

view Z a; as a sum of areas) and the rectangles S1, Ss, ..., Sp, where the ver-

where

i—1 i—1

i i
tices of S; are the points Z b;,0], Z b;,01, Z bj,a; |, Z b;,a;
j=1 j=1 j=1 j=1

(where ij = 0). We have made this choice because we need two sets
=1

of pairwjise disjoint rectangles with the same heights and areas a;,as,...,a,

and aiby, asbe,. .., anby, respectively, so that we can compare the areas of the

unions of the rectangles in the two sets. Thus, we have to show that the set

of rectangles Si,S2,...,5, can be covered by the rectangles R, Ry, ..., Rg+1.

This is quite obvious, by drawing a picture, but let us make it rigorous. Since
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b) Prove that we have equality in the above inequality if
and only if there exist a partition Aj, Ag,..., Ag of the set
{1,2,...,n} such that for all ¢ € {1,2,...,k} we have

Z zj = 0 and aj, = ay, if j1, j2 € A;.
JEA;

[Gabriel Dospinescu] Mathlinks Contest

Solution. Let A4 be the characteristic function of an arbitrary set A. Let us
consider the function

Fil0,00) 5 R, f=) T,

i=1

Now, let us compute

/0 Paydz= > waz; /0 Ao,a:) (€)Ajo0,0,) (€) dz

1<i,j<n
= E ZiZ4 min(ai, a]-).
1<i,j<n
Then
E z;z; min(a;, a;) > 0.
1<i,j<n
Since | |
. a;+a; — |a; — aj
min(a;, a;) = 5
and

Z xixj(ai + aj) =2 <Z !I?z> <Z ai.'I?i) =0,
i=1

1<i,j<n i=1

we conclude that
Z xileai — ajl S 0.

1<i<j<n
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Solution. Consider b; = 1 in the inequality from example 14. We obtain:

Z min(z;, z;) > Z min(1, z;z;).

1<i,j<n 1<i,j<n

. ut+v—|u—v . .
Now, use the formula min(u,v) = %—l and rewrite the above in-

equality in the form
n n 2
2ani— Z \mi—xj|2n2+<2mi> - Z |1 —z;z;].
i=1 1<i,j<n i=1 1<i,j<n

Taking into account that

Z |1 —zz;| = Z |z; — z5],

1<i,j<n 1<ij<n

we obtain )
A "
2”2%’ > n?+ (Z%) )
i=1 i=1

which can be rewritten as (3.1 ; z; — n)2 < 0. Therefore Y -, z; = n.
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19.2 Problems for training

1. Let a, b, n be positive integers with a < b. Prove that

bn+1 1 1 1 b
n<n+ )< + + o+ —<ln-.

an+1 an+1 an+2 bn a

2. Prove that for any a > 0 and any positive integer n the inequality

1a+1_1
1a+2‘1+...+na<(_n_i__
a+1

holds. Also, for a € (—1,0) we have the reversed inequality.

3. Prove that for any real number z

n n

anQk >(n+1) Z 1,
k=

k=0 1

Harris Kwong, College Math. Journal

4. For any positive real number z and all positive integers n we have:

2n 2n 2n 2n
0/ AN/ A2) 2
T z+1 z+ 2 z+2n '

Komal

5. Let n € Nyzg = 0,z; > 0(: = 1,2,...,n),y .-, z; = 1. Prove that

oI 3

> : <
Py Vitzo+zi+ -+ v+ + 2a

China 1996
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10.

Let f be a continuous and monotonically increasing function f : [0,1] —
R such that f(0) = 0 and f(1) = 1. Prove that

9
k 99
>o (i) 2 () <1
k=1
St. Petersburg 1991

Prove that the function f:[0,1) — R defined by
f(x) =loge(1—z)+z+ 22+t + 28+
is bounded.

Let 0 = 71 < -+ < Zopy1 = 1 be some real numbers. Prove that if
i1 — x; < hfor all 1 <4 < 2n then

2n

1-h 1+h
—— <) (Tit1 — Toi-1) < ——-
2 : 2
i=1
Turkish TST 1996
. Prove that for any real numbers a1, as,...,an
Let k€ N, o1,09,...,0n41 € R with a1 = 5. Prove that
k-1
¥ atvatds ok (Sa)
1<i<n
155k

Hassan A. Shah Ali, Crux Mathematicorum
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11.

12.

13.

14.

Prove that for any positive real numbers a,b,c such that a+b+c=1

we have:
1\° 1\° 1\ 1
1+ — 1+ - 14+ — >14+—.
< +a> < +b> < +c> - +ab+bc+ca

Marius and Sorin Radulescu

Prove that we can find a constant ¢ such that for any z > 1 and any
positive integer n we have

i 1

Do 3 S
2 2

k=1 (k +a:) 2

&%Io

IMC 1996

Prove that for all a1, a9, ..., an,b1,b9,...,b, > 0 the inequality holds

Z min(a;, a;) Z min(b;, b;) | > Z min(a;, b;)

1<4,5<n 1<i,5<n 1<i,5<n
Don Zagier

Consider vectors aq, as, ..., @, and by, ba, ..., by, in the plane, and for every
line through the origin, let the projection of the vectors onto the line be
Ay, Ag, ..., Ay and By, By, ..., By,. Suppose that we always have

|Ax| + |Ag| 4+ - +|An| 2 |B1] + |B2| + -+ + |Bml.
Prove that
la1} +lag| + - - +lan| > |b1] + b2| + -+ + |bm]-

Here, |v} is the length of the vector v.
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15. Prove that for any z1 > 22 > -+ > z, > 0 we have

n \/ 2, .2 2 n
D AEREE Py 8
¢ i=1

=1

Adapted after an IMC 2000 problem

16. Let ¢ be Euler’s totient function, with ¢(1) = 1. Prove that

1 " (k) 2k
—2—<E l'l < 1.

— k -1
Gabriel Dospinescu
17. Let 71,79,...,7, be some positive numbers which add up to 1 and
r1,Z2, ..., %y Some positive real numbers. Also let

n n
A= E T andGzHac:i.
i=1 i=1

a) Let us denote

tdt

feo) = | e e

Prove that
A n
In a = Z’rz(xl — A)2I(.1‘i, A),
i=1
and hence deduce the arithmetic-geometric inequality.
b) Suppose that z; < % and define A, G’ to be the corresponding means
for 1 — z;. Prove that % > %ﬁ.

Oral Examination ENS
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18.

19.

20.

21.

Prove that for any positive real numbers z1, Zo, .. ., T, such that

L1
;1+zz=_

we have the inequality

1 n2
> 25
1<igan T T %

Gabriel Dospinescu

Let z1, 22, ...,z and y1,¥o2, ..., Yn be positive real numbers such that for
all positive ¢ there are at most % pairs (i, j) satisfying z; +y; > t. Prove
that

(T1+z2+-+zn) (Y1 +y2+ - +yn)Sln3?xn(zi+yj)~

Gabriel Dospinescu

Let aj, as, ..., a, be positive real numbers and let S =a; +as+--- +a,
be their sum. Prove that

n
1 nmn
Za_+ ZS—+—az—aJ

i=1

SI'—‘

Gabriel Dospinescu

Let m,n be positive integers and let z; ; € [0,1] for i = 1,2,....,m and
j=12..,n
Prove that

n m m n

H( H ,J) +I[(1-JIQ -2y | =1
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19. SOLVING ELEMENTARY INEQUALITIES USING INTEGRALS

22.

23.

24.

25.

Find the best constant k such that for any n and any nonnegative real
numbers 1, ...2, We have

(21 + 220 + - +nzp) (2] + -+ 22) > k(21 + -+ 2p)3

Prove that for any aj,as,...,a, > 0 we have the following inequality

Z a] <7rZa
=1

1<i,j Sn
Hilbert’s inequality

Prove that for any real numbers 21, ..., z, we have

7 (z+ad+ - +22)(ei+ 4o+ 922+ 4 n222) > (x1Fze+o -zt
Carleson’s inequality

Prove that for any real numbers a1, ag, ..., a, We have:
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Proof. Consider first the case of a complete graph with five vertices. It is clear
that with every vertex there are at least two incident edges having the same
color. If for a vertex at least three of them have the same color, it can be easily
argued that a monochromatic triangle appears. So, suppose that every vertex
is incident with two red and two blue edges. Let z be an arbitrary vertex
and suppose that zy and zz are red. Then yz is blue. Now, let ¢ be a vertex
distinct from z,y, z and suppose that the edge connecting y and ¢ is red and
the edge connecting x and ¢ is blue. Let w be the fifth vertex of the graph.
Then the edges wz and wt are red, while wz and wy are blue. Similarly, zt
is blue and so we can consider the pentagon xytwz which has red edges and
blue diagonals.

The case of the complete graph with six vertices is much easier: pick a vertex
z. There exist three edges having the same color (say red) leaving from z
(again the pigeonhole principle). Let y, z,t be their extremities. If yzt is blue,
we are done. Otherwise, assume that yz is red. Then xyz is a monochromatic

triangle. The lemma is proved.
O

Now, choose six vertices of the graph. They clearly induce a complete subgraph
with six vertices. By the lemma, there exists a monochromatic triangle xyz.
If we consider six of the remaining seven vertices, we find another monochro-
matic triangle uvw, whose set of vertices is disjoint from the set of vertices of
zyz. If the two triangles have the same color, we are done. Otherwise, suppose
that zyz is red and uwvw is blue. Because there are nine edges between the
two triangles, by the pigeonhole principle at least five edges have the same
color, say blue. By the same principle, there exists a vertex of xyz, call it z,
which is incident with at least two blue edges having the other extremity in
triangle uvw. Suppose without loss of generality that these vertices are u,v.
Thus two triangles zyz and xuv appear with x as a common vertex, the edges
of zyz being red and the edges of xuv blue. Look at the remaining five ver-
tices, which form a complete graph with five vertices. If this graph contains a
monochromatic triangle, we are done. Otherwise, by the lemma the remain-
ing five vertices form a pentagon abcde with red sides and blue diagonals. By
the pigeonhole principle, there exist three edges among those connecting z to
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vertices of abede that have the same color. Now we have two cases.

In the first case, vertices y and z are joined by at least three edges having the
same color with vertices of abede. If, for instance, the color corresponding to
y is blue, then we can consider two blue edges joining y with abcde. Then
no blue triangle with a vertex in y appears if and only if the two blue edges
join y with two consecutive vertices of the pentagon, for example with a and
b. But there is still a third blue edge joining y with one of ¢, d, e, and this
shows the existence of a blue triangle with vertices y and the two extremities
of a diagonal of the pentagon. So, two blue triangles with disjoint sets of
vertices appear. Let us now consider the case when y and z are each joined
by at least three red edges with the vertices of the pentagon. So, there is a
red triangle with vertices z and two neighboring vertices of the pentagon, say
a and b. Counsider now y,z,¢,d,e. If the induced complete graph with five
vertices contains a monochromatic triangle, we are done, because we still have
the red triangle zab and the blue triangle zuv. Otherwise, again using the
lemma, yz, cd and de are red, so either ze, yc are red or zc, ye are red. In both
cases all other edges of the complete graph induced are blue. Let us consider
just the first subcase (ze, yc red), the second one being similarly treated. Then
y is joined by at least three red edges with vertices of abede, and since yd and
ye are diagonals in ycdez (thus they are blue), it follows that ya and yb are
red. Similarly we find that za, zb are red and so we have two good triangles
zae and xybd.

Finally, let us consider the second case. Actually, all we have to do is to argue
as in the first case, by considering vertices u,v joined each by at least three
edges of the same color with vertices of abede. So we are done.

The following problems are more computational, but contain much more math-
ematics than the previous examples. The first one is a famous example due
to Behrend, concerning subsets with large cardinality containing no three el-
ements in arithmetic progression. This is related to an even more famous
(but notoriously difficult) theorem of Roth: the maximum cardinality of a
subset of {1,2,...,n} having no three elements in arithmetic progression is at
most C’m for an absolute constant C. This was refined by Bourgain to
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p for any prime number p and any n. Prove that there are
integers 1,72, ..., s not all zero such that for all n we have

rif(n) +rof(n+1)+---+rsf(n+s—1)=0.
[Gabriel Dospinescu, Vesselin Dimitrov]|

Solution. Let us consider positive integers m,n such that m = [%J (this is
usually the best choice in Siegel’s lemma) and let us define a;; = f(i + j)
for 1 <i<nandl<j<m. Weclaim that we can choose some m such
that if z1,z9, ..., 2, is a solution of the system given by Siegel’s lemma, then
z1f(G+ 1)+ z2f(j+2)+ -+ z,f(j + n) = 0 holds for all positive integers
j. For this, we will need some preparation, which will be done in the next
paragraph.

Take z; to be any solution given by Siegel’s lemma, and observe that the
desired relation holds for j < m. Assume that it fails for some £ > m and let
k + 1 be the smallest index for which it fails (thus it holds for all j < k and
k > m). Consider p any prime smaller than k¥ + 2. Then 1 < k+2-p <k
and so

o1 f1+k+2-p) 4+ +zf(n+k+2-p)=0.

But this last sum is congruent (mod p) to

A=z f(L+ (k+ 1)+ +auf(n+ (k+1)) (20.1)

which is nonzero by the choice of k. This shows that the last quantity A is
actually a multiple of the product of all primes up to k + 1. The desired
contradiction will follow from the fact that Siegel’s lemma and the hypothesis
on f ensure that A is small enough and thus cannot be divisible by the product
of all p with p < k+ 1. Let us estimate first the growth of z;. Using the
notations of Siegel’s lemma, we have

Aj SC(ATT 4o AT < LA™Y,
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where C7 > 1 depends only on A, C. Thus

mn_ | m(m+1)

|25] < (A1 Am) 7 < OV2 . A7mt3mom) < CpA5™/4,

for some Cy > 0 depending only on A, C. Therefore

o f(L+ (k+ 1)+ +zaf(n+ (E+ 1)| <
(maX(IIL'JD . C(Ak+1+1 + -4 An+k+1) < CgAgn/4+k,

where Cjs is again a constant depending only on A, C.

Now, we can prove the claim and thus end the solution. Suppose that the
statement does not hold, so for infinitely many & (remember that for each m
the corresponding k was at least m) we will have

p<k
Because k > m > n/2 — 1, we have
A9n/4+k:03 < Allk/2C4.

Thus for infinitely many k£ one must have

11k
< ‘InA+InCy > Zlnp

p<k

2
and this forces, from the prime number theorem, A > eil, a contradiction
) P

with the choice of A.

We end this chapter with a very challenging problem concerning the growth of
coefficients of divisors of a polynomial whose coefficients are 0,1 or —1. This
type of problems, concerning the multiplicity of roots of polynomials with co-
efficients —1,0,1 has been subject to extensive research, but seems to be a
quite difficult problem. One estimation in the following problem can easily be
obtained using the pigeonhole principle; the other requires a beautiful theorem
of Landau.
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where x; are the roots of f. The following inequality is due to Landau:

Lemma 20.2. M(f) <+/a2+a}+ - +a2.

Proof. There are many proofs of this lemma, but we particularly like the
following one, which we haven’t encountered in the literature. Consider N > n
and let zy, 29, .. zN be the N-th roots of unity. A simple computation, based
on the fact that S | zF = N if N|k and 0 otherwise, shows that

n
> w3 =N St
i=0

u,v=0
Now, applying the AM-GM 1nequahty, we obtain that

n

Y_at = Vf()f(z) - fn)2

=0

On the other hand, the identity (X —2z1)(X —22)--- (X —2y) = XV —1 and
the fact that f(X) = an(X —21)(X — 22) -+ - (X — z,) imply the identity

F)F () Flam)] = a1 = 2|1 — 2} |- 11— 2],

which, combined to the previous inequality, implies

n
lan] - [T ¥/ 11 — 2¥1. (20.3)
i=1
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Now, it is pretty clear that limy_ /|1 — 2¥| = max(1, |2|) whenever |z| #
1. Thus the inequality is proved whenever all roots of f lie outside the unit
circle. What happens in the opposite case? It really does not matter! Actu-
ally, Viéte’s formulae show that the inequality M(f) < /a2 +a?+ -+ a2
reduces to an inequality involving only absolute values of polynomials in z;. If
this inequality holds whenever the variables x; are not on the unit circle, it also
holds in the other cases, by continuity. Therefore the lemma is proved. O

The previous lemma shows that polynomials with all coeflicients of absolute
value at most 1 have Mahler measure at most v/n + 1. Take now any divisor
f of a polynomial g with all coefficients —1,0,1 and write g = hf. Suppose
that f has integer coefficients. It is easy to see that M(g) = M (h)M(f) >
M(f). Thus M(f) < v/n+1. Now, observe that by Viéte’s formula, the
triangular inequality and the obvious fact that |z; ...z, | < M(f) for all
distinct 41,...,75s and all s, we have that any coefficient of f is bounded in
absolute value by the fact that

()20 <V (1) <=

2 2

for sufficiently large n. Thus the conclusion follows.
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20.2 Problems for training

1.

On a piece of paper 4n unit squares are marked, their edges being par-
allel to the edges of the paper. Prove that there exist n pairwise disjoint
squares.

Let k£ be an integer greater than 1. Prove that there exists a prime
number p and a stricly increasing sequence of positive integers ay, az, ...
such that all numbers p + kay, p + kao, ... are primes.

.Let 0 < ap <ay < --- < aygr < 5050 be integers. Prove that we can

choose four distinct integers a;, a;, ag, a; such that 5050 divides a; +a; —
ai — aj.

Poland 1999

Prove that for infinitely many positive integers A the equation |z/z| +
ly\/¥] = A has at least 1980 solutions in positive integers.

Russia 1980

A positive integer is written in each square of an n? x n? chess board.

The difference between the numbers in any two squares sharing an edge
is at most n. Prove that at least 1+ [%J of the squares contain the same
number.

Hungary 1999

Prove that any integer k greater than 1 has a multiple less than k% which
has at most four distinct digits.

IMO 1987 Shortlist
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10.

11.

12.

Are there 10000 numbers with ten digits, all multiples of 7, and with the
property that any one of them can be obtained from the first number by
a suitable permutation of its digits?

Czech-Slovak Match 1995

Find the greatest positive integer n for which there exist nonnegative
integers 21,3, ..., Tn, not all of them equal to 0, and such that n® does
not divide any of the numbers a1 +asx2+- - -+anxy with a1, a9, ...,a, =
+1.

Romanian TST

The complete graph with 12 vertices has its edges painted in 12 colors.
Is it possible that for any three colors there exist three vertices which
are joined with each other by segments having these three colors?

Russia 1995

Prove that among any 2m + 1 integers whose absolute values do not
exceed 2m — 1 one can always choose three that add up to 0.

Prove that any sequence of mn + 1 real numbers contains an increasing
subsequence with m + 1 terms or a decreasing subsequence with n + 1
terms.

Erdoés-Szekeres’s theorem

Let A be the set of the first 2™ - n positive integers and let S be a subset
of A with (2™ — 1)n + 1 elements. Prove that there exist ag,ay, ..., am
distinct elements of S such that ag | a1 | ... | am.

Romanian TST 2006
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13.

14.

15.

16.

17.

18.

Can you put 18 rectangles of size 1 x 2 on a 6 x 6 board such that there
exists no straight line connecting two opposite sides of the table which
goes along sides of the rectangles?

N.B.Vasiliev, Kvant

Consider a set of 2002 positive integers not exceeding 10'°°. Prove that
this set has two nonempty disjoint subsets with the same size, the same
sum of elements, and the same sum of squares of the elements.

Poland 2001

Consider an 11 x 11 chess board whose unit squares are colored using
three colors. Prove that there exists an m x n rectangle with 2 < m,n <
11 whose vertices are in squares having the same color.

Toan Tomescu, Romanian TST 1988
50 students compete in a contest where every participant has the same

8 problems to solve. At the end, 171 correct solutions were received.
Prove that at least 3 problems were solved by at least 3 students.

Valentin Vornicu, Radu Gologan, Mathlinks Contest

Prove that given any n? integers, we can always put them in an n x n
n—1
matrix whose determinant is divisible by nl™z J.

Titu Andreescu, Revista Matematica Timisoara
Let A be the set of the first 40 positive integers. Find the least n for
which one can partition A into n subsets such that a # b + ¢ whenever

a, b, c (not necessarily distinct) are in the same subset.

Belarus 2000
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19.

20.

21.

22.

23.

24.

Consider a 100 x 1997 board whose unit squares are filled with 0 or 1 in
such a way that every column contains at least 75 ones. Prove that we
can erase 95 rows such that there exists at most one column consisting
of zeros in the remaining table.

Bulgaria 1997

Prove that no matter how we choose more than % points in R”, all
of whose coordinates are =1, there exists an equilateral triangle with
vertices in three of these points.

Putnam 2000

Let a be a real number with 0 < a < 1 and let (ar)n31 be an increasing
sequence of positive integers such that for all sufficienly large n there
are at least n - a terms of the sequence smaller than n. Prove that for
all k > % there are infinitely many terms of the sequence that can be
written as the sum of at most k other terms of the sequence.

Paul Erdés, AMM

Prove that for all N there exists a k such that more than N prime
numbers can be written in the form 724k for some integer T'. Generalize
it to any polynomial f(T).

Sierpinski

Let f(n) be the largest prime divisor of n, and consider (a,)n>1 a strictly
increasing sequence of positive integers. Prove that the set containing
f(ai + a;) for all ¢ # j is unbounded.

Let Py, P1, ..., P,—1 be some points on the unit circle. Also let A1 A5... A,
be a regular polygon inscribed on this circle. Fix an integer k, with
1 <k < 5. Prove that one can find 4, j such that A;A; > A Ay > BP;.
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25.

26.

27.

28.

Let k be an integer, and let aj, ag, ..., an, be integers which give at least
k + 1 distinct remainders when divided by n + k. Prove that some of
these n numbers add up to n + k.

Komal

Let S be the set of the first 280 positive integers. Find the least n
such that any subset with n elements of .5 contains 5 numbers that are
pairwise relatively prime.

IMO 1991

For a pair a,b of integers with 0 < a < b < 1000, the subset S of
{1,2,...,2003} is called a skipping set for (a,b) if for every pair of ele-
ments (s1,s2) € S2, |s1 — o] is different from a and b. Let f(a,b) be the
maximum size of a skipping set for (a,b). Determine the maximum and
minimum values of f.

Zuming Feng, USA TST 2003

Let n > 3 and let X be a subset (with 3n? elements) of the set of the
first n3 positive integers. Prove that there exist nine distinct elements of
X, ay, as,...,ag and nonzero integers x,¥, z such that ayjx + asy + azz =
0, asx + asy + agz = 0 and ayx + agy + agz = 0.

Marius Cavachi, Romanian TST 1996
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21.1 Theory and examples

It is notoriously difficult to decide whether a given polynomial is irreducible
over a certain field. There exist a variety of criteria that allow us to prove
that a certain polynomial is irreducible, but unfortunately they are very lim-
ited, and their hypotheses are usually not satisfied. Furthermore, there are
not many elementary techniques: a few classical irreducibility criteria and the
study of roots of polynomials are practically the only ideas that we will dis-
cuss in this chapter. But, as you can easily see, even those are not trivial,
and some of the problems can be extremely difficult, even though they have
elementary solutions. We will discuss a very useful irreducibility criterion,
Capelli’s theorem, which is really not as well known as it should be, and we
will see some striking consequences of this result. Also, we will insist on the
method of studying the roots of polynomials, because it gives elegant solu-
tions for problems of this type: Perron’s criterion and Rouche’s theorem are
discussed, as well as some applications. Finally, we will see that working with
reductions of polynomials modulo primes can often give precious information
about their irreducibility properties. In this chapter, we will assume that the
reader is familiar with notions of algebraic number theory, but those will not
exceed the results discussed in the chapter A Brief Introduction to Alge-
braic Number Theory.

We will begin the discussion with the most elementary method, which is the
study of roots of polynomials. Let us observe from the beginning two quite
useful results: if a monic polynomial with integer coeflicients f has a nonzero
free term (constant term) and exactly one root of absolute value greater than
1, then f is irreducible in Q[X]. Indeed, if f = gh for some nonconstant
polynomials g, h with integer coefficients, we may assume that ¢g has all roots
of absolute value smaller than 1. Then |g(0)| < 1, because it is just the product
of the absolute values of the roots of g. Because |g(0)| is an integer, it follows
that g(0) = 0 and thus f(0) = 0, contradiction.

The second result is very similar: if f is monic and all roots of f are outside the
closed unit disc and |f(0)| is a prime number, then f is irreducible in Q[X].
Indeed, with the same notations, we may assume that |g(0)] = 1. Because
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{1,2,...,n} such that g(X) = a [] (X — z;). We now prove a helpful result.
€A

Lemma 21.1. Each complex zero of f has either nonpositive real part or an
1+46=3
o

absolute value smaller than

Proof. The proof is rather tricky, but not complicated. It is enough to observe
that if |2| > 1 and Re(z) > 0 then Re (1) > 0 and so by the triangle inequality
‘ f(z)
z’l’l

Qp—1 1 1
> — 1l —-(b-1 . —
> tan + > ‘ ( ) (|Z|2 + + |Z|n>

b—1 _ | —ld-(-1)
2 > 2 .
2%~ T2] 22 — 2]

> Re (an + anz_l) —

Therefore if f(z) = 0 and Re(z) > 0 then either |z| < 1 or |z| < —1+V24b—3 and
this establishes the lemma. O

It remains now to cleverly apply this result. We claim that for any zero z; of
f we have |b — z;| > 1. Indeed, if Re(z;) < 0, everything is clear. Otherwise,
|b—x;| > b—|z;| > b~ @ > 1, as you can easily verify if b > 3. Now,
everything is clear, because this result implies that |g(b)| > 1, a contradiction.

Now let us deal with the very difficult case b = 2. We will present a very
beautiful solution communicated by Alin Bostan. The idea is to prove that
|2 — z;| > |1 — z;] for any zero z; of f. Keeping the previous notations, we
will deduce that 1 = |g(2)| > |g(1)| and so g(1) = 0. This implies f(1) = 0,
which is clearly impossible. Now take z to be a zero of f and observe that if
2 — 2| < |1 — x| then Re(z) > (2), and so if y = 1 we have [y| < 1 and y
satisfies a relation of the form

1 1 1 1

Multiplying by 3"*! and adding the two relations, we find another relation
of the same type (but with n increased) and by repeating this argument we
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Solution. We will prove that f has exactly one zero outside the closed unit
disk of the complex plane. This will show that f is irreducible in Z[X], and
by Gauss’s lemma it will also be irreducible in Q[X]. It is quite clear that no
zero of f is on the unit circle, because if z is such a zero, then

lan—1] = |an—12""Y = |z" + an_22""2 4 -+ arz+ao| < 1+|ag|+- - +|an_2],

a contradiction. On the other hand, | f(0)| > 1, so by Viéte’s formula at least
one zero of f lies outside the unit disk. Call this zero x; and let zo,..., 2, be
the other zeros of f. Let

f(X)

g(X) = X" 4 by 2 X" 24 b X by = .
X — I

By identifying coefficients in the formula f(X) = (X — z1)g(X), we deduce
that

Ap—1 = bn_g — X1, Ap—2 = bn_g — bn_gxl, a1 = bo - blxl, ag = —boxl.

Therefore the hypothesis |a,—1| > 1+ |ag|+|a1|+ - - - +|an—2| can be rewritten
as
|bn_2 — .’I:ll > 1+ |bn_3 - bn_gxll + -+ Iboxll.

Taking into account that |b,—_s| + |21] > |bp—2 — z1| and
|bn—3 — bn—2x1] > |21||bn—2| = [bn—3], ..., |bo — brz1| > [b1]|21] — [bol,

we deduce that |z1]—1 > (Jz1} —1)(Jbo] +|b1] +- - -+ |br-2|) and since |z1] > 1,
it follows that |bo| + |b1] + - -+ + [bn—2| < 1. Using an argument based on the
triangle inequality, similar to the one in the first example, we immediately
infer that g has only zeros inside the unit disk, which shows that f has exactly
one zero outside the unit disk. This finishes the proof of this criterion.

The above elegant solution, due to Laurentiu Panaitopol, shows that deep
theorems can be avoided even when this seems impossible. The classical proof
of this criterion uses Rouché’s theorem. Because this is also a very powerful
tool, we prefer to prove it in a very particular, but very common, case for
polynomials and circles.
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Theorem 21.2 (Rouché’s theorem). Let P, Q be two polynomials with complex
coefficients and let R be a positive real number. If P,Q satisfy the inequality
|P(z) — Q(2)] < |Q(2)] for all z on the circle of radius R, centered at the
origin, then the two polynomials have the same number of zeros inside the
circle, multiplicities being counted.

Proof. The proof of this theorem is not elementary, but with a little bit of
integral calculus it can be proved in a very elegant way. Let L be the set of
all curves « : [0,27] — C which are differentiable, with continuous derivative,
such that v(0) = y(27) and v does not vanish. The index of v € L is defined
as

t ¥ (@)
We claim that I(v) is an integer. Indeed, consider K(t) = efo 3@ % and

note that K is differentiable and that K'(¢t) = K(¢) - % This shows that

Ttt) is a constant function. Therefore, because v(0) = y(27), we must have
K(0) = K(2), which says exactly that I(v) is an integer. The following result

is essential in the proof:

Lemma 21.3. The indez of a curve v € L contained in a disc that does not
contain the origin is 0.

Proof. Let B(z,r) be the open disc of center z and radius » > 0 and suppose
that « is contained in B(w,s), a disc that does not contain the origin (thus
s < |wl]), that is |y(t) — w| < s for all ¢. The idea is to make a continuous
deformation of 7y, keeping the index unchanged, and such that at a certain
moment the index of the new curve can be trivially computed. In order to
do this, take u € [0,1] and consider the application f,(t) = wy(t) + (1 — u)w,
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defined on [0,27]. The triangle inequality shows that f, € L and also that
this curve is contained in B(w,s). On the other hand, we claim that the
mapping ¢(u) = I(f,) is continuous. Because it takes only integer values (by
the previous remark), it will be constant. Therefore, I(y) = I(f1) = I(fy) = 0.
So, let us prove that I(f,) is continuous with respect to u. Indeed, note that

w- (u—v)-Y(t)
(wy(t) + (1 — w)w){vy(t) + (1 - v)w)
wl - [u— |- 1Y (@)
(lwl = )

fu®) - fol?)

fult) f{,(t)‘ _

IA

because |uy(t) + (1 —u)w| > |w|—|u||7(t) —w| > |w| —s. This inequality shows
by integration that I(f,) satisfies

I(F) — I(f)] < L-/Z” Y(B)ldt - fu ol
“ YT 2| 2 Jo ,

w|—s

which proves that I(f,) is continuous, and finishes the proof of the lemma.
O

This lemma implies that two curves in L sufficiently close have equal index.
Indeed, suppose that 1 and 7y, are in L and satisfy |y1(t) — v2(¢)] < |y2(t)]
for all t. Then the curve v(t) = 1;8 satisfies |y(t) — 1| < 1 for all ¢. Because
|¥(t) — 1] is also continuous on the compact interval [0, 27], it follows that its
maximum is smaller than 1, that is, there exists a disc that does not contain
the origin and which contains 4. By the lemma, v has index 0. But a quick
computation shows that I(y) = I(vy1) — I(2). Thus ~; and 72 have the same
index. Finally, let us prove this particular case of Rouché’s theorem. Consider
the curves v1(t) = P(Re') and 72(t) = Q(Re™). Observe that the inequality
|P(z) — Q(2)| < |Q(z)| implies that ~; does not vanish on [0, 27]. Thus 71, ¥e
are in L and also |y1(t) — 72(t)| < |v2(¢t)]. Thus the two curves have the
same index. But for a polynomial P one can easily compute the index of the
associated curve! Indeed, suppose that P(z) = a(z — 21)(z — 22) - - (2 — 2n),
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where z; are not necessarily distinct. Then it is well known that

This shows that if v(t) = P(Re%), then
27 ztdt
() 277 Z / Reit — 2; 2j

Now, we have seen that |z;| # R. Suppose that |z;| < R. Then
2r itdt 2r It
/0 Ret —z; _/ e_” "R

1— ZJ e—it =1+ Z —1mt

m>1

Indeed,

and the mean value of e™™ over [0,2n] is 0 for all m > 1. It is enough to
change the order of integral and summation (which is legal, because of the
uniform convergence with respect to t) in order to see that

2 B It
R e—” TR

Now, in exactly the same way, you can prove that

/27r eitdt 0
0 Reit - ,Zj B

if |zj| > R. Thus I(y) is exactly the number of zeros of P inside the circle of
radius R centered at the origin. This finishes the proof of Rouché’s theorem.
O
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Solution. Using Capelli’s theorem, it is enough to prove that if « is a root of
F(X) = X?" +1 (which is clearly irreducible in Q[X] by Eisenstein’s theorem
applied to f(X 4+ 1)), then X2 + X — ¢ is irreducible in Q[a][X] (this is also
immediate from the previous problem). But this is not difficult, because a
polynomial of degree 2 (or 3) is reducible over a field if and only if it has roots
in that field. Here, it is enough to prove that we cannot find a polynomial
g € Q[X] such that g(a)? + g(a) = a. Suppose by contradiction that g is
such a polynomial. Then, if a1, @, ..., asn are the roots of f it follows from
the irreducibility of f that (g (ai) + %)2 = a; + ;11- for all i. By multiplying
these relations, we deduce that f (—%) is the square of a rational number (the
argument is always the same, based on the theorem of symmetric polynomi-
als). But this means that 42" +1 is a perfect square, which is clearly impossible.

A very efficient method for proving that a certain polynomial is irreducible
is working modulo p for suitable prime numbers p. There are several criteria
involving this idea, and Eisenstein’s criterion is probably the easiest to state
and verify. It asserts that if f(X) = anX"™ + a1 X" 14+ +a1X + ag is
a polynomial with integer coeflicients for which there exists a prime p such
that p divides all coefficients except a, and p? does not divide ag then f is
irreducible in Q[X]. The proof is not complicated. Observe first of all that
by dividing f by the greatest common divisor of its coeflicients, the resulting
polynomial is primitive and has the same property. Therefore we may assume
that f is primitive and so it is enough to prove the irreducibility in Z[X].
Suppose that f = gh for some nonconstant integer polynomials g, A and look
at this equality in the field Z/pZ. Let f* be the polynomial f reduced modulo
p. We have g*h* = a, X™ (by convention, a, will also denote a, (mod p)).
This implies that g*(X) = bX" and A*(X) = ¢X™" for some 0 < r < n, with
bc = an. Suppose first that 7 = 0. Then A(X) = cX" + pu(X) for a certain
polynomial with integer coeflicients u. Because p does not divide a,, it does
not divide ¢ and so deg(h) > n, contradiction. This shows that r > 0 and
similarly 7 < n. Thus there exist polynomials u,v with integer coefficients
such that g(X) = bX" +pu(X) and h(X) = cX™ " + pv(X). This shows that
ap = f(0) = p?u(0)v(0) is a multiple of p?, contradiction.

Before passing to the next example, note two important consequences of Eisen-
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Solution. Indeed, the fact that p = 3 (mod 4) ensures that X2 + 1 is irre-
ducible in Z/pZ[X] (indeed, being of degree 2, it is enough to prove that it
has no roots in Z/pZ, which was proved for instance in the chapter Primes
and Squares). Let us try to write X2 + aX + b as (X2 + 1)P 4 pg(X), just
as in the previous example. It is enough to take

g(X) — gX—l-E—i-l- [<p>X2(P—1) 4 <p>X2(P—2)+...+ (pp )XZ] .
P P P 1 2 -1

Now it is immediate that all conditions of Schonemann’s criterion are satisfied,
so the problem is solved.

Now let us see a beautiful proof of the irreducibility of the cyclotomic poly-
nomials. This is not an easy problem, as the reader can immediately observe.
But for the reader who is not so familiar with these polynomials, let us make
a (very small) introduction. Let n be a positive integer. If n = 1 we define
$1(X)=X —1and if n> 1 we put

¢n(X) = H

ged(k,n)=1,1<k<n

From this definition, it is not even clear why this polynomial has integer coef-
ficients. Actually, one can easily prove the identity [ ¢4(X) = X™—1, which
din
allows a direct proof by induction of the fact that ¢,(X) € Z[X]. Indeed,
just observe that X™ — 1 has no repeated zero, that clearly the left-hand side
divides X™ — 1 because every zero of it is a zero of X™ —1 (it is clear from the
definition'that ¢, has no repeated zeros and also that ¢, and ¢y, are relatively
prime for distinct m, n) and finally that the degree of [[ ¢4(X) is n because of
din
the identity Y ¢(d) = n (proved in the chapter The Smaller, the Better).
din
Now, let us prove the following important result:
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because f(w) = 0, it follows that @ is an algebraic integer (this result is
not obvious, but it has been discussed in the same chapter). Its conjugates

are also algebraic integers of the form f(%;"ﬁ. Thus if we choose p > 2%, then
all conjugates of the algebraic integer @ are inside the unit disc of the

complex plane, thus f(wP) = 0 (indeed, if z = @ and g is the minimal
polynomial of z, then by Gauss’s lemma g has integer coefficients, and thus
the product of the absolute values of all conjugates of z is just |g(0)|; if all
conjugates are inside the unit disc, then g(0) = 0 and because g is irreducible,
9(X) = X, thus z = 0). Therefore, for any prime number p > 2%, wP is a
zero of f. All we need to observe now is that Dirichlet’s theorem assures us
of the existence of infinitely many primes p = r (mod n) for any r such that
ged(r,n) = 1. Therefore all w™ with ged(r,n) = 1 are zeros of f, which shows
that deg(f) > deg(¢,) and proves the irreducibility of ¢y.
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21.2 Problems for training

1.

Let n be an integer greater than 2. Prove that the polynomial f(X) =
X(X—(n!'4+ D)X -2(nt+1)) - (X —(n—1)(n!+1)) +n! is irreducible
in Z[X], but f(z) is composite for all integers z.

Let p be an odd prime and k > 1. Prove that for any partition of the
set of positive integers into k classes there is a class and infinitely many
polynomials of degree p — 1 with all coefficients in that class and which
are irreducible in Z[X].

Marian Andronache, Ion Savu, Unesco Contest 1995

Find the number of irreducible polynomials of the form XP + pX* +
pX'+1, where p > 5 is a fixed prime number and k, [ are subject to the
conditions 1 <l <k <p-—1.

Valentin Vornicu, Romanian TST 2006

. Find all integers k such that X™*! + kX™ — 870X 2 4 1945X 4 1995 is

reducible in Z[X] for infinitely many n.

Vietnamese TST 1995

. Let p and q be distinct prime numbers and n > 3. Find all integers a

for which X™ + aX™ ! + pq is reducible in Z[X].

Chinese TST 1994

. Let » and r be positive integers. Prove the existence of a polynomial

f with integer coefficients and degree n such that for any polynomial ¢
with integer coefficients and degree at most n, if the coefficients of f — g
have absolute values at most 7, then g is irreducible in Q[X].

Miklos Schweitzer Competition
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10.

11.

12.

Prove that for any positive integer n, the polynomial
(X2 4+ 2" +5(X21 L 10X™ + 5)

is irreducible in Z[X].

Laurentiu Panaitopol, Doru Stefanescu

. Let p be a prime of the form 4k 4 3 and let n be a positive integer. Prove

that (X2 + 1) + p is irreducible in Z[X].
N. Popescu, Gazeta Matematics
Find all positive integers n such that X™ + 64 is reducible in Q[X].
Bulgarian Olympiad

Let f(X) = amX™ + am_1 X™ ! + ... 4 a1 X + ap be a polynomial of

degree m in Z[X] and define H = max |2|. If f(n) is prime for
0<i<m—1'9m

some integer n > H + 2 then f is irreducible in Z[X].
AMM

Let f be a monic polynomial of fourth degree which has exactly one real
zero. Prove that f is reducible in Q[X].

MOSP 2000

Let a and n be integers and p be a prime such that p > |a| + 1. Prove
that X™ + aX + p is irreducible in Z[X].

Laurentiu Panaitopol, Romanian TST 1999
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13.

14.

15.

16.

17.

18.

19.

20.

Let p > 3 be a prime number and m,n be positive integers. Prove that
X™+ X™ + p is irreducible in Z[X].

Laurentiu Panaitopol

Let p be a prime number and let k£ be an integer not divisible by p. Prove
that X? — X + k is irreducible in Z[X].

Let A be the ring of Gaussian integers Z[i] and let z;,22,...,2, € A
be such that |z; — 23| > 2 for all ¢ > 1. Prove that the polynomial
1+ (X —z1)(X — 22) - - - (X — 2y,) is irreducible in A[X].

Oral Examination ENS

Let f € Z|X] be a monic polynomial irreducible in Z[X], and suppose
that there exists a positive integer m such that f(X™) is reducible in
Z[X]. Show that for any prime p dividing f(0) we have v,(f(0)) > 2.

Let f be a monic polynomial with integer coefficients having distinct
integer roots. Prove that f2+ 1 and f* + 1 are irreducible in Q[X].

Let p,q be odd prime numbers such that p = 1 (mod 8) and (g) =1.
Prove that the polynomial (X2 — p 4 q)? — 4¢X? is irreducible in Z[X]
but that it is reducible mod m for all integers m.

David Hilbert

Prove that for all positive integers d there is a monic polynomial f of
degree d such that X™ + f(X) is irreducible in Z[X] for all n.

Let d > 1 be an integer and let f(n) be the probability that a polyno-
mial of degree n with all coefficients boun(21ed by n in absolute value is
reducible in Z[X]. Prove that f(n) = O(=2),

n
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21.

22.

23.

24.

25.

26.

Let f be a primitive polynomial with integer coefficients of degree n for
which there exist distinct integers z1, 3, ..., Tr, such that

Ln+1J|
0 <[f(z)] < NE)

Prove that f is irreducible in Z[X].
Polya-Szego
Factor the polynomial X295 — 2005X + 2004 over Z[X].

Valentin Vornicu, Mathlinks Contest

Is there a polynomial f with rational coefficients such that f(1) # —1
and X" f(X) + 1 is reducible for all n > 1?7

Schinzel

Let f be an irreducible polynomial in Q[X] of degree p, where p > 2 is
prime. Let x1, x2, ..., Zp be the zeros of f. Prove that for any nonconstant
polynomial g with rational coefficients, of degree smaller than p, the
numbers g(z1), g(%2), ..., g(2p) are pairwise distinct.

Toma Albu, Romanian TST 1983
Let a be a nonzero integer. Prove that the polynomial
X"+aX" '+ +aX?+aX -1
is irreducible in Z[X].
Marian Andronache, Ion Savu, Romanian Olympiad 1990

Let p1,p2, ..., pn be distinct prime numbers. Prove that the polynomial

fX) = J] X+eypitenp+ - +enypn)

€1,62,...,.en==%1

is irreducible in Z[X].
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Therefore t = n, and all a; are distinct. We have

0= (z1—z2)+(z2—x3)+- -+ (zn—z1) = Zn::i:ij(modN). (22.3)

=1

This sum is nonzero since all k; are distinct, and also it is at most n2™ < N
in absolute value, a contradiction. Therefore this graph has all the desired
properties, and the inductive construction is complete.
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22.2 Problems for training

1.

Prove that any graph on n > 3 vertices having at least 2 + (") edges
has a Hamiltonian cycle. Does the property remain true if 2 + (";1) is
replaced by a smaller number?

. In a group of 12 people, among any 9 persons one can find five, any two

of whom know each other. Show that there are 6 people in this group,
any two of whom know each other.

Russia 1999

. In a connected simple graph any vertex has degree at least 3. Prove that

the graph has a cycle such that it remains connected after the edges of
this cycle are deleted.

Komal

. For a given n > 2 find the least k& with the following property: any set

of k cells of an n x n table contains a nonempty subset A such that in
every row and every column of the table there is an even number of cells
belonging to A.

Poland 2000

In a society of at least 7 people each member communicates with three
other members of the society. Prove that we can divide this society
in two nonempty groups such that each member communicates with at
least 2 members of their own group.

Czech-Slovak Match 1997



520

22. CYCLES, PATHS, AND OTHER WAYS

10.

Let n be a positive integer. Can we always assign to each vertex of a 2™-
gon one of the letters @ and b such that the sequences of letters obtained
by starting at a vertex and reading counterclockwise are all distinct?

Japan 1997

On an n X n table real numbers are put in the unit squares such that no
two rows are identically filled. Prove that one can remove a column of
the table such that the new table has no two rows identically filled.

. Let G be a simple graph with 2n + 1 vertices and at least 3n + 1 edges.

Prove that there exists a cycle having an even number of edges. Prove
that this is not always true if the graph has only 3n edges.

Miklos Schweitzer Competition

There are 25 towns in a country. Find the smallest k& for which one
can set up bidirectional flight routes connecting these towns so that the
following conditions are satisfied: (i) from each town there are exactly k
direct routes to k other towns; (ii) if two towns are not connected by a
direct route, there is a town which has direct routes to these two towns.

Vietnamese TST 1997

Let G be a tournoment (directed graph such that between any two ver-
tices there is exactly one directed edge) such that its edges are colored
either red or blue. Prove that there exists a vertex of G, say v, with the
property that for every other vertex w there is a monochromatic directed
path from v to u.

Iranian TST 2006
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11.

12.

13.

14.

Some pairs of towns are connected by road. At least 3 roads leave each
town. Show that there is a cycle containing a number of towns which is
not a multiple of 3.

Russia

Prove that the maximal number of edges in a graph of order n without
an even cycle is F@J

On the edges of a convex polyhedra we draw arrows such that from each
vertex at least one arrow is pointing in and at least one is pointing out.
Prove that there exists a face of the polyhedra such that the arrows on
its edges form a circuit.

Dan Schwartz, Romanian TST 2005

A connected graph has 1998 points and each point has degree 3. If 200
points, no two of them joined by an edge, are deleted, show that the
result is still a connected graph.

Russia 1998
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can be expressed more conveniently as

> (1 - A@)PHA ~ fole)P™D) - (1 - fo(z)PD),

z=(Z1,....Zn)E(Z/DL)"

where we understand by fi(z) the element f;(z1,z2,...,2,). Indeed, this fol-
lows easily from Fermat’s little theorem, because the polynomial

P(X) = (1= ACOP L= fo(XP7h) - (1= fiulX)P)

(here X = (X1, Xo, ..., Xp)) has the property that P(z1,z2,...,zn) = 0 if and
only if at least one of fi(z1,z2, ..., z,) is nonzero and 1 otherwise.

Now, let us prove that >  P(z) = 0. In order to do this, it is enough
ze(Z/p2)"
to prove it for any monomial of P, of the form X' X5% --- X%~. Observe that
in any such monomial we have a; + ag + -+ + an, < n(p — 1), because of
k
the condition ) deg(f;) < n. This means that there exists an ¢ such that

i=1
a; < p— 1. Observe that

E al .02 —
371 1;2 .. =

z€(Z/pZ)"

(X =

n
Jj=1 eZ/pZ

and because a; < p — 1, by a result proved in the chapter The Smaller, the
Better, )  z* =0, which shows that >, P(z)=0in Z/pZ. This

z;€Z/pZ z€(Z/pZ)"™

finishes the proof, because it follows that the cardinality of the set is a multiple
of p. Finally, observe that if we assume that f;(0) = 0 for all 4, it follows that
fi have at least one nonzero common root in the field with p elements, which
is anything but trivial!

We continue with an apparently immediate application of Chevalley-Warning
theorem: the famous Erdds-Ginzburg-Ziv theorem. There are many other
approaches to this beautiful result, but the way in which it follows from
Chevalley-Warning’s theorem had to be presented.
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Solution. a) The idea is that any element s; of S; satisfies an algebraic equa-

tion of degree |S;|, so any power of s; is a linear combination of 1, s;, ..., lS il-1
with coefficients independent of the choice of s; € S;. Indeed, if
83| -1
Si
gi( X 154 _ z gzj

18i _ [S3]~-1 .

then s, = > gi;s] sJ. This allows us to “reduce” the polynomial f by replac-
7=0

ing every X; k with a linear combination of 1, X, ... , X 11 This corresponds
to subtractlons from f of polynomials of the form gzhz, Wlth deg(h ) < deg(f)—
deg(g;). So we see that by subtracting a linear combination Z gih; from f we
i=1

obtain a polynomial fi; whose degree in X; is at most |S;| — 1 and such that
0 = f(s1,82, .-, 8n) = fi1(s1,82,...,8,) for all s; € S;. But this immediately
implies f; = 0. Indeed, f; can be written as Fo + Fy X7 + -+ F|51|_1X{SI|-1
for some polynomials F; € F[Xa, ..., X,,] such that F; has degree in X; at most
|S;| — 1. Now, for all s3 € Sy, ..., s, € Sy, the polynomial

S1|—
Fo(SZ,...,Sn)+"'+F|5'1|_1(82,...,5n)X{ 1=t
has at least |S7| zeros in the field F, so it is identically zero, that is

Fo(s2, ..y 8n) = - = Fg|-1(52, vy 8p) =0

for all (s, ...,8,) € S2---S,. An inductive reasoning shows that Fy = --- =
Fig;j—1 = 0 and so f; = 0. This finishes the proof of a). b) This is a di-
rect consequence of a). Suppose by contradiction that f vanishes on 51 x
So X -+ x S,. By taking subsets of S; with ¢; + 1 elements, we can assume
that |S;| = t; + 1. Let h; and g; be defined as in a). It follows that the
coeflicient of Xleé2 . Xfl" in gihy + goho + -+ - + gnhn is not zero. Because
deg(h;) < deg(f) — deg(gs), the coefficient of X X2 ... Xi» in g;h; is zero:
any monomial appearing in this polynomial and having degree deg(f) is a
multiple of Xf“Ll, contradiction.
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that for any elements a1, ...,ax € Z/pZ, the equation zia1 +
Zgag+- - +xrar = 0 has asolution (x1,...,zk) € Sy %+ -+ X Sk
other than the trivial one (0,...,0).

Troi-Zannier’s theorem

Solution. [Peter Scholze] Consider the polynomial

P(X1,., Xi) = (@1 X1 + a2 Xz + -+ + @ Xp)P 7 = 1

+C JI Ki-s1) I a-s2)- JI (Xk—se)

0#31€851 0#82€85, 0#8, €Sk
where C is chosen such that P(0,...,0) = 0.

Because of the third condition, the coefficient of w|151|—1 . -a:lks’cl_l is nonzero.
Therefore there are t; € Sy, ..., tx € Sk with P(t1,...,t,) # 0. Since P(0,...,0) =
0, it is clearly not the zero solution. Thus,

C H (tl—sl) H (t2—32)"‘ H (tk_sk)

0#81€851 0#52€S> 0#5, €Sy

must be zero, which implies that (ajt; + - -+ + axtx)?~! # 1. It remains only
to note that Fermat’s little theorem gives ait; + -+ + agtx = 0.

The category of deep results with short proofs is going to be represented once
again, this time with a really important result of additive combinatorics, one of
those mathematical fields which exploded in the twentieth century. Of course,
there are many other proofs of this result, all of them very ingenious. The
result itself is important: as an exercise (solved by Cauchy about two hundred
years ago...), try to prove this using this Lagrange’s famous theorem stating
that any positive integer can be written as a sum of four squares of integers.
There are very elementary arguments, as we will see, but the combinatorial
Nullstellensatz also implies this result and actually much more.
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Solution. Let L = {l1,ls,...,l;} and assume without loss of generality that
X = {1,2,..,n}. Finally, call Ay, Ao, ..., Ay, the elements of F, such that
|A1] < |Ag] < ... <|An,|. We will associate with each set A; its characteristic
vector v; = (vij)1<j<n defined by: v;; = 1if j € A; and 0 otherwise. Observe
that if (z,y) = z1y1 +22y2+- - -+ T, yn 1s the standard euclidean inner product,
then |A; N A;| = (v;,v;). Now, let us define the polynomials

A= I (v -1

ke <| Asl

for i = 1,2,...,m. The main idea is to consider the restrictions of these
polynomials to the vertices of the unit cube, that is the set ¥ = {0,1}".
Because z? = z; if z; € {0,1}, it is clear that these restrictions can be writ-
ten in the form g¢;(z1,...,2,), where g; are polynomials of degree at most
s and have degree at most 1 in each variable. What is remarkable is that
these functions f; : Y — R are linearly independent. This is not difficult: if
ALfi(z) + Xafo(z) +- -+ A frm(z) =0 for x € Y, then by taking x = v; for all
J and using the fact that f;(v;) =01if j <7 and f;(v;) # 0 (which is obvious),
we immediately deduce by induction that all A; are 0. The result follows from
the fact that the vector space generated by these functions has dimension m
and is a subspace of the vector space of polynomials of maximum degree at
most s and partial degrees at most 1, which has dimension

(j)+<3f1)+...+<’;)+<g).
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23.2 Problems for training
1. Let n,m be positive integers with n < m — 1 and let aj,ap, ..., a,, be
nonzero integers such that for all 0 < k < m we have a; +ag - 25 + ... +

am - m* = 0. Prove that there are at least n 4+ 1 pairs of consecutive
terms having opposite signs in the sequence aj, asg, ..., anm.

Russia 1996

2. Let ay, a9, ...,a100 and by, bo, ..., b1po be 200 distinct real numbers. Con-
sider an n X n table and put the number a; + b; in the (7,7) position.
Suppose that the product of the entries in each column is 1. Prove that
the product of the entries in each row is —1.

Russian Olympiad
3. The finite sequence {ax}1<k<n is called p-balanced if the sums

s(k,p) = ar + Qrqp + Qpyop + - -

are all equal for k = 1,2,...,p. Prove that if a sequence of 50 real
numbers is 3, 5, 7, 11, 13 and 17-balanced, then all its terms are equal
to 0.

St. Petersburg 1991

4. Two numbers are written on each vertex of a convex 100-gon. Prove that
it is possible to remove a number from each vertex so that remaining
numbers in any two adjacent vertices are different.

Fedor Petrov, Russia 2007
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Let A be an n x n matrix over a field K and define its permanent as

Pe'r'(A) = Z Q15(1)220(2) " " * Cno(n)-

o€Sn
If Per(A) # 0, prove that for each b = (b1,b2,...,b,) € F™ and for
every family of two-element sets S1,S3,...,5, of I, there is a vector

X € 581 x 83 x--- x5, such that for each 7 the ¢-th coordinate of AX
differs from b;.

Alon’s Permanent Lemma

. Let p be a prime and let a1, as, ..., agp—1 be elements of Z/pZ. Prove that

the number of subsets I of {1,2,...,2p — 1} with p elements such that
Y icr @ = bin Z/pZ is congruent to 0 or 1 modulo p, for all b € Z/pZ.

W. Gao

Let p be a prime and d a positive integer. Prove that for any integer k&
there are integers 1, x2, ..., 24 such that k = x‘f + .’Eg +--t .’Eg (mod p).

Gabriel Carrol

Let Hy,...,Hy, be a family of hyperplanes in R™ that cover all vertices
of unit cube {0,1}" but one. Prove that m > n.

Noga Alon

Let S1,952,-.., Sy, be subsets of Z/pZ and let S = S1 x Sz x -+ x §,,.
Consider polynomials f1, fo, ..., fx in n variables over Z/pZ such that

k n
(p—1)-) deg(fi) <> (18] —1).

Prove that if the system fi(z) = fa(z) = --- = fi(z) = 0 has a solution
a € S, then it has another solution b € S.
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10.

11.

12.

13.

14.

15.

Let A be a subset of Z/pZ, where p is a prime number. Prove that among
the elements a 4 b where a # b € A there are at least min(p, 2|A] — 3)
distinct elements.

Erdés-Heilbronn conjecture

Let A;, A, ..., Ay be subsets of Z/pZ such that > ... (1+|A4]) < p.
Also, let A= {aj,az,...,a,} and By, B, ..., B, be subscz of Z/pZ such
that |B;| > (n —1)(1 4 |4;|). Prove that we can select b; € B; such that
a;+b; # a; +b; for i # j and (a; +b;) — (a; +b;) does not belong to A;.

Let F' be a family of subsets of {1,2,...,n} such that |A| = k whenever
A € F and |AN B| € L for all distinct members A, B € F, L being a set
with s elements. Prove that F' has at most (’;) elements.

Frankl-Wilson

Let A;, Ag, ..., Ap, and By, By, ..., By, be subsets of {1,2,...,n} such that
there exists a set L with k elements for which |A; N B;| € L ifi < j and
| A;NB;| does not belong to L for all i. Prove that m < (7)+(5)+ -+ ().

Let p, g be prime numbers and r a positive integer such that ¢|p — 1, ¢

does not divide r and p > r97!. Let a4, as,...,a, be integers such that
=1 p-1 =l
a;? +ay? +---+a? isa multiple of p. Prove that at least one of

the a;’s is a multiple of p.
AMM

Prove that there exists a positive integer n such that any prime divisor
of 2™ — 1 is smaller than 271893 — 1.

Komal
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23. SOME SPECIAL APPLICATIONS OF POLYNOMIALS

16.

17.

18.

A family F' of k-element subsets of {1,2,...,n} is a k-forest if for every
f € F there exists a partition {1,2,...,n} =V fU--- UV ¢,such that f
is the only member of F' which intersects every V; . Prove that for any
such family F' we have |F| < (Z:})

Let f(n) denote the maximum positive integer k with the property that
there exists a k-element set A C R™ such that the points in A determine
at most two distinct distances. Show that

n(n+ 1) (n+1)(n+ 2)

B < fln2) < IR

Larman, Rogers, Seidel, Blokhius

Let a1, ag, ..., an, be positive integers and k1, ks, ..., kn, be integers greater

than 1. If o)™ + al/* + .. + a/*" is a rational number, then any term

of the previous sum is also a rational number.
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